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DRACO: Decentralized Asynchronous Federated
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Abstract—Emerging technologies and use cases, such as smart
Internet of Things (IoT), Internet of Agents, and Edge AI, have
generated significant interest in training neural networks over
fully decentralized, serverless networks. A major obstacle in this
context is ensuring stable convergence without imposing stringent
assumptions, such as identical data distributions across devices
or synchronized updates. In this paper, we introduce DRACO,
a novel framework for decentralized asynchronous Stochastic
Gradient Descent (SGD) over row-stochastic gossip wireless
networks. Our approach leverages continuous communication,
allowing edge devices to perform local training and exchange
model updates along a continuous timeline, thereby eliminating
the need for synchronized timing. Additionally, our algorithm
decouples communication and computation schedules, enabling
complete autonomy for all users while effectively addressing
straggler issues. Through a thorough convergence analysis, we
show that DRACO achieves high performance in decentralized
optimization while maintaining low variance across users even
without predefined scheduling policies. Numerical experiments
further validate the effectiveness of our approach, demonstrating
that controlling the maximum number of received messages per
client significantly reduces redundant communication costs while
maintaining robust learning performance.

Index Terms—Collaborative intelligence, continuous time mod-
els, decentralized learning, asynchronous learning, federated
learning, row-stochastic matrices, networked intelligent systems,
peer-to-peer networks.

I. INTRODUCTION

RECENT advancements in machine learning and wireless
connectivity have paved the way for various innovative

applications across various sectors such as the Internet of
Things (IoT), consumer robotics, autonomous transportation,
and edge computing. These systems promise reduced latency,
more efficient bandwidth usage, and enhanced privacy through
local data processing. However, achieving these benefits re-
quires overcoming the significant challenge of maintaining
reliable learning in dynamic and often unstable network en-
vironments. This unreliability calls for innovative approaches
that can seamlessly adapt to decentralized architectures while
ensuring both robustness and scalability.

In this work, we focus on enhancing communication effi-
ciency in federated learning (FL) [1], particularly within fully
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Linköping University, Sweden. M. Kountouris is with the Andalusian Re-
search Institute in Data Science and Computational Intelligence (DaSCI),
Department of Computer Science and Artificial Intelligence, University of
Granada, Spain, and with the Communication Systems Dept., EURECOM,
France. The first author conducted the research during her employment at
EURECOM, France. The work of M. Kountouris has been supported in part
by the Horizon Europe JU SNS project ROBUST-6G (Grant Agreement no.
101139068).

local training → transmission

model aggregationidle

message dropped due to timeout

Time

TimeTime

(a)                                                    (b)

User 1

User 2

User 3

(c)

User 1

User 2

User 3

1 1 1 1

33332 2 2 2

Fig. 1. A schematic view of DRACO’s timelines with comparisons. (a)
Synchronous FL; (b) asynchronous FL with transmission delay deadline; (c)
(in DRACO) fully asynchronous FL with delay deadline, but the iteration
count is continuous.

decentralized (serverless) environments where collaboration
occurs without a central coordinator [2]–[6]. Asynchronous
learning, which allows independent training and communi-
cation, is essential in such networks [7]–[11]. While both
decentralization and asynchrony offer significant advantages in
flexibility and resource efficiency, their combination introduces
additional challenges in achieving global consensus without
incurring substantial synchronization overhead [12].

A key challenge in decentralized asynchronous learning is
the uncertainty of convergence. Gossip-based communication,
which relies on probabilistic message exchanges, has emerged
as a promising alternative to rigid scheduling [13]–[17], of-
fering better adaptability to fluctuating network conditions
compared to predefined schedules [18]. However, most ex-
isting methods depend on idealized assumptions that limit
their applicability to specific network types. In particular,
many approaches assume doubly stochastic communication
weights [19], implying symmetric information exchange and
equal influence between neighbors, which is an unrealistic
assumption in directed and unreliable wireless networks. Fur-
thermore, even more recent methods designed for directed
graphs often presume that users are aware of successful
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Fig. 2. (a) Sequential computation and communication over a doubly
stochastic network; (b) Timelines of DRACO with decoupled computation
and communication over a row-stochastic network. If two messages arrive
at the same agent with a negligibly small time gap (in red circle), they are
considered simultaneous and are used for the same model aggregation step.
The concept of the superposition window is elaborated in Section II-II-B.

outbound message deliveries [20]–[22]. This strong require-
ment may not hold when the system has packet losses or
unidirectional links [23].

To address these limitations, we introduce DRACO, a novel
framework for decentralized asynchronous FL. DRACO is
built on two core principles: (i) continuous, fully asynchronous
operation without reliance on global iteration counters, and (ii)
decoupled communication and computation through gradient
pushing. By eliminating synchronized timing, DRACO enables
nodes to transmit updates at flexible, non-integer time instants.
Although this introduces variability in node progress, it sig-
nificantly reduces idle time and enhances learning efficiency.
Additionally, DRACO mitigates the effects of stale gradients
by discarding excessively delayed messages, ensuring timely
and effective optimization.

DRACO also tackles the communication overhead caused
by frequent updates in sequential iterations by decoupling
communication and computation, as illustrated in Fig. 2b,
allowing independent management of local training and mes-
sage exchanges. The separated action timelines enable nodes
to adjust their transmission schedules dynamically, enhancing
network efficiency and preventing performance oscillations
from redundant messages. Another advantage of decoupling
is that the integrated learning process is less likely to stagnate
when local training and transmission occur independently. A
fully asynchronous network with all users actively engaged,
as shown in Fig. 1c, serves as an exemplary case. In such
environments, if users always forward their updated models
after aggregating local updates from their one-hop neighbors,
as in Fig. 2a, the resulting communication overhead can be
nearly twice as high as in push-based collaboration. Further-
more, the content delivered between nodes is often duplicated
or overwritten. Thus, separating the two schedules differen-
tiates DRACO from conventional approaches that mandate a
sequential or predetermined order for gradient updates and
gossip communications.

In summary, this paper presents DRACO as a practical and
scalable solution for decentralized asynchronous learning over
wireless networks. Our main contributions are as follows:

• Asynchronous and Continuous Learning: DRACO elim-
inates rigid transmission schedules, enabling seamless
adaptation to dynamic network conditions.

• Realistic Asynchrony Management: DRACO treats asyn-

chrony and serverless operation as inherent system char-
acteristics, ensuring resilience to network variability.

• Efficient Message Control: DRACO optimizes the trade-
off between learning efficiency and communication over-
head by dynamically managing message transmissions
and stale information, while enhancing stability and ac-
celerating convergence.

We demonstrate through rigorous theoretical analysis and
extensive numerical experiments that DRACO achieves high
decentralized optimization performance with low user vari-
ance, even under unreliable communication conditions.

A. Related Works
Asynchronous decentralized learning In synchronous

learning systems, all participants should wait for the slowest
learner (straggler) before proceeding to the next global round.
As depicted in Fig. 1b, asynchronous learning with a transmis-
sion delay deadline effectively reduces the overall training time
of synchronous systems by excluding users whose updates
arrive after a predetermined deadline [15], [24]. This approach
is applied not only to asynchronous settings but to synchronous
learning through partial participation [25]. Both asynchronous
learning and partially participating synchronous learning face
the challenge of variance reduction since only a subset of local
updates is considered in each training round [26]–[29]. Despite
fewer average participation in model aggregation per user
compared to synchronous methods, asynchronous learning
performs as well as its counterpart, especially in solving large-
scale multi-user optimization problems [30]. Nevertheless, this
approach requires users to start their computations simultane-
ously to synchronize the global phase, leading to idle times
when a message arrives before the start of the next iteration.
Additionally, sufficient local storage is necessary to manage
multiple messages queued in the receive buffer until the next
round.

Randomized communication over serverless and di-
rected networks Recent studies in decentralized learning
have explored algorithms implementable for networks mod-
eled by directed graphs, where the connectivity matrix is
not necessarily doubly stochastic. This adaptation is often
necessary when neither full-duplex nor half-duplex systems
can ensure stable gradient transmissions. Techniques, such as
push-sum [20], [31]–[36], push-pull [37], [38], and random
walk [39]–[41], have been proposed to improve decentralized
optimization on directed graphs. Meanwhile, row-stochastic
communication [42] significantly reduces both the number of
communication rounds and storage requirements on edge de-
vices; hence, this benefits tackling complex problems, specifi-
cally those involving small-scale neural networks [43]. Among
random communication protocols, the gossip protocol is well
known for its rapid information spread, but is also criticized
for its high network resource consumption [44]. Consequently,
asynchronous gossip learning in such contexts needs inno-
vative approaches to manage information flow among edge
devices [45].

Distributed optimization over directed graphs While
many existing studies assume doubly stochastic weight ma-
trices, this condition restricts their applicability to arbitrarily
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directed communication networks, thus limiting the practical
scope of these algorithms [23]. The study of distributed opti-
mization over directed graphs has a well-established history in
control theory [43], [46]–[48], where the relevant researchers
developed fundamental methodologies to handle asymmetric
and unbalanced communication topologies. More recently, FL
research has begun to address challenges related to asymmet-
ric connectivity, employing row-stochastic matrices [49] and
accommodating time-varying directed graph structures [50].
Building on these advances, some investigations have fur-
ther incorporated personalization techniques [51] to better
manage the inherent data heterogeneity across participants in
directed settings [52]. Nevertheless, a significant open question
remains: how resilient are decentralized learning systems
when faced with unreliable communication links?, which is
a critical concern for real-world wireless and edge computing
deployments.

Decoupling communication and computation Unlike
traditional methods that align gradient computation and com-
munication either sequentially or in parallel, decoupling these
processes significantly accelerates peer-to-peer averaging by
releasing clients from waiting for others [53]–[55]. In AD-
OGP [56], the authors replaced global communication slots
with an event-based aggregation system, including activities
such as prediction and local updating. This unified timeline
of events is particularly well-suited for environments where
users train locally at different computational speeds. However,
the event types of AD-OGP are restricted to “prediction” and
“local computation”, overlooking the impact of transmission
delay. The authors assume that message delay, defined as the
time gap between the latest prediction and the local updating
event within a user, provides no insight into how long it takes
for a message to reach a neighboring node. Despite the grow-
ing interest in approaches for effective timeline integration,
only a few studies have explored decoupled model averaging
over unreliable wireless networks, where issues such as packet
loss or delays are prevalent.

