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Abstract
The Open Charge Point Protocol (OCPP) is the de facto

standard for communication between electric vehicle charg-
ing stations (CS) and charging station management systems
(CSMS). However, its security and privacy have been only
partially explored, mainly due to the lack of an adequate test-
ing framework. To this end, we introduce EmuOCPP, a new
OCPP security and privacy testing framework. The frame-
work is based on container emulation to reproduce real-world
OCPP networks with high fidelity and low cost. We discuss
our implementation of EmuOCPP, using open-source software
(IPMininet) and low-cost hardware.

Using EmuOCPP, we uncover five attacks on OCPP 1.6,
2.0, and 2.0.1. These include man-in-the-middle attacks ex-
ploiting OCPP security profile upgrades and downgrades. And
CS impersonation attacks leveraging undefined behaviors in
the CS boot notification process. We successfully evaluate the
attacks across nine targets, including open- and closed-source
OCPP implementations, a real CS, and a production network
operated by a major company. We discuss the attacks’ root
causes, including new OCPP design and implementation vul-
nerabilities. We present effective mitigations to address the
discovered vulnerabilities and attacks. We responsibly dis-
closed our findings with the OCPP consortium and will open
source EmuOCPP once the disclosure is completed.

1 Introduction

The Open Charge Point Protocol (OCPP) [15] has become
the industry standard communication protocol for interactions
between Charging Points (CPs) and Charging Station Man-
agement Systems (CSMSs). OCPP has undergone multiple
iterations, each improving upon previous versions to address
evolving industry requirements. Key versions include OCPP
1.6 [5], OCPP 2.0, and OCPP 2.0.1 [6]. OCPP offers three
security profiles to provide some security guarantees, like
confidentiality, integrity, and authenticity.

Numerous studies have examined the security and privacy
of OCPP, primarily focusing on 1.6 [2, 14, 29, 30, 32, 36, 47].
These works have highlighted critical security concerns, in-
cluding man-in-the-middle (MitM) attacks, denial-of-service
(DoS) threats, and protocol implementation weaknesses. Addi-
tionally, privacy-related risks such as tracking attacks and data
leakage have been explored [2, 22, 49]. In contrast, research
on OCPP 2.0 and 2.0.1 remains significantly limited, with
only a few studies addressing some security aspects [4, 31].

The limited research on more recent OCPP versions is due
to the lack of a comprehensive OCPP security and privacy
testing framework. Existing tools are fragmented, restricting
researchers from conducting holistic security analysis. For
instance, the Mobility House provides a Python-based OCPP
library that supports 1.6 and 2.0.1, but it lacks a full-fledged
implementation, requiring additional development effort [34].

Other solutions, such as SteVe, function exclusively as
OCPP CSMS for 1.6, with no support for 2.0 or 2.0.1 [51].
OpenEVSE, an open-source EV charging platform, does not
support OCPP 2.0.1 or security profiles, limiting its utility
in security testing [43]. SAP’s OCPP simulator is a Node.js-
based application that only supports OCPP1.6 [28]. While
OCPPStorm [21] provides a fuzzing framework to test CSMSs
running 1.6 and 2.0, it does not cover 2.0.1 and cannot test
charging stations. This lack of coverage presents a significant
risk: OCPP is a standard protocol that could be exploited to
compromise the security and privacy of millions of devices.

To address these issues, we present EmuOCPP, a compre-
hensive security and privacy testing framework for OCPP.
The framework supports OCPP 1.6, 2.0, 2.0.1 and its three
security profiles. EmuOCPP enables large-scale emulation
of OCPP networks via containers, including hundreds of CSs
controlled by one or more CSMSs. It is low-cost and easy to
reproduce, requiring a single Linux kernel and open-source
software.

EmuOCPP facilitates discovering and testing OCPP design
and implementation vulnerabilities and attacks. It allows the
creation of emulated network attackers with arbitrary capa-
bilities, like impersonation, MitM, eavesdropping, or DoS.



The emulated attacker can run real-world tools, like Nmap or
Scapy, and target real-world OCPP client and server stacks,
including proprietary and open-source ones.

EmuOCPP is implemented using IPMininet [50] for net-
work emulation, enabling large-scale testing of OCPP de-
ployments while reducing computational overhead. Unlike
prior testbeds relying on multiple virtual machines [47], our
approach allows deploying hundreds of charging stations
efficiently. A DNS server enhances realism by managing
CS registration. The Messages module extends the Mobility
House Python OCPP library to support both OCPP 1.6 and
2.0. EmuOCPP implements seventeen OCPP messages (Ta-
ble 1) and custom functionalities, including CSO-to-CSMS
interactions. Configurations are defined via a YAML-based
Config module, specifying network topology, security settings,
OCPP versions, and providing a convenient graphical user
interface.

