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Abstract—In recent years, continuous integration and deploy-
ment (CI/CD) has become increasingly popular in both the open-
source community and industry. Evaluating CI/CD performance
is a critical aspect of software development, as it not only helps
minimize execution costs but also ensures faster feedback for
developers. Despite its importance, there is limited fine-grained
knowledge about the performance of CI/CD processes, while this
knowledge is essential for identifying bottlenecks and optimization
opportunities. Moreover, the availability of large-scale, publicly
accessible datasets of CI/CD logs remains scarce. The few datasets
that do exist are often outdated and lack comprehensive coverage.
To address this gap, we introduce GHALogs, a new dataset
comprising 116k CI/CD workflows executed using GitHub Actions
(GHA) across 25k public code projects spanning 20 different
programming languages. This dataset includes 513k workflow
runs encompassing 2.3 million individual steps. For each workflow
run, we provide detailed metadata along with complete run logs.
To the best of our knowledge, this is the largest dataset of CI/CD
runs that includes full log data. The inclusion of these logs enables
more in-depth analysis of CI/CD pipelines, offering insights that
cannot be gleaned solely from code repositories. We postulate
that this dataset will facilitate future CI/CD pipeline behavior
research through log-based analysis. Potential applications include
performance evaluation (e.g., measuring task execution times) and
root cause analysis (e.g., identifying reasons for pipeline failures).

I. INTRODUCTION

Continuous Integration and Continuous Deployment (CI/CD)
are software engineering practices encouraged by the DevOps
mindset. Continuous Integration promotes the regular integra-
tion of new code (e.g., bug fixes, new features) into the main
codebase. Automated tests and tools are regularly executed
to assess the quality of new code (e.g., linter, static code
analysis, compilation). CI aims to reduce the feedback loop,
alerting developers quickly when new code does not meet
quality requirements. CD encourages regular deployment to
the production environment to reduce the number of changes
between releases. Hence, it aims to reduce the time required
from commit to production and to ease root cause analysis in
the event of deployment failure. CI/CD is a widely adopted
practice in industry and open-source projects.

Many CI/CD orchestrators, such as GitHub Actions, GitLab,
CircleCI, Travis, Drone, and Jenkins, are available. GitHub
Actions (GHA) was launched in 2019 and has gained significant
interest from open-source projects since many use GitHub to
host their source code. GitHub Actions is extensively integrated
with GitHub source code management solution, simplifying

its adoption and usage. The use of GitHub Actions is free
for public projects, significantly contributing to its popularity.
However, little is known about the real-world usage of GitHub
Actions, primarily because of the lack of large-scale datasets
of GHA runs. To address this gap, this paper introduces a
large-scale dataset of GitHub Actions runs, including run
logs and metadata. The remainder of this paper is organized
as follows. In Section II, we present some related work.
In Section III, we describe the main components of GitHub
Actions. In Section IV, we describe the construction of the
dataset and its core properties. Finally, in Section VI, we
conclude and outline some future work.

II. RELATED WORK

Numerous studies highlight the widespread adoption and
significance of CI/CD. For instance, Hilton et al. [16] noted as
early as 2016 that 70% of the most popular projects and 40%
of all GitHub projects employ continuous integration. A study
examining tests conducted during CI at Google reveals that,
on an average day, 800 000 builds and 150 million test runs
are executed [18]. The TravisTorrent dataset encompasses logs
from millions of Travis CI builds [1], facilitating investigations
into the Travis CI platform. More recent Travis datasets, such
as those in [3], [11], [12], provide additional metadata with
the logs for further analysis. However, Travis is gradually
losing popularity among developers, especially for open-source
projects. We, instead, focus on GitHub Actions which stands
out as the most popular open-source continuous integration
service according to [14].