II. SYSTEM MODEL

We consider the following optimization task over N clients,
whose goal is to minimize

f(x) :=
1

N

∑
i∈U

fi(x) (1)

where x ∈ Rd is an d-dimensional model parameter and
U = {1, · · · , N} is the set of network users. In a serverless
network, there is no global model xt; instead, each agent
i holds x

(i)
t , which serves as a reference for the globally

acquired model. Therefore, we rephrase the objective function
as

x∗ = inf
x∈Rd

N∑
i=1

fi(x
(i)) . (2)

To tackle the minimization problem described in (1) or (2),
we adopt a decentralized stochastic gradient descent (DSGD)
approach. In this approach, individual devices iteratively en-
hance their local models x(i) and subsequently share these

estimates with their neighboring nodes, which in turn could
vary over time.

A. Absence of a global belief

The underlying assumption regarding the global consensus
is that each user cannot reach a global “true parameter”,
denoted by x∗, by local updates only. The global model
x should be a vector combined with the beliefs (pseudo-
global model) at each agent, said x = {x(1),x(2), · · · ,x(N)}.
However, in practice, none of the agents work as a central
server or aggregator, which can obtain a centralized global
model. We therefore adopt a virtual global model x̄ that could
have been acquired through the superposition of all beliefs if
the network had an entirely authorized server, i.e.,

x̄ = Ei∈U [x
(i)] =

1

N

N∑
i=1

x(i).

Therefore, when P seconds have elapsed since the initial
moment t0, we rewrite the virtual global model difference
between these two time instances as

x̄t0+P − x̄t0 =
1

N

N∑
i=1

(
x
(i)
t0+P − x

(i)
t0

)
.

B. Communication system

In our work, the processes of computation and communica-
tion are decoupled; hence, when to train locally and when to
transmit the updates are determined independently by each
user. Since there can be infinite instants between any two
close events on the continuous timeline, each message will
likely arrive at a different moment. Thus, practically speaking,
there is no aggregation during the entire process, even though
two updates arrive at the same destination node by a narrow
margin of time. In this regard, we introduce a superposition
window, which is analogous to congestion windows in TCP
(Transmission Control Protocol) [57]. Like a TCP window, the
superposition window in DRACO controls the flow of received
updates by grouping the messages for one aggregation. This
superposing function leads to lower computation costs since
the clients avoid renewing the local reference model every time
a message arrives.

This paper investigates the effect of unreliable wireless com-
munications and controlled transmissions on the performance
of DRACO. Specifically, we consider scenarios with time-
invariant connectivity graphs, which represent stable network
topologies during the learning process. This simplified as-
sumption facilitates a focused analysis of how the frequency
of successful message receptions and the underlying structure
of the communication network affect convergence in the
learning process. Unlike traditional fixed-topology models, we
explicitly account for the inherent unreliability of wireless
channels. In our model, successful message delivery between
connected nodes is probabilistic and not guaranteed, influenced
by factors such as physical distance, interference, and channel
capacity limitations. User nodes are randomly distributed,
and their geographical positions directly affect communication
probabilities. To provide a more comprehensive understanding
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beyond standard fixed-topology analyses, we examine the
effect of the frequency of successful message receptions within
a defined unification period (detailed in Section III-A). This
approach provides a more nuanced assessment of the learning
process under various wireless channel conditions.

A weighted graph at a certain instance is mathematically
defined as an N×N -sized matrix where each element indicates
whether node i transmits its message to one of its neighbors
j or not. It follows a conditional probability distribution if a
communication event exists on client i. Transmission incidents
are defined as

qik =

{
1, if i broadcasts ∆(i) at k
0, otherwise.

(3)

qijk =

{
1, if j receives i’s message sent at k
0, otherwise,

(4)

where k is the index of an event. We define the neighborhood
of user i, denoted by Nt(i) = {j|qijt = 1}, as the set of
all users j that have an edge going from i to j at time
t. It is also possible to denote the neighbor set concerning
event k, such as Nk(i). Following the notation in [25], these
participation indicators are normalized across all moments,
i.e.,

∑
j∈U\{i} q

ij
t = 1 for qijt ≥ 0 and for all i, t. In

addition to the definition, we define ρ < 1 that satisfies∑
j∈U\{i}(q

ij
t )2 ≤ ρ2 for all i, t.

C. Local gradient computations

Each user performs stochastic gradient computations by
iterating B batches of the local training datasets. ∆ represents
the local update of the model, defined as the difference
between the model’s state before the mini-batch training and
its state after completing training on B batches of training
samples.

Assumption 1. (Exponential local gradient computation
time.) The computation time τi of the stochastic gradient
gi(x) ∈ Rd at user i is exponentially distributed, i.e., τi ∼
exp(λi).

In point processes, one can consider a PPP along the real
line by examining the point count within a specific interval
[t0, t0+P ] [58]. For a homogeneous PPP with rate parameter
λ > 0, the likelihood that the count of points, denoted by
num(t0, t0 + P ], equals a certain integer m can be described
by the following expression:

Pr{num(t0, t0 + P ] = m} = (λP )m

m!
e−λP .

This formula calculates the probability of exactly m occur-
rences within the interval based on the Poisson distribution,
where λP represents the expected number of points in the
interval and e−λP adjusts for the total rate of occurrences
over the span.

III. DRACO: PROPOSED DECENTRALIZED
ASYNCHRONOUS LEARNING

The primary rationale behind the proposed algorithm is to
answer the following question: How can we issue instructions

Transmission
pkt ← Δ(i)

Broadcast(pkt)

Local training
y0

(i) ← x(i)

yb+1
(i) ← yb

(i) – γgi(yb
(i))

Get Δ(i) ← yB
(i) – x(i)

Reception
Add weighted sum
x(i) ← x(i) + qt

j→i Δ(i)

x(i) ← x(hub)

Periodic unification
pkt ← x(i)
Broadcast(pkt)

idle

Wake for event
Event done
External pkt arrival
Time ≡ 0 (mod P) & node i is the hub

Fig. 3. The proposed algorithm (DRACO) in a chain graph illustrating the
states of possible actions within each agent i.

to each user in the absence of a global time loop in the
network? To resolve this issue, we design the system such that
each node focuses solely on its actions without considering the
other nodes’ training progress or channel conditions. Defining
the algorithm within a unified time loop in asynchronous
and fully decentralized networks presents several practical
limitations in real-world systems. A significant challenge lies
in the absence of a consistent global time reference, such as
global iteration rounds, denoted as t, or timestamps marking
the completion of each user’s local computations, marked as
k. This inconsistency arises because the total number of local
training iterations varies across users, even when their updates
are observed simultaneously. As a result, if the algorithm
mandates exchanges every tP seconds or every kP global slots,
some local models may fall behind in development due to
completing fewer local training steps than others. To address
this issue, we avoid defining the procedure as either sequential
or simultaneous. Instead, our algorithm adopts a unified global
loop where all users work in parallel. This global loop effec-
tively encapsulates the learning process conducted by each
user.

At each instance, every user selects one of the following
three statuses based on a probability distribution: (1) remaining
idle, (2) transmitting a message to neighboring nodes, or (3)
conducting local model training. Local computation involves
batch training iterated B times to compute the update, termed
∆. During transmission, the user broadcasts its local update.
If a node recognizes delivery from the other nodes, it switches
to a fourth (4) status (receiving mode), renewing its reference
model by aggregating the model updates from neighboring
nodes. Unlike these four statuses, a node turns to the fifth
(5) status when a periodic timeout occurs. As depicted in
the yellow box in Figure 3, a temporary hub broadcasts its
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Algorithm 1 User-centric algorithm of DRACO. A pseudo-
algorithm for source code reproduction is provided in Ap-
pendix E.

1: for i = 1, · · · , N do
2: while t < T do
3: t← clock()
4: if there is an event at time t then
5: if the event is a gradient updating step then
6: y

(i)
0 ← x(i)

7: for b = 0, · · · , B − 1 do
8: y

(i)
b+1 ← y

(i)
b − γgi(y

(i)
b ) {batch training}

9: end for
10: ∆(i) ← y

(i)
B − x(i) {local update evaluation}

11: else if the event is a transmission step then
12: i sends ∆(i) to its neighbors
13: for j ∈ N (i) do
14: j receives ∆̃(i)

15: x(j) ← x(j) +
∑

j ̸=i q
ij
t ∆̃(i) {aggregation}

16: end for
17: end if
18: end if
19: if t ≡ 0 (mod P ) and i is the hub at t then
20: i broadcasts x(i)

21: for j ∈ N (i) do
22: j receives x̃(i)

23: x(j) ← x̃(i) {periodic unification}
24: end for
25: end if
26: end while
27: end for

reference model instead of a local update when the time is a
multiple of the period P . The corresponding explanation as a
form of algorithm is provided in Algorithm 1 on page 5.

Note that the ‘idle’ state is included since we assume that
the agents alter their states instantaneously, i.e., without delay.
The node’s status is considered idle when it does none of the
aforementioned steps. However, in practice, any activity takes
time to complete, implying that each timestamp represents the
moment that each action just finished. By this interpretation,
the participants do not have an actual break time in practical
scenarios, which is also applied to the experiments in Section
V.

Notations. U represents the set of participants within the
network with Q := {qijt } for all i, j ∈ U and t. Also,

∑
j ̸=i

represents the summations of variables attributed to any user
other than user i, i.e., j ∈ U \ {i}. A user i’s local update
at time t is symbolized as ∆

(i)
t . When a user i sends ∆(i) or

x(i), the recipient j receives ∆̃(i) or x̃(i), which are identical
to the sender’s original contents if the transmission is free
from distortion. Throughout this manuscript, the term ‘update’
is used only as a noun that signifies the result derived from
the difference between a local reference model and a newly
obtained model through batch training. To avoid potential
confusion, any instances in this paper that involve the action
of updating are called alternatively, such as ‘renew’ or ‘iterate
on’.

A. Periodic Unification

Local models tend to diverge when the network does not use
a central server because no one synchronizes their different
learning stages. Like conventional FedAvg, periodic unifica-
tion can effectively resolve the variance-reduction problem
among local reference models. A countable upper bound for
the number of messages per unit time is required for analysis
because otherwise, the losses diverge to infinity. It is also
reasonable to assume that it is finite because, in real-life
applications, messages are countable even though the number
of definable instances is infinite. Based on this, Assumption 2
and Definition 1 are introduced as follows.

Assumption 2. (Finite number of messages during a unit time
period) During every period P , the number of messages that
each user receives is finite.