Using EmuOCPP, we uncover five attacks against OCPP
and test two known ones. Among the new findings, some
attacks exploit weaknesses in the protocol’s security profile
upgrade and downgrade mechanisms, including one that lever-
ages an implementation vulnerability to force a security pro-
file downgrade. We also identify impersonation attacks that
exploit ambiguities in charging station identifier management,
allowing us to impersonate CSs. These attacks affect all OCPP
security profiles regardless of the OCPP version. Some un-
covered attacks have been disclosed to and acknowledged by
the Open Charge Alliance (OCA), and may be addressed in
future protocol updates.

We evaluate the attacks and the performance of EmuOCPP
empirically. We confirm that the attacks are effective on nine
OCPP targets implementing 1.6, 2.0, 2.0.1 and providing
SP1, SP2, SP3, or no SP. The target set includes open-source
and closed-source OCPP implementations, an open-source
charger, and a production OCPP network. We experimen-
tally confirm that EmuOCPP satisfies its design requirements.
Moreover, we conducted a performance evaluation proving
the lightweight nature of EmuOCPP, enabling the simultane-
ous deployment of hundreds of devices. Finally, we isolate
the attacks’ root causes and discuss effective mitigations.

We summarize our contributions as follows:

• We present EmuOCPP, a configurable, lightweight OCPP
security and privacy testing framework. It supports
OCPP 1.6, 2.0, and 2.0.1 and the three OCPP secu-
rity profiles and enables testing real-world and het-
erogeneous OCPP implementations. We implement
EmuOCPP with open-source software and low-cost hard-
ware.

• We uncover five attacks exploiting issues in the OCPP
standard, including weak SP upgrade procedures and
undefined downgrade and duplicate CS ID behaviors.

• We successfully conducted the attacks against nine

OCPP targets, including open and proprietary implemen-
tations spanning all SPs and relevant OCPP versions.
We isolate the vulnerabilities enabling the attacks and
discuss effective defenses.

Ethics, Disclosure, and Availability. We conducted our
experiments ethically in a controlled environment. We tested
virtual devices, physical devices we own, and an OCPP pro-
duction network with explicit authorization from its owner.
We responsibly disclosed our findings to the OCPP standard
body and open-source our tool once the disclosure is com-
pleted. We provide our toolkit in a public Github repository
at: https://github.com/vfg27/EmuOCPP.

2 OCPP Preliminaries

OCPP is the de facto standard for communication between
Charging Points (CPs) and Charging Station Management
Systems (CSMS) [42], which provide the components needed
to monitor, control, and optimize charging station perfor-
mance. OCPP also considers the charging station operator
(CSO) role, which oversees the charging infrastructure’s de-
ployment, maintenance, and operation. It enables convenient
CS functionalities, such as allowing users to reserve a CS or
securing certificates into a CS. OCPP is specified in an open
standard maintained by the Open Charge Alliance (OCA),
a large consortium of leading EV companies [9]. Next, we
discuss OCPP’s most relevant versions (1.6, 2.0, and 2.0.1)
messages and security profiles.

2.1 Versions
OCPP 1.6, released in 2015, marked a significant step for-
ward by standardizing the core communication functionalities
required for effective EV charging infrastructure. It intro-
duced features like smart charging and enhanced support for
different transaction types.

OCPP 2.0 was launched in 2018, bringing substantial en-
hancements, including support for new functionalities like
improved security features. However, it was fastly replaced
by 2.0.1 in just 2 years due to functional limitations.

OCPP 2.0.1 was released in 2020 to address issues iden-
tified in 2.0 and to introduce additional features to support
advanced use cases, such as vehicle-to-grid (V2G) technol-
ogy.

2.2 Messages
OCPP enables communication via a standardized set of mes-
sages consisting of several fields [26]. The messages can be
implemented as JavaScript Object Notation (JSON) objects
(1.6, 2.0), denoted OCPP-J, or SOAP (1.6 only).

An OCPP message is either a request or a response.
In OCPP 1.6, requests are denoted with .req, and re-
sponses with .conf. There is no dot notation in OCPP
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2.0 and 2.0.1, but this information is encoded in the mes-
sage name, e.g., BootNotificationRequest other than
BootNotification.req. Core messages manage essential
functions required for CS and CSMS operations and transac-
tions, such as starting a CS, sending heartbeats, or notifying
device status. Security related implemented messages deal
with the handling and installation of CS and CSMS certifi-
cates. Configuration and management messages retrieve or
modify configuration data in the CS or the CSMS. Similarly,
remote control messages trigger actions on the CS, such as
sending a heartbeat or requesting a BootNotification. Next,
we describe common OCPP messages (complete list in [25]).