Decan et al. [8] analyze code repositories to study the
adoption and practices of GitHub Actions workflows, focusing
on workflow automation, action reuse, and related security
and versioning aspects. However, their analysis is limited to
repository metadata and configuration files; they do not analyze
the actual execution of workflows or provide run logs. Cardoen
et al. [4] focus on collecting commit histories related to changes
in GitHub workflow files. While CI/CD runs capture workflow
executions triggered by events, the dataset proposed by the
authors tracks changes in the workflow files themselves. As
such, it provides insights into how workflows are defined and
modified over time. However, it does not provide performance
or outcome data of the workflows’ executions. Bouzenia et
al. [2] propose an empirical study of resource usage and
optimization opportunities of GitHub Action workflows based



on run logs. However, they studied a limited number of
around 950 repositories while we have collected more than
25k repositories. There is a significant lack of large, publicly
available datasets for CI/CD builds that are representative
of real-world scenarios. Existing datasets are often limited
in scale and diversity, focusing on specific tools or small-
scale systems. This limitation hinders broader applicability in
optimizing CI/CD processes. Our study aims to tackle this gap.

III. BACKGROUND

GitHub Actions (GHA) is a full-featured CI/CD orchestrator
proposed by GitHub that aims to compete with other major
CI/CD systems such as Gitlab, Travis CI, Jenkins, Circle CI,
or Drone. GHA is available for both private and public projects
on GitHub. GHA is based on runs, workflows, jobs, and steps.
A run is an execution of a workflow. A workflow, also referred
to as a CI/CD pipeline, is composed of jobs. Each job is
started in a fresh environment (i.e., a dedicated virtual machine).
Workflows can run jobs in sequence or parallel. Each job
contains a sequence of steps (action or shell code). GitHub
provides cloud runners (i.e., virtual machines that will execute
jobs) based on Linux, Windows, and MacOS. Cloud runners are
managed by GitHub and are billed per minute. Free accounts
have 2,000 free minutes of workflow execution each month,
while paid accounts can choose between different plans to meet
their needs. Therefore, there is a strong interest in optimizing
CI/CD execution time. Project owners can also set up self-
hosted runners for advanced use cases.

A. Workflows

A GHA workflow is a set of jobs that will be triggered
on specific conditions. A code repository can have multiple
workflows. For instance, a workflow for code quality (e.g.,
triggered on any code change) and a workflow for releasing
(e.g., triggered when a developer adds a new git tag). Workflows
are defined using YAML files stored in the code repository (in
.github/workflows). Workflows define jobs that are started
in parallel unless they are configured to depend on other jobs,
and implement fail-fast, i.e. when a job fails, all concurrent jobs
are stopped to save resources. Indeed, when a job fails, the run
is considered failed unless configured otherwise. Jobs consist
of steps that are run in order. Output (i.e., stdout, stderr) from
steps is saved in the run log. The GitHub runner enriches the
run log. For instance, it prints in the log various metadata such
as the runner version or the container image that populated the
run environment. It also prefixes log lines with a timestamp
indicating when the log line was emitted. Run logs are mostly
useful when runs are failing: developers often investigate the
run log to find the reason for the failure.

B. Steps

Steps can be either Action or shell steps. Unlike jobs, steps
are executed in the order they are defined and in the same
runner environment. When a step fails, the job is aborted unless
configured otherwise. We further explain the shell and Action
steps in the remainder of the section.

Shell steps: Shell steps offer great flexibility by allowing
developers to use scripting languages that are generally well-
known. The default shell interpreter depends on the runner
environment (e.g., bash for Linux-based runners, PowerShell for
Windows-based runners). Scripting languages allow developers
to implement custom CI/CD strategies. For instance, installing
dependencies and running tests in the JavaScript ecosystem
can be done using the shell command npm install &&
npm test. GHA runners allow the injection into shell code
of contextual information using variable interpolation, e.g.,
git reference that triggered the run, repository secrets, and
environment variables. Shell commands return a code enabling
GHA to decide if the step has succeeded or failed. In conclusion,
step shells are well-known by developers to set up CI/CD
pipelines, but they do not offer off-the-shelf features for
common CI/CD tasks.