Definition 1. (Maximum number of receiving messages per
user) Let ψi(tstart, tend) indicate the function that counts the
number of messages arrived at user i since time tstart until
time tend. For any i ∈ U and m ∈ [0, 1, · · · , ⌊TP ⌋ − 1] ,

ψi(mP, (m+ 1)P ) ≤ Ψ ,

where Ψ is the maximum number of messages that a user
permits to receive during the time duration [mP, (m+ 1)P ).

The Ψ term not only justifies the number of messages to
be countable but also functions as a communication budget
per period. Interestingly, when a decentralized network has a
fixed communication budget per unit time, performing many
consensus steps can effectively reduce the error, even though
each gossiping step renders low precision. [59]

IV. CONVERGENCE ANALYSIS
In this section, we analyze the convergence performance

of DRACO. Following the common practice in the literature,
we make the subsequent assumptions along with the objective
function.

Assumption 3. (Lipschitz gradient.) For any x,y ∈ Rd and
for any i ∈ U , there is a nonnegative L that satisfies

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (5)

Assumption 4. (Unbiased stochastic gradient with bounded
variance.) For all x, i,

E[gi(x)|x] = ∇fi(x) and E
[
∥gi(x)−∇fi(x)∥2|x

]
≤ σ2

(6)

Assumption 5. (Bounded gradient divergence.) For all t ∈
[0, T ) and i ∈ U , the gradient divergence is bounded by ζ,
i.e.,

∥∇fi(x(i)
t )−∇f(xt)∥2 ≤ ζ2. (7)

From Assumption 5, an alternative deviation of local gradi-
ents is derived as in Lemma 1.

Lemma 1. (Deviation of local gradients) When N > 4, for
all x, t,∥∥∥∑

j∈U
qjit
[
∇fi(x(i)

t )−∇fj(x(j)
t )
]∥∥∥2 ≤ 2Nζ2

N − 4
.
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Proof. The left side of the inequality above can be rephrased
as ∥∥∥∑

j∈U
qjit
[
∇fi(x(i)

t )−∇fj(x(j)
t )
]∥∥∥2

=
∥∥∥∇fi(x(i)

t )−
∑
j∈U

qjit ∇fj(x
(j)
t )
∥∥∥2.

By adding and subtracting ∇f(xt), we have

∥∥∥∇fi(x(i)
t )−

∑
j∈U

qjit ∇fj(x
(j)
t )
∥∥∥2

=
∥∥∥∇fi(x(i)

t )−∇f(xt) +∇f(xt)−
N∑
j=1

qjit ∇fj(x
(j)
t )
∥∥∥2

=
∥∥∥∇fi(x(i)

t )−∇f(xt) +
1

N

N∑
i′=1

∇fi′(x(i′)
t )

− 1

N

N∑
i′=1

N∑
j=1

qjit ∇fj(x
(j)
t )
∥∥∥2

(a)

≤ 2
∥∥∇fi(x(i)

t )−∇f(xt)
∥∥2

+ 2
∥∥∥ 1

N

N∑
i′=1

[
∇fi′(x(i′)

t )−
N∑
j=1

qjit ∇fj(x
(j)
t )
]∥∥∥2

(b)

≤ 2ζ2 +
2

N

N∑
i′=1

∥∥∥∇fi′(x(i′)
t )−

N∑
j=1

qjit ∇fj(x
(j)
t )
∥∥∥2,

where (a) uses (∥z1 + z2∥2)/2 ≤ ∥z1∥2 + ∥z2∥2; (b) is from
the definition of ζ2 in Assumption 5 on the first term and
Jensen’s inequality on the second term. By rearranging the
second term of the right side of the inequality, we get

(
1− 2

N

)∥∥∥∇fi(x(i)
t )−

∑
j∈U

qjit ∇fj(x
(j)
t )
∥∥∥2

≤ 2ζ2 +
2

N

∑
i′∈U\{i}

∥∥∥∇fi′(x(i′)
t )−

N∑
j=1

qjit ∇fj(x
(j)
t )
∥∥∥2

≤ 2ζ2 +
2

N

N∑
i′=1

∥∥∥∇fi′(x(i′)
t )−

N∑
j=1

qji
′

t ∇fj(x
(j)
t )
∥∥∥2.

With another rearrangement to the left side, the inequality
becomes(

1− 4

N

)∥∥∥∇fi(x(i)
t )−

∑
j∈U

qjit ∇fj(x
(j)
t )
∥∥∥2 ≤ 2ζ2.

Considering all the above assumptions, we obtain an upper
bound on the expectation of the original objective’s gradient
when Q is given in advance.

TABLE I
COMMUNICATION AND COMPUTATION COST COMPARISON ACROSS

SCHEMES: NUMBER OF TRANSMISSIONS (# TX.) AND LOCAL MODEL
TRAINING SESSIONS (# LR.) MEASURED FOR OVERALL NETWORK

RESOURCE CONSUMPTION.

# Tx. # Lr.
sync-symm (Choco-SGD) 530 265
sync-push 346 ± 65 603
async-symm 281 ± 60 500
async-push (DIGEST) 574 ± 39 375
DRACO 207 ± 118 323 ± 110

Theorem 1. Let F := f(x0) − minx f(x). Under all the
aforementioned assumptions, we have

min
t

E
[
∥∇f(xt)∥2

∣∣Q]
≤ O

( F
BγΨ

+
ζ2

N − 4
+ σ2 +Nζ2

+BL2γ2σ2 +
Lγρ2σ2

NΨ

)
(8)

for γ ≤ 1
8BLNΨ , N > 4, and Ψ ≥ 3.

Remark. We begin, following a similar approach to [25],
by deriving an inequality rooted in the smoothness of fi. This
inequality establishes a connection between two local losses
from the same user at different timestamps, namely fi(x

(i)
t0+P )

and fi(x
(i)
t0 ). Within this inequality, an inner product term

unfolds into several components. Notably, it comprises three
distinct subterms: one involving ∥y(j)

t,b − x
(j)
t ∥2 (refer to

Lemma C.3), another featuring ∥x(j)
t − x

(j)
t0 ∥

2 (see Lemma
C.4) which is mainly derived from Algorithm 1, and a third
term with ∥∇fi(x(i)

t )−∇fj(x(j)
t )∥2, of which the expectation

has an upper bound (refer to Lemma 1). Our proof is novel
in that it effectively converts and simplifies the terms on the
continuous timeline into discrete values. Detailed proof is
available in Appendix D. □

V. EXPERIMENTAL RESULTS

We conducted experiments with federated learning on two
datasets: (1) the balanced EMNIST [60] dataset with 47 class
labels for image classification tasks, and (2) the Poker hand
dataset [61] for multi-class classification tasks, which is widely
applied in automatic rule generation. Each user possesses 1000
local training samples arranged into training batches with 64
samples per batch. The default number of participants in each
simulation is N = 25, otherwise it is specified accordingly.
The sampling interval is 500 events, i.e., the evaluation of each
local model is done under a test set whenever the 500th event
is finished. The rate parameter of the exponential distribution
in local gradient computation is λi = 0.1 for all users by
default. In this study, we did not evaluate the impact on
model compression, implying that the packet size is as large
as the raw model. The convolutional neural network (CNN)
architecture used in the simulations takes up 596776 B (0.57
MB) for feeding samples from EMNIST, and 51640 B (0.05
MB) from Poker hand, respectively. These values are used to
quantify the message size.
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Sync-push
Sync-symm (Choco-SGD)
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DRACO

(b) Poker hand

Fig. 4. Performance comparison with the literature under (a) EMNIST dataset,
and (b) Poker hand dataset.

We performed simulations using cycle and complete topolo-
gies, with a time-invariant Q. The connectivity graph is
fixed throughout the whole collaboration process. Each user,
indexed i without losing generality, spends some time com-
puting the local gradient following exp(λi) as mentioned in
Assumption 1. Whenever a local update is done at t, user i
sends ∆

(i)
t to its neighbors j ∈ N (i), where N (i) indicates

a set of user i’s neighbors. Although a pre-defined topology
outlines the intended communication paths between nodes, the
inherent unreliability of wireless channels can significantly
affect data transmission. Factors such as fading, interference,
and physical obstructions can disrupt connectivity, resulting in
packet losses and delays, thereby undermining the efficiency
and reliability of communication within the network. We
used parameters reported in [62] and [63] for the wireless
communication settings. The radius of the field where the
nodes can be scattered is R = 500 m. We fix the transmit
power of each user as Pi = 30 dBm (1000 mW). We also
set the path loss exponent α = 4, the bandwidth W = 10
MHz, and the noise power density N0 = −174 dBm/Hz.
We assumed that two nodes interfere with each other during
transmission if their distance is closer than 0.1R. Due to
those wireless communication characteristics, the mechanism
for realizing DRACO is slightly different. Specifically, when
user i has performed local training at time t, it broadcasts its

update ∆
(i)
t to all j ∈ U \ {i}. It takes

Γij =
message size

W · log2(1 + SINRi,j)
+

distance(i, j)
lightspeed

seconds for the message to arrive at node j. Here, the signal-
to-interference-plus-noise ratio (SINR) between the two nodes
is defined as

SINRi,j =
Pihjidistance(j, i)−α∑

n∈Φj
Pihjndistance(j, n)−α + z2

,

where hji ∼ exp(1) denotes the small-scale fading gain, Φj

is a set of nodes interfering node j, and z2 characterizes
the variance of AWGN (Additive White Gaussian Noise).
As long as the transmission duration Γij is shorter than the
predetermined threshold Γmax, user j succeeds to receive ∆(i)

at time t+ Γij . (i.e., qijt+Γij
= 1.)

To simulate dynamic network conditions, we employed
time-varying topologies utilizing the Gauss-Markov mobility
model, a widely used approach for modeling the continuous
movement of nodes. In this model, each node updates its
velocity vi(t) and direction θi(t) at each timestep according
to a weighted average of its previous velocity and direction,
along with random perturbations. The update equations are
given by:

vi(t) = αvi(t− 1) + (1− α)v̄ +
√

1− α2σvwiv(t)

θi(t) = αθi(t− 1) + (1− α)θ̄ +
√
1− α2σθwiθ(t)

where α ∈ [0, 1] is a tuning parameter that controls the degree
of randomness, v̄ and θ̄ represent the steady-state speed and
direction, σv and σθ are the standard deviations for speed
and direction, respectively, and wiv, wiθ are Gaussian noise
terms. The value of α determines the dependency on previous
states, with α = 0 corresponding to a purely random walk,
and α = 1 corresponding to linear, deterministic motion.
We set α = 0.5 in our experiments to balance randomness
and directed movement. The clients’ physical coordinates
(positions) were updated every td = 1.0 second, defining
the interval between consecutive simulation timesteps. We
modeled a scenario where mobile clients represent diverse
types of entities, such as pedestrian smart devices or unmanned
aerial vehicles (UAVs), by varying the maximum client speed
between 1 m/s and 30 m/s.