BootNotification. When a CS initializes or reboots, it
sends a BootNotification to inform the CSMS. This message
includes details such as the CS model, vendor, and firmware
version, enabling the CSMS to recognize and register the CS
appropriately.
Authorize. Before initiating a charging session, the CS

sends an authorization request to the CSMS to verify the user
asking to charge is authorized. The CSMS responds with
acceptance or rejection, ensuring that only authorized users
can commence charging.
StartTransaction. Upon successful authorization and

connection to the EV, the CS issues a StartTransaction mes-
sage to notify the CSMS that a charging session has begun.
This message contains information such as the connector ID,
user ID tag, and the initial meter reading, establishing the
context for the session.
TriggerMessage. Certain actions performed by the CS

can only be executed upon receiving a command from the
CSMS. The TriggerMessage allows the CSMS to initiate var-
ious actions, from triggering a BootNotification to generating
a new CS certificate.

2.3 Security Profiles
OCPP supports three security profiles (SP). The SPs were
introduced with 2.0, refined in 2.0.1, and backported to 1.6. A
secure OCPP network is typically configured with SP1, which
might be upgraded to SP2, which in turn might be upgraded
to SP3. The OCPP standard specifies some upgrade logic,
while some details are left to vendors, like how certificate
provisioning and validation are handled.

SP1: Password-based CS Auth. SP1 requires password
authentication for the CS boot notification process. When it
comes online, a CS must present a password to authenticate
to the CSMS. However, SP1 does not protect data in transit,
as there is no secure channel between the CS and CSMS, and
it does not authenticate the CSMS.

SP2: TLS and CSMS Cert Auth. SP2 enhances SP1 by
adding TLS and certificate-based CSMS (server) authenti-
cation. During the boot process, the CSMS provides a TLS
certificate to the CS, signed by a CA, that can be the CSO.
The CS (client) authenticates the CSMS, establishes a TLS

Figure 1: EmuOCPP design overview. The tool emulates an
OCPP network, including OCPP clients and servers, using
different OCPP stacks and configurations and attackers like
eavesdroppers, spoofers, and MitM.

session with the CSMS, and then authenticates itself using a
password.

SP3: TLS and Mutual Cert Auth. SP3 extends SP2 with
certificate-based CS (client) authentication. It is the strongest
OCPP SP. During the boot process, the CS and CSMS mutu-
ally authenticate a TLS session, providing trusted certificates.
SP3 gets rid of passwords, so it is not affected by effective
password attacks.

3 Threat Model

System model. We consider an OCPP charging network com-
posed of CSs and CSMSs like the one presented in Figure 1.
Each network host is configured to run as an OCPP client or
server. Multiple OCPP versions and SPs can coexist in the
network. CPs and CMSMs can run open-source or proprietary
OCPP implementations, like the SteVe CSMS [51].

The CSMS manages and monitors the CS state, including
charging activities, firmware updates, and charging reserva-
tions. The CS can authenticate to CSMS through a boot noti-
fication message, send heartbeats to maintain connection and
start the transaction to enable the EV user to charge their car.

Attacker model. We consider an attacker who can ac-
cess the charging network and send OCPP packets to CSs
and CSMSs. We focus on four attacker models and related
threats: i) eavesdropper sniffing (encrypted) OCPP packets,
ii) spoofer impersonating a CS to a CSMS or vice-versa, iii)
MitM positioning between a CS and a CSMS, and iv) DoS
performing DoS attack on a CS or a CSMS.

The attacker wants to compromise the security and privacy
of the OCPP network. They try to violate confidentiality,
integrity, availability, and authenticity. Moreover, they attempt



to compromise unlinkability, anonymity, and non-trackability
privacy guarantees.

The active attacker models are a Dolev-Yao adversary [27]
who can modify, drop, replay, reassemble, and create OCPP
packets. The attacker can also gather public information about
a host, like a CS ID printed as a QR code on the device or
using open-source intelligence resources.

The attacker tries to exploit OCPP design and implementa-
tion flaws. The former includes protocol-level vulnerabilities
affecting one or more OCPP versions and SPs. The latter in-
volves mis-implementation of OCPP, potentially leading to
undefined behavior.

The attacker can exploit misconfigured OCPP networks
where CSs and CMSMs are exposed to the internet and re-
motely compromise them using known or zero-day vulnera-
bilities like the ones presented in [47]. Or, they can connect
to an OCPP local area network, e.g., by plugging an Ether-
net cable or compromising a weak Wi-Fi password, and then
observe the (unprotected) OCPP traffic and inject packets.

The attacker cannot physically damage or tamper with the
CS or interact with a device, such as plugging into the charg-
ing ports or accessing internal hardware components. This
constraint is significant because it means the attacker must
rely on non-physical methods to exploit the system. More-
over, they cannot break standard cryptographic mechanisms,
including TLS and its PKI.

4 EmuOCPP

Next, we motivate the need for EmuOCPP, introduce its six
requirements, and explain how we address them with our
design.

4.1 Motivation

Numerous papers have explored the security and privacy
of OCPP 1.6. These studies have examined vulnerabilities,
security challenges, and potential mitigation strategies [2, 14,
29, 30, 32, 36, 47]. They highlight security concerns such as
MitM and DoS attacks and implementation weaknesses. Other
research focused on OCPP privacy concerns [2, 22, 49].