Action steps: GHA encourages the use of actions. Actions
are off-the-shelf steps for common CI/CD tasks. This helps to
decrease the development effort required to use GitHub Actions.
For instance, the checkout Action allows the checkout of the
repository code in the job environment. By default, only a single
commit is fetched for the reference that triggered the workflow.
Actions can be customized using a with block in the YAML
workflow definition file. For the checkout action, developers
can configure the Action to pull git submodules. Available
parameters are usually defined in the Action documentation.
Actions can be stored in any GitHub repository, including
the repository where the Action will be used. Versioning is
done through usual git references (e.g., branch, tag, commit
hash). Therefore, the Action version can refer to code that
can be modified (e.g., git tag). Unlike shell steps, it might be
challenging to ensure the integrity of the code that will be
run during workflow execution when using Actions from other
repositories. Under the hood, actions can rely on JavaScript
code, custom Docker images, or other actions (composite
action). However, this is not directly visible to end-users.
Therefore, actions are roughly black boxes that perform a
specific task. To facilitate the discovery of actions, GHA
provides a marketplace. Action owners must register in the
marketplace for their actions to be available. As of November
2023, there were 20,782 actions available in the marketplace.
However, only 809 actions are coming from verified creators.
As actions can access sensitive data such as CI/CD secrets,
developers prefer actions from verified creators [19]. Therefore,
actions might not be available for less common needs. In this
context, developers can fall back to shell steps.

C. Runs and Logs

When workflows are triggered, the jobs are executed by GHA
runners. GHA runners collect all the standard output produced
as the result of executing the steps in log files. Interwoven
with the standard output of steps, GHA runners put dedicated
information such as which job and step is running and which
environment version has been set up.



1 2023-11-16T22:45:31.2665876Z ##[group]Run
actions/checkout@v4.1.1↪→

2 2023-11-16T22:45:31.2666567Z with:
3 2023-11-16T22:45:31.2666980Z repository:

home-assistant/core↪→

Fig. 1: Extract of GitHub Action log file. Each line is prefixed
with the time of execution.

IV. METHODOLOGY

Our goal is to provide a dataset that enables large-scale
analysis of GitHub Actions ecosystem. We aim to support
future studies analyzing runtime properties of CI/CD executions,
such as analyzing task execution times, failure patterns, or test
results. As a consequence, collecting workflow definition files
is not enough, as it is commonly done by the other studies
of the GHA ecosystem [5], [9], [17], because they do not
contain any runtime information. In this section, we explain
our methodology for developing the GHALogs dataset, how
we have selected the repositories (Section IV-A) and how we
have extracted their run logs (Section IV-B).

A. Selection of repositories

Considering the large number of public repositories in
GitHub, we have selected only a subset of repositories relevant
to the study. To discover repositories, we leverage GitHub
Search [7]. GitHub Search is a search engine for GitHub repos-
itories. It can be used to search for public GitHub repositories
using different criteria (e.g., number of stars, license, topics).
Using the search engine, we selected repositories with more
than 100 stars. This is a common criterion in the literature [15],
[20], [6] for selecting repositories with sufficient popularity
and visibility. We obtained a list of 239 106 repositories. For
each repository with more than 100 stars, we have extracted
the number of GHA runs (the sum of runs of all workflows)
over the latest 90 days using the GHA API. We successfully
scraped 239 106 (99.3%) repositories. We implemented a retry
mechanism to mitigate the impact of transient errors (e.g.,
HTTP 502 error code). For 0.7% of the repositories returned
by GitHub Search, we could not check for the use of GitHub
Actions because of scraping errors: HTTP 404 (0.53%), HTTP
410 (0.10%), HTTP 403 (0.06%), HTTP 502 (0.01%) and
HTTP 451 (>0.01%). This extraction was done between the
1st and the 5th of October, 2023. We identified that 78% of
repositories have 0 runs, 84% have 10 or fewer runs, and 98%
have 1000 or fewer runs. We selected repositories with more
(greater or equal) than 30 runs in the last 90 days. We identified
28 683 (12%) repositories. We excluded 361 fork repositories.
We aim to exclude toy usage of GHA by selecting repositories
with more than one run every three days (on average). It is
worth mentioning that some workflows can have less than 30
runs over the 90-day period, e.g., releasing workflows. However,
we made the selection at the repository level. If the repository
has more than 30 runs over 90 days, we scrape runs of all
workflows, even if each workflow has less than 30 runs over

the period. Therefore, we identified 28 322 repositories with
over 30 runs in the last 90 days. The list of repositories is not
updated after the initial construction. In other terms, we did not
search for new repositories that could satisfy the run activity
criterion after the initial discovery. We identify a workflow by
its repository and its path in .github/workflows. Therefore,
if two workflow files in two repositories are identical, we treat
them as different workflows.