The performance of DRACO is evaluated across different
network topologies and datasets. Simulations with EMNIST
employ a cycle topology, where each user is connected to two
neighbors. In contrast, the Poker hand dataset employs a fully
connected topology, where each user is directly connected to
all others. DRACO’s performance is compared against four
benchmark methods:

• sync-symm: Synchronous learning with symmetric con-
nectivity (Choco-SGD [64])

• sync-push: Synchronous learning with directed connec-
tivity.

• async-symm: Asynchronous learning with symmetric
connectivity (Decentralized Asynchronous SGD [15]).

• async-push: Asynchronous learning with directed connec-
tivity (Digest [45]).
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Fig. 5. Results for different upper bounds on the number of received messages
per user. (Γmax = 10)

The term “Push” denotes the use of the push-sum algorithm
for directed graphs.

The Poker hand dataset presents a unique challenge due to
its imbalanced class distribution. To comprehensively assess
model performance, we evaluated both test accuracy and F1-
score, the latter accounting for both precision and recall.

While the choice of dataset had a minor impact on overall
trends, the network topology significantly influenced perfor-
mance. In the cycle topology, where each user exchanges
information with only two neighbors, unreliable channels
(e.g., due to fading) can lead to frequent client isolation. As
shown in Fig. 4a, synchronous methods exhibited comparable
performance, but async-symm underperformed async-push,
despite using a doubly stochastic matrix. This performance
gap highlights the sensitivity of async-symm to strict transmis-
sion deadlines, emphasizing the importance of well-designed
scheduling in asynchronous learning. In the fully connected
topology in Fig. 4b, where every user is connected to all others,
the virtual global model can be trained more robustly, even
when some edges are intermittently disrupted. While conver-
gence speeds vary, all algorithms ultimately achieve similar
performance. DRACO consistently outperformed competitors
in both test accuracy and F1-score. This advantage stems from
its parallel aggregation and unification mechanisms, which
effectively mitigate the divergence of local models common
in asynchronous decentralized learning. DRACO periodically
unifies local reference models and regulates the number of
received messages, enhancing robustness in continuous oper-
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Fig. 6. Results for different transmission duration deadline (window= 0,
P = 500)

ation and fading environments.
To evaluate DRACO’s communication and computation

efficiency, we track the total number of transmissions and
local training events per client throughout the entire learning
process, and compare these metrics against several baseline
algorithms (Table I). Notably, DRACO achieves the lowest
overall number of transmissions per user, which is attributed
to the Ψ term that effectively regulates the number of outbound
transmission attempts. However, due to the uncoordinated
nature of communication in DRACO, we observe a significant
variance in transmission frequencies across clients, with some
nodes transmitting nearly twice as many messages as others.
This variability is also reflected in the number of local training
events per client, stemming from DRACO’s decoupled design
between communication and computation phases. Despite this
heterogeneity in individual client activity, the results presented
in Fig. 4 show that DRACO achieved the highest test ac-
curacy while simultaneously requiring fewer communication
and computation resources compared to baseline algorithms
from the literature, highlighting DRACO’s resource efficiency
without compromising performance.

During implementation, performance oscillations were ob-
served when users received excessive redundant updates due
to high transmission frequencies (large Ψ values in Fig. 5a and
5b). Conversely, excessively small Ψ values slowed learning
by limiting the reception of crucial updates. These findings
align with prior work [59] and the theoretical analysis pre-
sented in Theorem 1.

We vary the transmission deadline from 0.3 to 30 seconds in
Fig. 6. As Γmax increases, the number of communication events
increases, as users are more willing to accept stale updates.
This higher frequency of message exchanges generally accel-
erates convergence by providing more frequent opportunities
for model updates and helps reduce spiking fluctuations in
average performance. However, the improvement saturates
around Γmax = 10, suggesting that the inclusion of excessively
stale updates during model aggregation begins to degrade
performance, ultimately leading to a longer overall training
time.

Fig. 7 illustrates the performance of DRACO under non-
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Fig. 7. Results for non-IID training data distribution with different Dirichlet
coefficients (window= 0, P = 500, Ψ = 100)

independently and identically distributed (non-IID) training
data with varying Dirichlet distribution coefficients, denoted
as α. Given the inherent high degree of non-IIDness in the
Poker Hand dataset, where approximately 90% of the training
samples belong to just two out of ten classes, we specifically
manipulated the data heterogeneity using the EMNIST dataset
for these experiments. To create diverse non-IID data distribu-
tions across clients, we set the Dirichlet coefficient α to values
ranging from 0.01 to 1.0. Our results indicate that DRACO
maintains robust accuracy for α ≥ 0.3. However, when α
falls below 0.1, we observed a decline in performance for
clients, evidenced by reductions in both test accuracy and
F1-score. For reference, it is worth noting that a common
setting in many federated learning studies utilizes a Dirichlet
coefficient around α = 0.4 when modeling standard non-IID
environments.

To evaluate DRACO under dynamic network conditions, we
conduct experiments using time-varying topologies generated
with the Gauss-Markov mobility model (see Fig. 8). In this
model, each client updates its speed and direction at each
timestep based on a weighted combination of its previous
state and random perturbations, resulting in smooth and real-
istic mobility patterns. The results demonstrate that DRACO
maintains robust learning performance across various mobility
scenarios. Both test accuracy and F1 score remain stable, even
as the network topology evolves due to node movement. In
high-mobility scenarios, particularly when the maximum speed
exceeds 20 m/s, a slight increase in performance fluctuations
over time is observed, which is expected due to more frequent
link disruptions. Nevertheless, DRACO consistently outper-
forms baseline methods and demonstrates strong resilience in
time-varying mobile wireless networks.

VI. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

We have studied decentralized asynchronous learning opti-
mization through row-stochastic gossip communication net-
works and proposed a novel method called DRACO. Our
technique facilitates the learning process, removing the need
for global iteration counts. It presents local user performance
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Fig. 8. Performance across different maximum user speeds in mobile
networks. (td = 1.0, Γmax = 10)

defined on a continuous timeline. We provided practical in-
structions for each participant by decoupling training and
transmission schedules, resulting in complete autonomy and
simplified implementations in real-world applications. We an-
alyzed the algorithm’s convergence and provided experimental
results that support the proposed framework’s efficacy and
feasibility.

In the remainder, we highlight some promising yet chal-
lenging directions that require further investigation.

• Improve robustness against collisions. Random access
is known to have a higher probability of collision oc-
currence. However, it is cumbersome or impractical to
predetermine the communication schedule because, while
carrying out DRACO, the participants decide whether to
transmit and/or train their local models without commu-
nication or agreement with the other users. Collision in
a random access protocol can be alleviated by adapting
classical approaches in wireless networks. These ap-
proaches include configuring a random backoff time after
a collision for retransmission attempts, adopting collision
detection mechanisms, or allowing clients to dynamically
adjust the size of their messages or the transmission
power. On the other hand, considering collisions from
the resource allocation perspective, the system can assign
different priority levels to clients based on factors such
as their data urgency or historical collision rates.

• Reception control We manually selected the rate param-
eters for transmissions (λji) because we assumed that
the participants are not able to predict the frequency of
message-receiving events, even in fixed Q cases. Never-
theless, there exist techniques that enable edge devices to
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roughly estimate the ratio of successful message reception
in advance. With this in mind, studying how to manage
the reception events in realizing DRACO will be possible.

• Bandwidth allocation. In this paper, bandwidth is
equally distributed to all users. If the users exchange
their SINR information, as well as their weight updates,
a bandwidth allocation algorithm can be added within the
“for i” loop, as proposed in [63].

• More realistic experiments with aggregation time
threshold. We can consider that each user has a pre-
determined threshold to aggregate its neighbors’ local
updates. The user can perform superposition on their
local reference model only after the timeout occurs. For
instance, each user j might have an upper bound on the
number of ∆(i)’s that it can accept during its receiving
period.

• Enhance robustness against malicious users. The cur-
rent DRACO framework operates under the assumption
of a network of honest clients collaboratively working
toward a global consensus. A critical direction for future
research is incorporating robust security mechanisms to
detect and mitigate the impact of malicious participants.
Strengthening DRACO’s resilience against adversarial
behavior would significantly broaden its applicability,
enabling secure and reliable collaborative learning in
fully decentralized environments. Robustness is crucial
in settings characterized by asynchronous operation and
flexible aggregation schedules, where vulnerabilities to
malicious behavior are inherently higher. A more robust
variant of DRACO would thus represent a key advance-
ment toward trustworthy decentralized learning.

Future work could also include exploring how the system
handles older or outdated updates, which could make it more
reliable and efficient. We can also consider using different
learning rates or adjustments across various devices, which
could make the algorithm work better over a range of device
capabilities. Additionally, one can adapt DRACO for more
complex mobility scenarios, where distances and communi-
cation paths change over time in a three-dimensional space.
This advance could make our approach more practical for real-
world applications. Finally, the instructions can be simplified
to make the procedure easier and more accessible in different
settings. Addressing the abovementioned challenges could
enhance DRACO’s performance and usefulness, opening up
new research avenues in asynchronous decentralized federated
learning.
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Fig. A.9. A metaphoric map that guides the correlation of each proposition
and lemma for proving the main theorem.

Before the proof of Theorem 1, it is essential to verify (i)
how many communication events and (ii) how many local
gradient updates occur during P . In PPP, communication
events occur λiP times on average during P , which indicates
the expectation of broadcasting frequency of node i. To find
the bound for xt0+P − xt0 , we need to specify how many
reception events happen in a random node i during the elapsed
time of P . For simplicity, we write

∫
P

to indicate
∫ t0+P

t0
. The

reference model of node i update during P is

x
(i)
t0+P − x

(i)
t0 =

∫
P

∑
j

Pr[i ∈ Nt(j)]∆
(j)
t dt

=

∫
P

∑
j

qjit ∆
(j)
t dt

= γ

∫
P

∑
j

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt ,

which is heterogeneous across nodes. A floored notation ⌊t⌋
indicates the latest moment no later than time t that user j
computes ∆(j).

A superscripted or subscripted ⋆ on some variables is
analogous to a “don’t-care” (DC) term in digital logic [65].
For instance, q⋆ is the same as any qi, where i can be any
user index in U without loss of generality.