Only a few research studies have investigated OCPP 2.0
and 2.0.1 security and privacy, such as [3, 31]. Alcaraz et
al. [3] conducted a threat analysis of OCPP 2.0.1 using the
STRIDE [37] and DREAD [40] threat modeling method-
ologies, identifying potential vulnerabilities. Similarly, Garo-
falaki et al. [31] provided an overview of security issues in
OCPP-based smart charging scenarios, highlighting areas re-
quiring further research. However, these studies do not offer
tools for testing and validating the security of OCPP 2.0.1.

A notable study that presents an OCPP testing tool is OCPP-
Storm [21], which introduces a black-box fuzzer to test CSMS
implementations up to version 2.0.1. However, in the study,

the authors mentioned their inability to test real CS imple-
mentations for 2.0.1, as none were open-source. Additionally,
the study was able to test only against OCPP.Core, a CSMS
that partially supports OCPP 2.0.1 [19]. Hence, a security and
privacy testing framework for OCPP is needed and should
cover the latest OCPP versions and all security profiles.

Several open-source OCPP software and hardware can be
building blocks for an OCPP security and privacy framework.
An open-source OCPP Python library from The Mobility
House [34] supports OCPP 1.6, 2.0, and 2.0.1 and provides
a CS and CSMS skeleton code. SteVe [51], an open-source
CSMS, functions only for OCPP 1.6. OpenEVSE is an open-
source hardware and software platform for EV charging sta-
tions [43], but it lacks support for OCPP 2.0.1 and security
profiles. SAP’s OCPP simulator [28] is a Node.js application
designed to simulate CSs running OCPP 1.6. OCPP.Core [20]
is a CSMS that supports deploying different OCPP 1.6, 2.0,
and 2.0.1.

4.2 Design
This work presents EmuOCPP, a new and comprehensive
security and privacy testing framework for OCPP. The frame-
work has six requirements:

R1: Supports OCPP 1.6, 2.0 and 2.0.1.

R2: Supports OCPP SP1, SP2 and SP3.

R3: Emulates realistic OCPP networks where hosts run dif-
ferent OCPP implementations.

R4: Tests OCPP security and privacy at the design and im-
plementation level, including eavesdropping, spoofing,
MitM, DoS, and tracking issues.

R5: Scalable to complex topologies and thousands of hosts.

R6: Reproducible, open-source, and low-cost.

Figure 1 provides an overview of EmuOCPP’s design. The
design integrates a new OCPP emulator supporting OCPP
network components, like CS and CSMS, topologies, and
traffic shapes. The emulator allows setting bandwidth and
packet drop rates to reproduce real-world network conditions
where packets might be dropped or experience latency (R3).

The emulated hosts can run any OCPP version and SP (R1,
R2). Hence, we can reproduce insecure and secure networks,
including their OCPP SP upgrades. For example, in Figure 1,
we show an emulated network where CSs and CSMSs operate
with OCPP 1.6, 2.0, 2.0.1, and SP1, SP2, and SP3.

EmuOCPP emulation strategy is container-based, an effec-
tive and lightweight alternative to emulation based on virtual
machines (VMs) [33]. Containers allow the emulation of
thousands of hosts, leading to higher performance while keep-
ing a realistic environment and supporting hardware in the
loop. Unlike VMs, which require separate operating systems,



containers share the host system’s kernel, allowing multiple
isolated user-space instances to run simultaneously.

EmuOCPP enables extensive security and privacy testing
by configuring emulated hosts as attackers (R4). As shown in
Figure 1, an emulated attacker can operate as a MitM, Eaves-
dropper, or Impersonator, targeting vulnerabilities across dif-
ferent OCPP versions and security profiles. The attacker can
leverage real-world security and privacy tools such as Nmap,
Scapy, Mitmproxy, and OCPPStorm to enumerate, manipulate
traffic, and exploit protocol weaknesses.

For example, EmuOCPP can automatically establish a
MitM position by attacking the IPv6 Neighbor Discovery
Protocol (NDP) at the link layer, then escalate to tampering
with OCPP packets at the application layer, leading to session
hijacking, leaked private data and packet manipulation. These
capabilities allow programmatic, systematic, and reproducible
security and privacy testing of OCPP.

To achieve scalability (R5), EmuOCPP employs a file-
based configuration strategy using Yet Another Markup Lan-
guage (YAML). The config files set the network, including
the topology, hosts, CSs, CSMSs, switches, routers, and links.
Moreover, they configure which OCPP client and server im-
plementations are running in each host, their OCPP version,
and supported SP. This allows the testing of open-source and
closed-source OCPP implementations programmatically.

Moreover, EmuOCPP is based on open-source software
and low-cost hardware; hence, it can be reproduced at low
cost (R6). For example, it can be installed on any Linux-based
distribution or subsystem.