We scraped all workflows present in the selected repositories.
However, we did not scrape all runs for each workflow. Indeed,
some workflows have a very large number of runs (e.g., dozens
of thousands in 90 days). Therefore, we scraped only the
five most recent runs of each workflow. Downloading 5 runs
per workflow allows us to compute average values (e.g., step
execution time) for the same workflow. This is a balanced
approach between getting a highly representative sample of
runs and the practicality of data collection. We restricted the
download of ZIP archives containing run logs to a maximum
size of 20MB. If the archive is larger than this threshold, the
download is aborted, and the run is ignored. We chose a 20MB
size limit as it excludes less than 1% of runs, thus ignoring
only a minimal number of runs. In the following section, we
describe the downloading process of runs.

B. Downloading Runs

We aim to discover new runs as fast as possible. Indeed,
some of the information we aim to scrape, such as run logs,
can be deleted after the run is finished. Run logs are kept for
90 days by default. However, repository owners can reduce
the log retention to 1 day. We, therefore, scrape runs as fast
as possible after the run is finished. We scaled the number
of instances to keep processing time under 1 day. GitHub
imposes a rate limit of 5000 API calls per hour per account.
As recommended by GitHub [13], we use conditional requests
to detect whether a repository contains new runs. This helps
to reduce resource usage (i.e., by returning an empty response
with HTTP code 304) when no new run is available and
avoid rate limiting as conditional requests do not count against
rate limits. Conditional requests rely on Etag header. We
discovered that Etag values are related to the token used in
the request: different tokens will lead to different Etag for the
same resource. Consequently, conditional requests should be
made using the same GitHub token. The fetcher component
loops on repositories to detect if new runs exist compared to
runs already scraped, then pushes newly discovered runs for
further processing.

For each new run, a worker downloads run metadata and
run logs. We only scrape completed runs when the outcome
of the job is "success", "failure", or "timed_out" in the
"conclusion" field. Indeed, runs with a different outcome do
not have a log, making them irrelevant to this study. GitHub
allows users to download run logs as ZIP archives containing
logs for jobs and steps. Step logs are redundant with job
logs (i.e., step logs are present in job logs). We postulate that
GitHub uses this file structure to ease the processing of logs.
However, as the ZIP algorithm compresses files independently,



we extract and re-compress log files in a tar archive with gzip
compression to reduce the compressed size of the log archive.
We kept log archive contents identical to support future usage
of the dataset.

C. Analyzing runs

In addition to the run metadata provided by the GitHub
API, we parse the job logs. Initially, we extracted structural
information from the logs using specific regular expressions.
These included details such as the CI container image, GitHub
Actions in use, and the shell and GitHub Action steps.

Concerning the shell step, we utilized an existing shell
parser [10] designed for analyzing shell scripts within Docker-
files. This specific parser provides an extended AST, which,
in addition to the traditional AST, also provides an abstraction
on top of popular command lines. We extended the tool
to annotate the commands. For instance, given a shell step:
git clone myrepo;cd myrepo;mvn test;, it captures the
commands git, cd and mvn like any traditional shell parser,
and it also identifies command annotations: GIT-CLONE,
GIT-REPOSITORY, PATH, MVN-TEST. The annotations allow
a separation based on subcommands, such as git clone and
git diff, which exhibit different behaviors. The parser sup-
ports 91 types of commands1 with more than 500 annotations.

Our shell step parsing success rate is 96.44%. Parsing issues
occurred due to parser exceptions (3.39%) or invalid requests
(0.27%). The parser remarkably annotated 70.34% of all
commands. This extensive coverage ensures a comprehensive
understanding of the shell steps used in GitHub workflows.