B. Propositions

Proposition B.1. If Assumption 5 is satisfied, a decentralized
learning network with N ≥ 4 clients satisfies∑

j ̸=i

qjit
∥∥∇fj(x(j)

t )−∇fi(x(i)
t )
∥∥2 ≤ 9Nζ2

4

for all i, j ∈ U and t ∈ [0, T ).

Proof.∑
j ̸=i

qjit
∥∥∇fj(x(j)

t )−∇fi(x(i)
t )
∥∥2

=
∑
j ̸=i

qjit ∥∇fj(x
(j)
t )−∇f(xt)−∇fi(x(i)

t ) +∇f(xt)∥2

(a)

≤
(
1 +

1√
N

)∑
j ̸=i

qjit
∥∥∇fj(x(j)

t )−∇f(xt)
∥∥2

+ (
√
N + 1)

∑
j ̸=i

qjit
∥∥∇fi(x(i)

t )−∇f(xt)
∥∥2

(b)

≤
(
1 +

1√
N

)∑
j ̸=i

qjit
∥∥∇fj(x(j)

t )−∇f(xt)
∥∥2

+ (
√
N + 1)ζ2

(c)

≤ (N + 2
√
N + 1)ζ2

(d)

≤ 9Nζ2

4
,

where (a) is due to Young’s inequality; (b) comes from
Assumption 5; (c) takes the fact that q⋆⋆ ≤ 1 for any user
nodes; (d) is always true for N ≥ 4 since 5N

4 −2
√
N −1 ≥ 0

for any
√
N ≥ 2, which satisfies the given condition about

N .

Remark. This proposition appears in the proof of Proposi-
tion B.2.

Proposition B.2. (Upper bound for superpositioned model
deviations.) Let hj(b) = y

(j)
t,b − x

(j)
t denote the difference

between a local model calculated by feeding each batch with
an index b and the local reference model. For all i, j ∈ U ,
when γ ≤ 1

8BL , we have∑
j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
≤ 2

5

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+

9Nζ2

10L2
+

16Bγ2σ2

5
+

128B2γ2

5
E·|Q[∥∇fi(x

(i)
t0 )∥

2] .

Proof. We rephrase the b+1th term, hj(b+1) = y
(j)
t,b+1−x

(j)
t ,

as follows.∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b+1 − x

(j)
t

∥∥∥2]
=
∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b − x

(j)
t − γgj(y

(j)
t,b )
∥∥∥2]

(a)
=
∑
j ̸=i

qjit

∥∥∥E·|Q

[
y
(j)
t,b − x

(j)
t − γgj(y

(j)
t,b )
]∥∥∥2

+
∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b − x

(j)
t − γgj(y

(j)
t,b )

− E·|Q

[
y
(j)
t,b − x

(j)
t − γgj(y

(j)
t,b )
]∥∥∥2]

=
∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b − x

(j)
t − γ∇fj(y

(j)
t,b )
∥∥∥2]

+
∑
j ̸=i

qjit E·|Q

[∥∥∥γ(gj(y(j)
t,b )−∇fj(y

(j)
t,b )
)∥∥∥2]
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(b)

≤
∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b − x

(j)
t − γ∇fj(y

(j)
t,b )
∥∥∥2]+ γ2σ2

=
∑
j ̸=i

qjit E·|Q

[∥∥∥y(j)
t,b − x

(j)
t + γ∇fj(x(j)

t )

− γ∇fj(y(j)
t,b )− γ∇fj(x

(j)
t )− γ∇fi(x(i)

t )

+ γ∇fi(x(i)
t )− γ∇fi(x(i)

t0 ) + γ∇fi(x(i)
t0 )
∥∥∥2]

+ γ2σ2

(c)

≤
(
1 +

1

2B − 1

)∑
j ̸=i

qjit E·|Q
[∥∥y(j)

t,b − x
(j)
t

∥∥2]
+ 2Bγ2

∑
j ̸=i

qjit E·|Q

[∥∥∥∇fj(y(j)
t,b )−∇fj(x

(j)
t )

+∇fj(x(j)
t )−∇fi(x(i)

t )

+∇fi(x(i)
t )−∇fi(x(i)

t0 )

+∇fi(x(i)
t0 )
∥∥∥2]+ γ2σ2

≤
(
1 +

1

2B − 1

)∑
j ̸=i

qjit E·|Q
[∥∥y(j)

t,b − x
(j)
t

∥∥2]
+ 8Bγ2

∑
j ̸=i

qjit E·|Q

[∥∥∥∇fj(y(j)
t,b )−∇fj(x

(j)
t )
∥∥∥2]

+ 8Bγ2
∑
j ̸=i

qjit E·|Q
[∥∥∇fj(x(j)

t )−∇fi(x(i)
t )
∥∥2]

+ 8Bγ2
∑
j ̸=i

qjit E·|Q
[∥∥∇fi(x(i)

t )−∇fi(x(i)
t0 )
∥∥2]

+ 8Bγ2
∑
j ̸=i

qjit E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]+ γ2σ2

(d)

≤
(
1 +

1

2B − 1

)∑
j ̸=i

qjit E·|Q
[∥∥y(j)

t,b − x
(j)
t

∥∥2]
+ 8BL2γ2

∑
j ̸=i

qjit E·|Q
[∥∥y(j)

t,b − x
(j)
t

∥∥2]+ 18BNγ2ζ2

+ 8BL2γ2
∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+ 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2] + γ2σ2

=
(
1 + 8BL2γ2 +

1

2B − 1

)∑
j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
+ 18BNγ2ζ2 + γ2σ2

+ 8BL2γ2
∑
j ̸=i

qjit E·|Q[∥x
(i)
t − x

(i)
t0 ∥

2]

+ 8Bγ2E·|Q[∥∇fi(x
(i)
t0 )∥

2]

(e)

≤

(
1 +

5

8
(
B − 1

2

))∑
j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
+

9Nζ2

32BL2
+ γ2σ2 +

1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+ 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2] (B.9)

where (a) is from the definition of variance; (b) is derived from
the definition of σ in Assumption 4; (c) follows from Young’s

inequality; and (d) uses L-smoothness on the second and the
fourth term, and applies Proposition B.1 on the third term.
Afterwards, the first two terms are integrated; (e) is derived
from the fact that γ2 ≤ 1

64B2L2 and that

8BL2γ2 +
1

2B − 1
≤ 1

8B
+

1

2B − 1
≤ 1

8B − 4
+

1

2B − 1

=
5

8
(
B − 1

2

) .
Let H(b) indicate

∑
j ̸=i q

ji
t E·|Q

[∥∥y(j)
t,b −x

(j)
t

∥∥2]. From the
last line of inequality B.9, we have

H(b+ 1) ≤
(
1 +

5

8
(
B − 1

2

))H(b)

+
1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+ 18BNγ2ζ2 + γ2σ2

+ 8Bγ2E·|Q[∥∇fi(x
(i)
t0 )∥

2] . (B.10)

Since y
(j)
t,0 = x

(j)
t for all t, j based on Algorithm 1,

H(0) =
∑
j ̸=i

qjit E·|Q
[
∥y(j)

t,0 − x
(j)
t ∥2

]
= 0.

Recurring inequality B.10 from H(0), we can get

H(b) ≤
(
1 +

5

8
(
B − 1

2

))bH(0) +

b−1∑
b′=0

(
1 +

5

8
(
B − 1

2

))b′
·
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+

9Nζ2

32BL2
+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2]
)

≤
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+

9Nζ2

32BL2
+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2]
)

·
B−1∑
b=0

(
1 +

5

8
(
B − 1

2

))b

=

[(
1 +

5

8
(
B − 1

2

))B

− 1

]
·
8
(
B − 1

2

)
5

·
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+

9Nζ2

32BL2
+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2]
)

=

[(
1 +

5

8
(
B − 1

2

))B− 1
2
(
1 +

5

8
(
B − 1

2

)) 1
2

− 1

]

·
8
(
B − 1

2

)
5

·
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]
+

9Nζ2

32BL2
+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x

(i)
t0 )∥

2]
)

(a)

≤

[
e

5
8 · 3

2
− 1

]
·
8
(
B − 1

2

)
5
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·
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

32BL2

+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x
(i)
t0 )∥

2]
)

(b)

≤ 16

5
B
( 1

8B

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

32BL2

+ γ2σ2 + 8Bγ2E·|Q[∥∇fi(x
(i)
t0 )∥

2]
)

=
2

5

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

10L2

+
16Bγ2σ2

5
+

128B2γ2

5
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

where (a) comes from (1 + x)1/x ≤ e and B ≥ 1, which

results in
(
1 + 5

8(B−(1/2))

)1/2
≤
(
1 + 5

4

)1/2
= 3

2 ; (b) is due

to 3
2e

5
8 − 1 ≤ 2 and B − 1

2 ≤ B.

Remark. This proposition appears in the proof of Lemma
C.3, which is used at the first term of inequality D.18.

Proposition B.3. (Upper bound for the local reference
model change) When Assumption 2 holds and γ ≤
min( 1

8BL ,
1

8BLNΨ ), we have

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ 2E·|Q

[∑
j ̸=i

qjit ∥y
(j)
t,b − x

(j)
t ∥2

]
+

8ζ2

L2(N − 4)

+
1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2
,

for all i, j ∈ U and for t ∈ [t0, t0 + P ).

Proof. Here, we use
∫
τ

to replace
∫ t

τ=t0
for simplicity of

writing. We can rephrase the left side of the inequality as
below by bringing Appendix A.