5 Implementation

In this section, we discuss the implementation of
EmuOCPP which is based on four modules: i) IPMininet
for network emulation, ii) Tests for providing attacks tooling
iii) Messages providing automated OCPP messages parsing
and validation, iv) Config a configuration engine based on
YAML files and a GUI.

5.1 IPMininet
To evaluate the security of OCPP implementations and ex-
plore potential attack scenarios, we developed an OCPP emu-
lator using IPMininet [50], an extension of Mininet [38] that
supports IPv6. IPMininet enables the creation of a virtual
network that closely mimics real-world OCPP deployments,
facilitating large-scale and low-cost emulation of OCPP com-
munication between CS, CSMS, and other hosts.

Unlike prior OCPP testbeds that relied on multiple vir-
tual machines [47], our approach leverages IPMininet’s
lightweight architecture to deploy hundreds of charging sta-
tions with minimal resource consumption. This makes our
testbed suitable for large-scale testing and stress analysis.

Additionally, we incorporate a DNS server into the emula-
tor to enhance realism and expand potential attack vectors.
The DNS server manages CS registration, resolves CSMS
addresses dynamically, and enables testing of attacks.

EmuOCPP also provides a script for generating certificates.
When deploying a CS using SP3, a CS certificate is automat-
ically created and installed on the device. Additionally, this
script allows implementers to test their own CSMS certificates.
These certificates are signed by a fictional CSMS, for which
a separate script is available to generate its corresponding
certificate.

5.2 Test
EmuOCPP’s Test module implements two MitM attacks.
It provides IPv6 NDP MitM using parasite6 and
flood_router26 from the THC toolkit [52]. The parasite6
tool acts as an ICMPv6 Neighbor Solicitation/Advertisement
spoofer, allowing attacks similar to ARP spoofing on IPv4
networks. Meanwhile, flood_router26 generates random
router advertisements to disrupt the target’s routing table.

Moreover, it includes a script using mitmdump [41] to MitM
a connection protected by SP1, and maintains this access
for SP2 and SP3. During execution, it listens to incoming
messages and displays the captured information. In addition,
it monitors specific messages and waits for opportunities to
modify them, such as the first message sent from the CSMS
to the CS. The script allows the installation of a certificate
on the target CS or retrieving a valid CS certificate from the
CSMS using the information sent from the CS.

5.3 Messages
This section discusses the custom OCPP implementation we
built and its protocol coverage. We also discuss implementing
the CSO and other network components necessary to emulate
our test scenarios. Please note that EmuOCPP can run open-
source or proprietary programs as described in Section 5.1.

To develop the functional behavior of CPs and CSMSs,
we extended the Mobility House Python OCPP library. This
library provides predefined schemas for OCPP messages and
validation tools. However, since more recent library versions
removed support for OCPP 2.0, we used an older version to
maintain compatibility with OCPP 1.6 and OCPP 2.0. When
the project was initiated, this was the most recent version
available.

We developed two Python scripts to test the interactions
between CS and CSMS. These scripts support key security
operations, like certificate installation or password modifi-
cation Of the 64 messages in OCPP 2.0 and 2.0.1, and the
39 in OCPP 1.6, EmuOCPP implements seventeen of them
covering the Core, Security, Config&Mgmt, Remote control,
and Reservation categories. The list of messages is shown in
Table 1.



Table 1: EmuOCPP implements seventeen messages spanning
all OCPP versions and five categories.

Message Version Category

Heartbeat 1.6, 2.0, 2.0.1 Core
BootNotification 1.6, 2.0, 2.0.1 Core
Authorize 1.6, 2.0, 2.0.1 Core
StatusNotification 1.6, 2.0, 2.0.1 Core
TransactionEvent 2.0, 2.0.1 Core
Reset 2.0, 2.0.1 Core

SignCertificate 1.6, 2.0, 2.0.1 Security
InstallCertificate 1.6, 2.0, 2.0.1 Security
CertificateSigned 1.6, 2.0, 2.0.1 Security

GetVariables 2.0, 2.0.1 Config&Mgmt
SetVariables 2.0, 2.0.1 Config&Mgmt
SetNetworkProfile 2.0, 2.0.1 Config&Mgmt

GetConfiguration 1.6 Config&Mgmt
ChangeConfiguration 1.6 Config&Mgmt
TriggerMessage 2.0, 2.0.1 Remote control
ExtendedTriggerMessage 1.6 Remote control

ReserveNow 1.6, 2.0, 2.0.1 Reservation

Reservation messages reserve a CS for a vehicle. In this
scenario, an EV owner submits a reservation request to book
a CS through a dedicated mobile application. The CSMS, in
turn, processes it and sends the reservationNow message to
the corresponding CS with the user token who booked the CS
for a given time window.