D. Dataset metrics

We identified 28 322 code repositories with more than 30
runs in 90 days, excluding forks. These repositories contain
151k workflows. There are 20 different programming languages.
The number of repositories, workflows, and runs analyzed
are depicted for each programming language in Table I.
GitHub identifies the main programming language used in
the repository. We attempted to retrieve 5 runs per workflow.
However, we were not able to retrieve exactly 5 runs per
workflow. Some workflows are rarely used, thus, there are fewer
than 5 runs in the last 90 days. Therefore, run logs have expired
and cannot be downloaded. In practice, we retrieved on average
4.41 runs per workflow (std: 1.28). We were able to retrieve
at least one run log for 116k workflows (77%). We collected
513 492 run logs. The total uncompressed size is 640GB. We
focused only on workflows with at least one run log: 116k
workflows over 151k workflows. For the following metrics,
we consider one run per workflow. Indeed, it maximizes the
diversity as runs from the same workflows are likely to share
the same jobs and steps. Therefore, from 116 259 runs (i.e.,
1 per workflow), we extracted 348 909 jobs. There are, on
average, 3.3 jobs per workflow (median: 1.0, std: 10). From
jobs, we extracted 2 327 747 steps. There are, on average, 6.7
steps per job (median: 5.0, std: 5.4).

1List of supported commands: https://github.com/D2KLab/gha-dataset/blob/
master/COMMANDS.md

TABLE I: Breakdown of the programming languages of repos-
itories considered for the study. The number of repositories
sorts languages. The number of runs refers to runs where logs
were successfully retrieved.

Language # Repositories # Workflows # Runs

Python 5.52k 19.50% 22.34k 19.21% 97.31k 18.95%
TypeScript 4.44k 15.66% 18.90k 16.25% 84.19k 16.40%
Go 2.95k 10.41% 15.77k 13.56% 70.38k 13.71%
JavaScript 2.78k 9.80% 9.78k 8.41% 44.2k 8.61%
C++ 2.14k 7.55% 9.22k 7.93% 40.98k 7.98%
Java 2.07k 7.32% 8.34k 7.17% 36.66k 7.14%
Rust 2.02k 7.14% 7.97k 6.86% 34.9k 6.80%
C 1.25k 4.41% 5.17k 4.45% 23.3k 4.54%
PHP 1.2k 4.22% 4.56k 3.92% 20.12k 3.92%
C# 1.1k 3.88% 3.79k 3.26% 15.88k 3.09%
Shell 735 2.60% 2.71k 2.33% 11.95k 2.33%
Ruby 639 2.26% 2.3k 1.98% 10.45k 2.04%
Kotlin 634 2.24% 2.27k 1.95% 9.72k 1.89%
Dart 319 1.13% 1.38k 1.18% 5.93k 1.15%
Swift 250 0.88% 250 0.69% 3.29k 0.64%
Elixir 126 0.44% 126 0.30% 1.56k 0.30%
Objective-C 60 0.21% 60 0.24% 1.21k 0.24%
Nix 56 0.20% 56 0.15% 56 0.15%
Groovy 36 0.13% 36 0.12% 36 0.12%
Smalltalk 6 0.02% 6 0.01% 6 0.01%

Total 28 322 116 259 513 492

V. FUTURE WORK

Looking forward, there are several promising avenues for
future work. Investigating failure patterns will help identify
the root causes of CI/CD issues and suggest strategies for
improving reliability. Performance analysis, including the study
of execution times and optimization opportunities, is critical
for identifying bottlenecks and proposing ways to improve the
speed and efficiency of workflows. At scale, comparing CI/CD
practices across projects can help detect shared usage patterns
and dependencies, offering insights into common best practices
or configurations that might be applicable across different
contexts. Finally, a detailed examination of shell usage within
steps and the reasons for not adopting prebuilt GitHub Actions
is essential. This could uncover barriers to using actions, such
as technical debt, limitations in functionality, or trust concerns,
and guide improvements to the GitHub Actions ecosystem.

VI. CONCLUSION

In this paper, we introduced GHALogs, the largest publicly
available dataset of GitHub Actions runs, comprising over
116k workflows from 25k repositories, with 513k workflow
runs encompassing more than 2.3 million individual steps.
The dataset spans 20 programming languages and includes
comprehensive run logs and metadata, offering opportunities
for fine-grained analysis of CI/CD processes at workflow, job,
and step levels. This establishes a foundation for future research
into GitHub Actions and the broader CI/CD landscape.

DATASET AVAILABILITY

The dataset and the code used in this paper are hosted on
Zenodo at https://doi.org/10.5281/zenodo.10154919.

https://github.com/D2KLab/gha-dataset/blob/master/COMMANDS.md
https://github.com/D2KLab/gha-dataset/blob/master/COMMANDS.md
https://doi.org/10.5281/zenodo.10154919
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