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]

= E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n̸=j

qnjτ

B−1∑
b=0

gn(y
(n)
τ,b ) dτ

∥∥∥∥∥
2]

= E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

+ γ

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
gn(y

(n)
τ,b )−∇fn(y

(n)
τ,b )
]
dτ

∥∥∥∥∥
2]

(i)

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
gn(y

(n)
τ,b )−∇fn(y

(n)
τ,b )
]
dτ

∥∥∥∥∥
2]

(a)

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

∥∥∥2]

+
(
1 +

1

µ1 − 1

)
γ2E·|Q

[∑
j ̸=i

qjit ψj(t0, t)

∫
τ

∥∥∥∑
n ̸=j

qnjτ

B−1∑
b=0

[
gn(y

(n)
τ,b )−∇fn(y

(n)
τ,b )
]∥∥∥2 dτ ]

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
Nγ2E·|Q

[∑
j ̸=i

qjit ψj(t0, t)

∫
τ

∑
n ̸=j

qnjτ

∥∥∥B−1∑
b=0

[
gn(y

(n)
τ,b )−∇fn(y

(n)
τ,b )
]∥∥∥2 dτ ]

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
BNγ2E·|Q

[∑
j ̸=i

qjit ψj(t0, t)

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∥∥gn(y(n)
τ,⋆ )−∇fn(y(n)

τ,⋆ )
∥∥2 dτ ]

(b)

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fn(y(n)
τ,b ) dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

≤ µ1E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n̸=j

qnjτ

B−1∑
b=0

[
∇fn(y(n)

τ,b )

−∇fn(x(n)
τ ) +∇fn(x(n)

τ )−∇fj(x(j)
τ ) +∇fj(x(j)

τ )

−∇fj(x(j)
t0 ) +∇fj(x(j)

t0 )−∇fi(x(i)
t0 )

+∇fi(x(i)
t0 )
]
dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

= µ1E·|Q

[∑
j ̸=i

qjit ·∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fn(y(n)

τ,b )−∇fn(x
(n)
τ )
]
dτ

+ γ

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fn(x(n)

τ )−∇fj(x(j)
τ )
]
dτ

+ γ

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fj(x(j)

τ )−∇fj(x(j)
t0 )
]
dτ

+ γ

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fj(x(j)

t0 )−∇fi(x(i)
t0 )
]
dτ

+ γ

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fi(x(i)
t0 ) dτ

∥∥∥∥∥
2]
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+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

(ii,c)

≤ 4µ1µ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fn(y(n)

τ,b )−∇fn(x
(n)
τ )
]
dτ

∥∥∥∥∥
2]

+ 4µ1µ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n̸=j

qnjτ

B−1∑
b=0

[
∇fn(x(n)

τ )−∇fj(x(j)
τ )
]
dτ

∥∥∥∥∥
2]

+ 4µ1µ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fj(x(j)

τ )−∇fj(x(j)
t0 )
]
dτ

∥∥∥∥∥
2]

+ 4µ1µ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

[
∇fj(x(j)

t0 )−∇fi(x(i)
t0 )
]
dτ

∥∥∥∥∥
2]

+ µ1

(
1 +

1

µ2 − 1

)
· E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∇fi(x(i)
t0 ) dτ

∥∥∥∥∥
2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

≤ 4µ1µ2BNγ
2ψj(t0, t)E·|Q

[∑
j ̸=i

qjit

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∥∥∥∇fn(y(n)
τ,b )−∇fn(x

(n)
τ )
∥∥∥2 dτ ]

+ 4µ1µ2B
2γ2E·|Q

[∑
j ̸=i

qjit

∥∥∥ψj(t0, t)
∑
n ̸=j

qnj⋆

[
∇fn(x(n)

⋆ )−∇fj(x(j)
⋆ )
]∥∥∥2]

+ 4µ1µ2B
2γ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∥∥
∫
τ

∑
n ̸=j

qnjτ

[
∇fj(x(j)

τ )−∇fj(x(j)
t0 )
]
dτ

∥∥∥∥∥
2]

+ 4µ1µ2E·|Q

[∑
j ̸=i

qjit

∥∥∥∇fj(x(j)
t0 )−∇fi(x(i)

t0 )
∥∥∥2

·

∥∥∥∥∥γ
∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

1 dτ

∥∥∥∥∥
2]

+ µ1

(
1 +

1

µ2 − 1

)
B2γ2ψ2

j (t0, t)E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

(d)

≤ 4µ1µ2BL
2Nγ2ψj(t0, t)

· E·|Q

[∑
j ̸=i

qjit

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∥∥y(n)
τ,b − x(n)

τ

∥∥2 dτ ]
+ 4µ1µ2B

2γ2ψ2
j (t0, t) ·

2Nζ2

N − 4
+ 4µ1µ2B

2L2γ2

· E·|Q

[∑
j ̸=i

qjit

∥∥∥∫
τ

∑
n ̸=j

qnjτ [x(j)
τ − x

(j)
t0 ] dτ

∥∥∥2]
+

8µ1µ2B
2Nγ2ψ2

j (t0, t)ζ
2

N − 4

+ µ1

(
1 +

1

µ2 − 1

)
B2γ2ψ2

j (t0, t)E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2

(e)

≤ 4µ1µ2BL
2Nγ2ψj(t0, t)

· E·|Q

[∑
j ̸=i

qjit

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∥∥y(n)
τ,b − x(n)

τ

∥∥2 dτ ]
+ 4µ1µ2B

2L2γ2ψ2
j (t0, t)E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

τmax
− x

(j)
t0

∥∥2]
+

16µ1µ2B
2Nγ2ψ2

j (t0, t)ζ
2

N − 4

+ µ1

(
1 +

1

µ2 − 1

)
B2γ2ψ2

j (t0, t)E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2 , (B.11)

where two coefficients larger than one, denoted by
µ1 and µ2, are introduced in (i) and (ii), respectively.
In inequality B.11, (a) uses

∥∥ ∫ t

τ=t0

∑
n ̸=j q

nj
τ zτ dτ

∥∥2 ≤
ψj(t0, t)

∫ t

τ=t0
∥
∑

n ̸=j q
nj
τ zτ∥2 dτ and

∥∥∑M
m=1 zm

∥∥2 ≤
M
∑M

m=1 ∥zm∥2 for any vector z⋆ ∈ Rd.1 (b) comes from the
definition of σ2 in Assumption 4. In (c), Jensen’s inequality
is applied once again. (d) takes L-smoothness on the first and
the second term, while Lemma 1 is applied on the third term.
In (e), the third term of inequality B.11 already contains the
current lemma. Here, we introduce an index of the instant
τmax ∈ [t0, t) that satisfies τmax = argmaxτ ∥x

(j)
τ − x

(j)
t0 ∥

2.
The first term of inequality B.11, which includes Lemma

B.2, can be rephrased as follows:

E·|Q

[∑
j ̸=i

qjit

∫
τ

∑
n ̸=j

qnjτ

B−1∑
b=0

∥∥y(n)
τ,b − x(n)

τ

∥∥2 dτ ]

≤ BE·|Q

[∑
j ̸=i

qjit

∫
τ

∑
n ̸=j

qnjτ

∥∥y(n)
τ,⋆ − x(n)

τ

∥∥2 dτ ]
≤ BE·|Q

[∑
j ̸=i

qjit ψj(t0, t)
∑
n ̸=j

qnj⋆

∥∥y(n)
⋆,⋆ − x

(n)
⋆

∥∥2]
1This results in

∥∥∑
j∈U qji⋆ zj

∥∥2 ≤ N
∑

j∈U qji⋆ ∥zj∥2 and
∥
∑B−1

b=0 zb∥2 ≤ B
∑B−1

b=0 ∥zb∥2.
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≤ Bψj(t0, t)E·|Q

[∑
n ̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]

(B.12)

We continue rephrasing the primary inequality B.11:

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ 4µ1µ2B

2L2Nγ2ψ2
j (t0, t)E·|Q

[∑
n ̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]

+ 4µ1µ2B
2L2γ2ψ2

j (t0, t)E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

τmax
− x

(j)
t0

∥∥2]
+

16µ1µ2B
2Nγ2ψ2

j (t0, t)ζ
2

N − 4

+ µ1

(
1 +

1

µ2 − 1

)
B2γ2ψ2

j (t0, t)E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2ψ2

j (t0, t)σ
2.

After rearranging the inequality in order to integrate those
terms including E·|Q

[∑
j ̸=i q

ji
⋆

∥∥x(j)
⋆ − x

(j)
t0

∥∥2], we have

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
− 4µ1µ2B

2L2γ2ψ2
j (t0, t)E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

τmax
− x

(j)
t0

∥∥2]
≤ (1− 4µ1µ2B

2L2γ2Ψ2)E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ (1− 4µ1µ2B

2L2Nγ2Ψ2)E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2].
Hence, we can rephrase the inequality as

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ 1

1− 4µ1µ2B2L2Nγ2Ψ2

·

[
4µ1µ2B

2L2Nγ2Ψ2E·|Q

[∑
n ̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]

+
16µ1µ2B

2Nγ2ζ2Ψ2

N − 4

+ µ1

(
1 +

1

µ2 − 1

)
B2γ2Ψ2E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]

+
(
1 +

1

µ1 − 1

)
B2N2γ2σ2Ψ2

]
(i)

≤ 3 ·

[
2

3
E·|Q

[∑
n ̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]
+

8ζ2

3L2(N − 4)

+
BγΨ

6LN(1−BLγΨ)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]

+
B2N2γ2σ2Ψ2

1− 6BLNγΨ

]

= 2E·|Q

[∑
n ̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]
+

8ζ2

L2(N − 4)

+
BγΨ

2LN(1−BLγΨ)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]

+
3B2N2γ2σ2Ψ2

1− 6BLNγΨ
. (B.13)

where (i) µ1 = 1
6BLNγΨ and c = 1

BLγΨ are applied.
Additionally, if Ψ > 0, γ ≤ 1

8BLNΨ is the tighter upper bound
than γ ≤ 1

8BL . With this remark, the upper bound in inequality
B.13 can be simplified even more as

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ 2E·|Q

[∑
n̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]
+

8ζ2

L2(N − 4)

+
1

8LN

2LN(1− 1
8N )

E·|Q
[∥∥∇fi(x(i)

t0 )
∥∥2]

+
3B2N2σ2Ψ2 · 1

64B2L2N2Ψ2

1− 6BLNΨ
8BLNΨ

≤ 2E·|Q

[∑
n̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]
+

8ζ2

L2(N − 4)

+
1

2L2N(8N − 1)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2

≤ 2E·|Q

[∑
n̸=j

qnjτ ∥y
(n)
τ,b − x(n)

τ ∥2
]
+

8ζ2

L2(N − 4)

+
1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2

(a)

≤ 2E·|Q

[∑
j ̸=i

qjit ∥y
(j)
τ,b − x(j)

τ ∥2
]
+

8ζ2

L2(N − 4)

+
1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2
, (B.14)

where (a) is satisfied without loss of generality.

Remark. This proposition appears in Lemma C.4, which is
then used at the second term of inequality D.18.

C. Lemmas

In collaborative learning, local computations often occur
more frequently than communication. This frequency differ-
ence avoids duplicating transmissions, which can happen in
the reverse scenario.