We also extended the Mobility House implementation to
allow communication between a CSO and CSMS (which
is not covered by the OCPP standard), emulation of an EV
reservation made by a user, and better handling of DNS. Next,
we describe these three new features. In EmuOCPP the CSO
establishes a WebSocket connection to the CSMS and can
issue specific commands to initiate various processes, such as
configuration changes or certificate installation requests.

We developed an emulated EV reservation process via a
dedicated HTTP API, allowing clients to retrieve and post
to a related database. Via the API, a client communicates
with the CSMS to replicate the reservation made by an EV
user, e.g., a reservation via a mobile application. The CSMS
listens for reservation requests and, upon registering an EV,
sends a reservation message to the CS. CSs and CSMSs must
interact with a DNS server before they can operate. CSMSs
register by sending their domain, IP, and port. CSs query the
DNS to resolve the CSMS address and obtain the necessary
connection details. The DNS server balances its connections
if multiple CSMSs register with the same domain name.

5.4 Config
We build a configuration engine based on a network config-
uration file. As shown below, the file configures CS clients
(client0, ...), each client with a custom OCPP configuration
(SecProfile, version). It configures one or more CSMS
servers and attacker nodes. It sets the number of routers, the
link shape, and the network topology.

clients:
client0:
SecProfile: ’3’
priority: [0, 1]
profiles:
0: { SP: 2, OCPP_version: OCPP201 }
1: ...

version: 2.0.1
...

routers:
router0: { name: R0 }

servers:
server0: { multiple: 1, ... }

links:
- [CLI0, R0]
...

Once the network topology is defined, additional configu-
rations are automatically managed to streamline the process.
These include generating and assigning serial numbers, pass-
words, and security certificates. However, users can manually
adjust these settings before execution to customize the emula-
tion to their needs.

To further simplify the creation and testing of network
topologies, we developed a EmuOCPP GUI using Tkinter [45]
This interface allows users to: i) add, delete, and reposition
CSs, CSMSs, routers, switches, DNS servers, and regular
hosts, ii) define key configuration parameters for the CS, in-
cluding OCPP version and security settings, through a visual
interface and iii) generate configuration files for automated
deployment, reducing the need for manual scripting. A GUI
screenshot is shown in Figure 13.

6 Attacks

We present eight attacks we discovered with the help of
EmuOCPP. As explained in Section 3, they require an at-
tacker who can access the OCPP network. Notably, five at-
tacks are novel: M2, M3, and M4 enable MitM any SP by
exploiting SP upgrades and downgrades. I1 and I2 allow the
impersonation of arbitrary CSs by exploiting vulnerabilities
in the BootNotification process.

6.1 Summary
Table 2 summarizes the eight attacks discovered by
EmuOCPP. They include eavesdropping (E1), impersonation



Table 2: We discover eight attacks on OCPP involving design and implementation vulnerabilities across all OCPP versions and
SPs. The M2, M3, M4, I1, and I2 attacks are novel. Des: Design, Imp: Implementation.

ID Name New Type OCPP SP OCPP Ver. Impact Vulnerability

M1 MitM SP1 ✗ Des SP1 1.6, 2.0, 2.0.1 Sec, Pri Weak SP1
M2 MitM SP2 Upgrade ✓ Des SP2 1.6, 2.0, 2.0.1 Sec, Pri Weak SP2 upgrade
M3 MitM SP3 Upgrade ✓ Des SP3 1.6, 2.0, 2.0.1 Sec, Pri Weak SP3 upgrade
M4 MitM SP Downgrade ✓ Imp SP2, SP3 1.6, 2.0, 2.0.1 Sec, Pri No SP down prot
E1 Eavesdrop ✗ Des SP1 1.6, 2.0, 2.0.1 Sec, Pri Weak SP1
D1 CSMS (D)DoS ✗ Des SP1, SP2, SP3 1.6, 2.0, 2.0.1 Sec Unauth CS boot
I1 CS Impersonation ✓ Des, Imp SP1, SP2, SP3 1.6, 2.0, 2.0.1 Sec, Pri CS ID undefined behaviour
I2 CS Impersonation ✓ Des, Imp SP1, SP2, SP3 1.6, 2.0, 2.0.1 Sec, Pri CS status trackable by anyone

(I1), MitM (M1–M4), and DoS (D1) threats. They isolate
OCPP design and implementation vulnerabilities, including
OCPP SP downgrades and undefined behaviors with dupli-
cate OCPP IDs. They result in severe security and privacy
issues, like stealing private credentials, charging fraud, and
distributed DoS. They affect all OCPP versions and SPs.

We discovered them by studying the OCPP specification [5,
6], a public OCPP test suite [7, 8], and using EmuOCPP as a
fast and configurable testing framework. Next, we describe
the attacks and their root causes.

6.2 MitM SP1 (M1)
M1 is a MitM attack against OCPP networks using SP1 or no
SP. In both scenarios, there is no confidentiality or authenti-
cation (i.e., no TLS). The attacker gets a MitM position by
exploiting unprotected network layer or link layer protocol
vulnerabilities according to its position in the OCPP network,
including IPv4 ARP or IPv6 NDP spoofing.