Lemma C.2. For all n ∈ U , there are no fewer y
(n)
t,b than

y
(n)
⌊t⌋,b within any given range of time {t|t ∈ [t0, t0 + P )}. In

other words, it also satisfies that∥∥∥ ∫
P

B−1∑
b=0

gn(y
(n)
⌊t⌋,b) dt

∥∥∥2 ≤ ∥∥∥∫
P

B−1∑
b=0

gn(y
(n)
t,b ) dt

∥∥∥2.
(C.15)

Proof. In Fig. (C.10), the value of ∆(j)
t4 can differ from ∆

(j)
t3 if

another node transmits a message to node j, thereby affecting
the value of x(j). To facilitate our analysis, we assume that
each user creates a backup of the non-transmitted local updates
for the upcoming transmission event. Returning to the scenario
depicted in Fig. (C.10), based on this assumption, user j sends
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time. 𝑖𝑖

comp. 𝑗𝑗

comm. 𝑗𝑗

𝑡𝑡0 𝑡𝑡0 + 𝑃𝑃

𝑡𝑡1 𝑡𝑡3 𝑡𝑡4 𝑡𝑡6

𝑡𝑡2 𝑡𝑡5

sends Δ𝑡𝑡1
𝑗𝑗 sends Δ𝑡𝑡4

𝑗𝑗

Δ𝑡𝑡6
(𝑗𝑗) calculated on time (i.e.,

within [𝑡𝑡0, 𝑡𝑡0 + 𝑃𝑃)) but not 
transmitted before 𝑡𝑡0 + 𝑃𝑃.

Fig. C.10. The latest local update of j is unable to be transmitted within the
given range [t0, t0 + P ) because of the independence between computation
timestamps and communication (transmission) timestamps.

both ∆
(j)
t3 and ∆

(j)
t4 to user i at the earliest transmission event

time, which is t5.

Lemma C.3. (Upper bound for superpositioned model devi-
ations.) For all i, j ∈ U , when γ ≤ min( 1

8BL ,
1

8BLNΨ ), we
have ∑

j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
≤ 16ζ2

L2(N − 4)
+

3σ2

8L2
+

9Nζ2

2L2
+ 16Bγ2σ2

+
( 1

8L2N
+ 128B2γ2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2] .

Proof. Proposition B.2 and Proposition B.3 can be interpreted
as a system of linear inequalities. Applying (a) Proposition
B.2 and (b) Proposition B.3 respectively, we get∑

j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
(a)

≤ 2

5

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

10L2
+

16Bγ2σ2

5

+
128B2γ2

5
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

(b)

≤ 2

5

(
2E·|Q

[∑
j ̸=i

qjit ∥y
(j)
t,b − x

(j)
t ∥2

]
+

8ζ2

L2(N − 4)

+
1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2

)
+

9Nζ2

10L2
+

16Bγ2σ2

5
+

128B2γ2

5
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

=
4

5
E·|Q

[∑
j ̸=i

qjit
∥∥y(j)

t,b − x
(j)
t

∥∥2]+ 16ζ2

5L2(N − 4)

+
1

40L2N
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

40L2
+

9Nζ2

10L2

+
16Bγ2σ2

5
+

128B2γ2

5
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2] ,

and therefore,

1

5

∑
j ̸=i

qjit E·|Q
[
∥y(j)

t,b − x
(j)
t ∥2

]
≤ 16ζ2

5L2(N − 4)
+

3σ2

40L2
+

9Nζ2

10L2
+

16Bγ2σ2

5

+
( 1

40L2N
+

128B2γ2

5

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2] .

Lemma C.4. (Upper bound for the local reference model
change) When Assumption 2 holds true during [t0, t) for all
users (i.e., when the number of events during the given period
[t0, t) is finite) and γ ≤ min( 1

8BL ,
1

8BLNΨ ), we have

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
≤ 9Nζ2

L2
+ 32Bγ2σ2 +

40ζ2

L2(N − 4)
+

15σ2

16L2

+
(
256B2γ2 +

5

16L2N2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2] .

Proof. Approaching in the same fashion as in Lemma C.3, we
have

E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − x
(j)
t0

∥∥2]
(a)

≤ 2E·|Q

[∑
j ̸=i

qjit ∥y
(j)
t,b − x

(j)
t ∥2

]
+

8ζ2

L2(N − 4)

+
1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2

(b)

≤ 2
(2
5

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

10L2

+
16Bγ2σ2

5
+

128B2γ2

5
E·|Q[∥∇fi(x

(i)
t0 )∥

2]
)

+
8ζ2

L2(N − 4)
+

1

16L2N2
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]+ 3σ2

16L2

=
4

5

∑
j ̸=i

qjit E·|Q
[∥∥x(i)

t − x
(i)
t0

∥∥2]+ 9Nζ2

5L2
+

32Bγ2σ2

5

+
8ζ2

L2(N − 4)
+

3σ2

16L2

+
(256B2γ2

5
+

1

16L2N2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2] ,

where (a) uses Proposition B.3, and (b) comes from Lemma
C.3.

D. Proof of Theorem 1

The proof of Theorem 1 is based on the proof provided in
[25].

Beginning with rephrasing the L-smoothness between
fi(x

(i)
t0+P ) and fi(x

(i)
t0 ), we have

E·|Q,t0 [fi(x
(i)
t0+P )]

≤ fi(x(i)
t0 ) + E·|Q,t0 [

〈
∇fi(x(i)

t0 ), x
(i)
t0+P − x

(i)
t0

〉
]
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+
L

2
E·|Q,t0

[∥∥x(i)
t0+P − x

(i)
t0

∥∥2]
≤ fi(x(i)

t0 )− γ
〈
∇fi(x(i)

t0 ),

E·|Q,t0

[ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

]〉

+
γ2L

2
E·|Q,t0

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

∥∥∥2]
= fi(x

(i)
t0 )− γ

〈
∇fi(x(i)

t0 ),

E·|Q,t0

[ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

E
[
gj(y

(j)
⌊t⌋,b)|Q,y

(j)
⌊t⌋,b,x

(i)
t0

]
dt
]〉

+
γ2L

2
E·|Q,t0

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

∥∥∥2]
= fi(x

(i)
t0 )− γ

〈
∇fi(x(i)

t0 ),

E·|Q,t0

[ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

]〉

+
γ2L

2
E·|Q,t0

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

∥∥∥2]

Taking expectation on both sides over x(i)
t0 , we obtain

E·|Q[fi(x
(i)
t0+P )]

≤ E·|Q[fi(x
(i)
t0 )]− γE·|Q,t0

[〈
∇fi(x(i)

t0 ),∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

〉]

+
γ2L

2
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

∥∥∥2] (D.16)

Here, we reintroduce a finite variable from Definition 1,
Ψ ∈ R+, to indicate the maximum total number of all message
exchanging events during the period [t0, t0 + P ). We set an
assumption that Ψ ≥ 3 for any time elapse [t0, t0 + P ) in
which t0 is multiple to P .

Considering the second term in the inequality D.16,

−
〈
∇fi(x(i)

t0 ),

∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

〉

= − 1

BΨ

〈
BΨ∇fi(x(i)

t0 ),

∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b)

〉

=
1

2BΨ

∥∥∥BΨ∇fi(x(i)
t0 )−

∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2

=
1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[
∇fi(x(i)

t0 )−∇fj(y
(j)
⌊t⌋,b)

]
dt
∥∥∥2

− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
=

1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[∇fi(x(i)
t0 )−∇fj(y

(j)
⌊t⌋,b)] dt

∥∥∥2
− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2

In order to deal with two variables controlled by different
agents, two terms are added and subtracted for further proof:
the local model gradient calculated by j and its local reference
model, respectively.

=
1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[
∇fi(x(i)

t0 )−∇fj(x
(j)
t0 )

+∇fj(x(j)
t0 )−∇fj

(
x
(j)
t

)
+∇fj

(
x
(j)
t

)
−∇fj(y(j)

⌊t⌋,b)
]
dt
∥∥∥2 − BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
≤ 3

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[
∇fj

(
x
(j)
t

)
−∇fj(y(j)

⌊t⌋,b)
]
dt
∥∥∥2

+
3

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[
∇fj(x(j)

t0 )−∇fj
(
x
(j)
t

)]
dt
∥∥∥2

+
3

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[∇fi(x(i)
t0 )−∇fj(x

(j)
t0 )] dt

∥∥∥2
− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
(a)

≤ 3

2BΨ

∥∥∥BΨ
∑
j ̸=i

qjit
[
∇fj

(
x
(j)
t

)
−∇fj(y(j)

⌊t⌋,b)
]∥∥∥2

+
3

2BΨ

∥∥∥BΨ
∑
j ̸=i

qjit
[
∇fj(x(j)

t0 )−∇fj
(
x
(j)
t

)]∥∥∥2
+

3

2BΨ

∥∥∥BΨ
∑
j ̸=i

qjit [∇fi(x(i)
t0 )−∇fj(x

(j)
t0 )]

∥∥∥2
− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
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(b)

≤ 3BNΨ

2

∑
j ̸=i

qjit

∥∥∥∇fj(x(j)
t

)
−∇fj(y(j)

⌊t⌋,b)
∥∥∥2

+
3BNΨ

2

∑
j ̸=i

qjit

∥∥∥∇fj(x(j)
t0 )−∇fj

(
x
(j)
t

)∥∥∥2
+

3BΨ

2

∥∥∥∑
j ̸=i

qjit
[
∇fi(x(i)

t0 )−∇fj(x
(j)
t0 )
]∥∥∥2

− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2
(c)

≤ 3BL2NΨ

2

∑
j ̸=i

qjit
∥∥x(j)

t − y
(j)
⌊t⌋,b

∥∥2
+

3BL2NΨ

2

∑
j ̸=i

qjit
∥∥x(j)

t0 − x
(j)
t

∥∥2
+

3BNΨζ2

N − 4
− BΨ

2
∥∇fi(x(i)

t0 )∥
2

− 1

2BΨ

∥∥∥∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2 (D.17)

where (a) reflects Jensen’s inequality on the first three terms,
pulling the terms out of the L2 norms; (b) is valid because
∥
∑N

j=1 q(j)z(j)∥2 ≤ N
∑N

j=1 q(j)∥z(j)∥2 for all q⋆ ∈ [0, 1];
(c) L-smoothness on the first two terms and Lemma 1 on the
third term.

Hence, the expectation can be bounded as follows:

E·|Q

[
−
〈
∇fi(x(i)

t0 ),

∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

〉]
≤ 3BL2NΨ

2
E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t − y
(j)
⌊t⌋,b

∥∥2]
+

3BL2NΨ

2
E·|Q

[∑
j ̸=i

qjit
∥∥x(j)

t0 − x
(j)
t

∥∥2]+ 3BNΨζ2

N − 4

− BΨ

2
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

− 1

2BΨ
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]
(a)

≤ 3BL2NΨ

2

[
16ζ2

L2(N − 4)
+

3σ2

8L2
+

9Nζ2

2L2
+ 16Bγ2σ2

+
( 1

8L2N
+ 128B2γ2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]]

+
3BL2NΨ

2

[
9Nζ2

L2
+ 32Bγ2σ2 +

40ζ2

L2(N − 4)
+

15σ2

16L2

+
(
256B2γ2 +

5

16L2N2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]]

+
3BNΨζ2

N − 4
− BΨ

2
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

− 1

2BΨ
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]

=
3BL2NΨ

2

[
56ζ2

L2(N − 4)
+

21σ2

16L2
+

27Nζ2

2L2
+ 48Bγ2σ2

+
( 7

16L2N
+ 384B2γ2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]]

+
3BNΨζ2

N − 4
− BΨ

2
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

− 1

2BΨ
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]
=

87BNζ2Ψ

N − 4
+

63BNσ2Ψ

32
+

81BN2ζ2Ψ

4
+ 72B2L2Nγ2σ2Ψ

+BΨ
( 21

32N
+ 576B2L2Nγ2 − 1

2

)
E·|Q

[∥∥∇fi(x(i)
t0 )
∥∥2]

− 1

2BΨ
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2] (D.18)

where (a) uses Lemma C.3 and Lemma C.4 on the first two
terms, respectively.

Considering the third term in the inequality D.16,

E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

gj(y
(j)
⌊t⌋,b) dt

∥∥∥2]

= E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]

+ E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

[gj(y
(j)
⌊t⌋,b)−∇fj(y

(j)
⌊t⌋,b)] dt

∥∥∥2]

= E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]

+

∫
P

∑
j ̸=i

(qjit )2
B−1∑
b=0

E·|Q
[
∥gj(y

(j)
⌊t⌋,b)−∇fj(y

(j)
⌊t⌋,b)∥

2
]
dt

(a)

≤ E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]+Bρ2σ2

(D.19)

where (a) is derived from the definition of σ in Assumption
4 and ρ.

Plugging D.18 and D.19, the inequality D.16 is rephrased
as:

E·|Q[fi(x
(i)
t0+P )]

≤ E·|Q[fi(x
(i)
t0 )] + γ

[
87BNζ2Ψ

N − 4
+

63BNσ2Ψ

32

+
81BN2ζ2Ψ

4
+ 72B2L2Nγ2σ2Ψ

+BΨ
( 21

32N
+ 576B2L2Nγ2 − 1

2

)
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

− 1

2BΨ
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]]
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+
γ2L

2
E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]
+
BLγ2ρ2σ2

2

≤ E·|Q[fi(x
(i)
t0 )] +

87BNγζ2Ψ

N − 4
+

63BNγσ2Ψ

32

+
81BN2γζ2Ψ

4
+ 72B2L2Nγ3σ2Ψ

+BγΨ
( 21

32N
+ 576B2L2Nγ2 − 1

2

)
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

+
(γ2L

2
− γ

2BΨ

)
· E·|Q

[∥∥∥ ∫
P

∑
j ̸=i

qjit

B−1∑
b=0

∇fj(y(j)
⌊t⌋,b) dt

∥∥∥2]
+
BLγ2ρ2σ2

2
(a)

≤ E·|Q[fi(x
(i)
t0 )] +

87BNγζ2Ψ

N − 4
+

63BNγσ2Ψ

32

+
81BN2γζ2Ψ

4
+ 72B2L2Nγ3σ2Ψ

+BγΨ
( 21

32N
+ 576B2L2Nγ2 − 1

2

)
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

+
BLγ2ρ2σ2

2
(b)

≤ E·|Q[fi(x
(i)
t0 )] +

87BNγζ2Ψ

N − 4
+

63BNγσ2Ψ

32

+
81BN2γζ2Ψ

4
+ 72B2L2Nγ3σ2Ψ

+BγΨ
( 21

32N
+

9

NΨ2
− 1

2

)
E·|Q[∥∇fi(x

(i)
t0 )∥

2]

+
BLγ2ρ2σ2

2
, (D.20)

where (a) negates the term including ∇fj(y(j)
t,b ) because

γ2L
2 −

γ
2BΨ < 0 based on the upper bound of γ; (b) bounds

the coefficient of the term including E·|Q[∥∇fi(x
(i)
t0 )∥

2] to
simplify the further analysis.

After rearrangement, we have

E·|Q[∥∇fi(x
(i)
t0 )∥

2]

≤
E·|Q[fi(x

(i)
t0 )]− E·|Q[fi(x

(i)
t0+P )]

BγΨ
(

1
2 −

21
32N −

9
NΨ2

)
+

1
1
2 −

21
32N −

9
NΨ2

(
87Nζ2

N − 4
+

63Nσ2

32
+

81N2ζ2

4

+ 72BL2Nγ2σ2 +
Lγρ2σ2

2Ψ

)
(a)

≤
128
(
E·|Q[fi(x

(i)
t0 )]− E·|Q[fi(x

(i)
t0+P )]

)
11BγΨ

+
128

11

(
87Nζ2

N − 4
+

63Nσ2

32
+

81N2ζ2

4

+ 72BL2Nγ2σ2 +
Lγρ2σ2

2Ψ

)

=
128
(
E·|Q[fi(x

(i)
t0 )]− E·|Q[fi(x

(i)
t0+P )]

)
11BγΨ

+
11136Nζ2

11(N − 4)

+
252Nσ2

11
+

2592N2ζ2

11

+ 9216BL2Nγ2σ2 +
64Lγρ2σ2

11Ψ
, (D.21)

where (a) makes the denominator smaller than the derived
upper bound of inequality D.20 by using N > 4 and Ψ ≥ 3,
resulting in

1
1
2 −

21
32N −

9
NΨ2

≤ 1
1
2 −

21
32·4 −

9
4·32

=
128

11
.

Finally, the minimum value of E·|Q[∥∇f(xt)∥2] over time
t can be found as:

min
t

E·|Q[∥∇f(xt)∥2]

= min
t

E·|Q

[∥∥∥ 1

N

N∑
i=1

∇fi(x(i)
t )
∥∥∥2]

≤ min
t0∈{0,P,··· ,(⌊ T

P ⌋−1)P}
E·|Q

[∥∥∥ 1

N

N∑
i=1

∇fi(x(i)
t0 )
∥∥∥2]

(a)

≤ min
t0∈{0,P,··· ,(⌊ T

P ⌋−1)P}

1

N
· E·|Q

[ N∑
i=1

∥∥∇fi(x(i)
t0 )
∥∥2]

≤ 1

N⌊TP ⌋
·

∑
t0=0,P,2P,··· ,(⌊ T

P ⌋−1)P

E·|Q

[ N∑
i=1

∥∥∇fi(x(i)
t0 )
∥∥2]

(b)

≤ 1

N⌊TP ⌋

N∑
i=1

[
128
(
fi(x

(i)
0 )− f∗i

)
11BγΨ

]
+

11136ζ2

11(N − 4)

+
252σ2

11
+

2592Nζ2

11
+ 9216BL2γ2σ2 +

64Lγρ2σ2

11NΨ
(c)

≤ 128

11BγΨ
(f(x0)− f∗) +

11136ζ2

11(N − 4)
+

252σ2

11

+
2592Nζ2

11
+ 9216BL2γ2σ2 +

64Lγρ2σ2

11NΨ

= O
( F
BγΨ

+
ζ2

N − 4
+ σ2 +Nζ2

+BL2γ2σ2 +
Lγρ2σ2

NΨ

)
where (a) is due to Jensen’s inequality; the first term of (b)

is an implantation of inequality D.21 whereas the other terms
are independent on t0; (c) takes that P ≤ T and the definition
of f(x⋆).

E. Pseudo algorithm of DRACO

In this section, we provide a pseudo-algorithm and a
flowchart for the intuitive reproduction of source code. The
flowchart in Fig. E.11 includes only the transmission/reception
procedure of DRACO, corresponding to lines 19-35 (excluding
periodic unification parts) of Algorithm 2.
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Algorithm 2 Pseudo algorithm of Alg. (1).
1: INITIALIZE {Generate ListEvents(i)}
2: for i = 1, · · · , N do
3: Generate t ∼ exp(λi)
4: Append [t, i] to ListEventsGrad(i)
5: for event in ListEventsGrad(i) do
6: Generate t ∼ exp(λij) or t←transmission delay
7: for j ∈ N (i) do
8: Append [t, j] to ListEventsComm(i)
9: end for

10: end for
11: ListEvents(i) ← ListEventsGrad(i) +

ListEventsComm(i)
12: end for{Generate ListEvents over all clients}
13: for i = 1, · · · , N do
14: Stack ListEvents(i) on ListEvents
15: end for
16: Sort ListEvents by t in ascending order.
17: Add the event indices k in front of each element.
18: K ← |ListEvents|
19: for k = 1, · · · ,K do
20: (i, j)← ListEvents(k, 0), ListEvents(k, 1)
21: if i == j then
22: for b = 0, · · · , B − 1 do
23: y

(i)
b+1 ← y

(i)
b − γgi(y

(i)
b ) {local batch training}

24: end for
25: ∆

(i)
k ← y

(i)
k,B − x

(i)
k

26: else
27: for j ∈ U \ {i} do
28: if event_code==“unification” then
29: x(j) ← x̃(hub)

30: else
31: x(j) ← x(j) + qijk ∆̃(i) {aggregation}
32: end if
33: end for
34: end if
35: end for
36: if t ≡ 0 (mod P ) and t > 0 and i is the hub then
37: x(hub) ← x(i)

38: end if



22

Start

Check the kth event
t : the event's moment
i, j: sender and receiver

Yes

No
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local training?
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i.Delta
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k-1th event == transmission
AND

k-1th event's recipient == j
AND

t - t_standard <= window ?

Update reference model using
aggregated weights from neighbors

w ← j.model.weights
w_new ← w + j.sumDelta*(1/sum(j.q))

put w_new on j.model

Update reference model
without superposition

w ← j.model.weights
w_new ← w + i.Delta
put w_new on j.model

Initialize
delete sumDelta from user j

j.q ← all zero vector
j.timestamp ← -1

k ← k+1
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No
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Yes No
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i.Delta
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j.q[i] ← 1

Yes
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j.timestamp == -1 ? j.timestamp ← t
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Initialize
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Fig. E.11. Flowchart of DRACO after initialization
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