For example, in Figure 7, the adversary positions in the mid-
dle by sending unauthenticated IPv6 Neighbor Advertisement
(NA) and Router Advertisement (RA) packets to manipulate
the network routing. Then, they can observe all OCPP packets
exchanged by the victims, block them, and force the CS and
CSMS to re-establish an insecure OCPP connection while the
attacker is in the middle.

The M1 attack root cause is a design flaw in SP1, which
neither protects data in transit nor authenticates the CSMS.
SP1 is not recommended for production systems, but related
work has demonstrated that it is widely deployed [47].

6.3 MitM SP2 Upgrade (M2)
An attacker who conducted M1 can keep the MitM
position even if the victims upgrade to SP2 (TLS
with server certificate). Before the CSMS starts the up-
grade to SP2 with ChangeConfiguration (OCPP 1.6) or
SetVariables (OCPP 2.0 and 2.0.1), the attacker sends a
InstallCertificate message, as shown in Figure 2, to in-
stall a malicious root certificate on the CS. Once SP2 is in

Figure 2: M2 MitM SP2 via malicious CSMS certificate up-
grade.

place, the attacker can authenticate to the CS using the mali-
cious certificate and MitM the TLS connection.

For this to work, the CS needs to have AdditionalRootCer-
tificateCheck set to False. If the flag is True, the CS allows
only one CSMS Root Certificate (plus a temporary fallback)
at a time. Any new certificate must replace the existing one
and be signed by it, ensuring a secure and verifiable chain of
trust for certificate management.

For SP1, the use of AdditionalRootCertificateCheck is op-
tional, and there is no requirement for its configuration. How-
ever, in SP2 and SP3, this configuration variable is mandatory.
Despite its required presence, the OCPP standard does not
mandate the implementation of the feature associated with
this variable. Instead, it remains an optional feature that CS
can choose to support or not and would still be compliant.

The M2 attack root cause is a design flaw in the OCPP
SP2 upgrade process, which allows the installation of self-
signed root certificates when AdditionalRootCertificateCheck
is disabled. This design vulnerability impacts any OCPP im-
plementation, even those with an OCPP security certification.



Figure 3: M3 MitM SP3 via client certificate upgrade manip-
ulation.

6.4 MitM SP3 Upgrade (M3)
An attacker who conducted M2 can maintain the MitM even
if the victims upgrade to SP3 (TLS with client and server
certificates). Before the CSMS starts upgrading to SP3 with
the same message as the upgrade to SP2, the attacker obtains
a valid client certificate from the CSMS by completing a
client certificate enrollment process as shown in Figure 3. The
attacker intercepts the SignCertificateRequest message
from the CS and substitutes the victim Certificate Signing
Request (csr) with their own (mod_csr).

Then, the CSMS creates and sends the attacker a client
authentication certificate (mod_certificate). Moreover, the
attacker creates and sends to the victim a client certificate
(certificate) that the victim employs to authenticate to the
attacker. After manipulating the client certificate, the attacker
can establish two parallel and mutually authenticated TLS
sessions with the CS and CSMS using SP3 and keep the MitM
position.

The M3 attack root cause is a design issue in the OCPP SP3
upgrade process, which allows any CS to obtain valid TLS
client certificates from the CSMS rather than from a trusted
third-party CA. This design vulnerability impacts any OCPP
implementation, like the one discussed for M2.

6.5 MITM SP Downgrade (M4)
An attacker can downgrade SP3 to SP2 or SP2 to SP1 by se-
lectively dropping OCPP packets, even if they are encrypted.
The attacker requires a link-layer MitM position between the
CS and CSMS, which can be achieved using an IPv6 ND
spoofing attack. Per our threat model, the attacker does not
need to compromise any TLS session. Then, as shown in
Figure 4, the attacker can observe the SP in use via the Web-

Figure 4: M4 SP3 or SP2 downgrade to SP1 MitM attack.

Socket header and programmatically block secure connection
until a weaker security profile is in use, e.g., force SP1 other
than SP2 or SP3. The SP downgrade attack has critical real-
world consequences. For example, it enables the downgrade
of a connection encrypted with SP3 to one unencrypted using
SP1 to steal user credentials and other (sensitive) data.

The downgrade effectiveness depends on the CS configura-
tion of its Connection Profiles. A Connection Profile defines
how a CS connects to a CSMS and has a priority indicated in
the NetworkConfigurationPriority variable. Each Con-
nection Profile uses a specific SP. The Connection Profiles
are used by priority and can have a failure count. Hence, it is
expected that CSs will support three Connection Profiles with
SP1, SP2, and SP3 to provide maximal backward compatibil-
ity regardless of the CSMS.

M4 stems from an OCPP implementation vulnerability.
OCPP mandates deleting pre-configured network profiles with
lower SPs after an upgrade to a higher security profile. Failure
to do so introduces inconsistencies that can be exploited to
downgrade a connection, as demonstrated in M4. During the
responsible disclosure process, the discussion with OCA con-
cluded with a recommendation of potentially adding specific
test use cases for this scenario while testing for compliance.

6.6 Eavesdrop (E1)

The attacker can eavesdrop on OCPP plaintext packets when
SP1 is used, or there is no SP. The attacker can sniff OCPP
packets in several ways, including compromising a network
switch or router, adding a wiretap, or performing a MitM
attack at the link or network layer against IPv6. For example,
they can perform a Neighbor Advertisement (NA) spoofing
attack against IPv6’s Neighbor Discovery Protocol (NDP),
which is the equivalent of Address Resolution Protocol (ARP)
spoofing for IPv4.

With E1, the attacker can access security and privacy-
critical OCPP data, including user authentication tokens, CS
passwords, and charging event details. We note that with SP1,
it is also trivial to impersonate a CS, as the attacker can sniff
its password. The E1 attack root cause is insecure SP1 design
as for M1.



6.7 CSMS DoS (D1)

As depicted in Figure 6, the attacker can perform a DoS at-
tack on a CSMS by presenting themselves as a CS to a victim
CSMS and opening multiple OCPP connections without hav-
ing to authenticate. They start multiple connections to the vic-
tim CSMS using unauthenticated BootNotification. The
attacker crafts fake authentication credentials or certificates to
flood the CSMS resources with authentication attempts. Thus,
D1 is effective regardless of the target CSMS SP as the at-
tacker does not need the CS password or certificate to perform
the DoS. Moreover, D1 can be scaled to a Distributed DoS
(DDoS) by an attacker controlling multiple hosts and using
them to target one or more CSMSs (e.g., via a CS botnet).

The root cause of D1 is a deployment implementation vul-
nerability stemming from the lack of sufficient rate limiting
and resource protection. This vulnerability allows an attacker
to overwhelm the CSMS with an unbounded number of con-
nection and authentication attempts. DoS and DDoS attacks
are relevant for OCPP as they can prevent people from charg-
ing their vehicles and cause damage to the charging network.
Related work has demonstrated that many production systems
still suffer from these vulnerabilities [47].

6.8 CS Impersonation (I1)

I1 allows an attacker to impersonate a CS to a CSMS, some-
times even if the impersonated CS communicates with the
CSMS. The attacker needs the impersonated CS vendor name,
model, and charging point serial numbers. This information is
usually public, e.g., printed on the CS as shown in Figure 14
or stored in an Internet-accessible database [23]. Then, the
attacker sends a BootNotification request to the CSMS
while spoofing a CS while the impersonated CS is already
connected to the CSMS.

Our experiments (discussed in Section 7) show that a
CSMS can: i) accept the attacker connection while keeping
the one with the impersonated CS, ii) terminate the connec-
tion with the impersonated CS, and start a new one with the
attacker, or iii) reject the connection with the attacker. We
assume the attacker can connect with the CSMS, abusing the
serial number flaw.

When no SP is used, impersonation is trivial, as there is
no authentication of the CS. Under SP1, impersonation re-
mains feasible since credentials are transmitted in plaintext.
While SP2 and SP3 offer stronger protections, they are not
entirely foolproof: attackers could exploit implementation vul-
nerabilities on the CSMS, such as SQL injection, to bypass
authentication and impersonate a CS. As such, the I1 attack
remains viable across all SP levels, as SPs only mitigate but
do not address the underlying design flaw in how the protocol
manages CS identity.

Impersonating a CS via I1 leads to critical security and
privacy breaches in real-world deployments. For instance,

an attacker can receive a ReserveNowRequest from a vic-
tim user, which includes the user’s authentication token, as
shown in Figure 8. The attacker could then recharge their
vehicle using the victim’s token, effectively committing fraud
by shifting the charging cost to the victim user.

The root cause of I1 lies in a limitation of the OCPP stan-
dard regarding the management of CS IDs, for instance the
protocol do not specify whether multiple CS can have the
same ID or not.This has led most implementers to use static
identifiers that are publicly accessible, for example, through
physical labels attached to the CS as in Figure 14. Further-
more, the standard is light on providing guidelines on how
authentication should be tied to CS IDs. An implementer
would not know how to handle parallel CS connection re-
quests using the same serial ID. As a result, different CSMS
implementations react inconsistently to such impersonation
attempts. The OCA acknowledged this issue during our dis-
closure.

6.9 CS Impersonation (I2)
I2 is a CS impersonation attack that improves upon I1 in
that it is effective even when the CSMS accepts only one
connection per CS serial ID. The attacker monitors the target
CS, e.g., by periodically pinging it, to detect when the CS
goes offline. This can occur, for example, if the CS reboots for
a firmware update. Only once the attacker has detected that
the CS is disconnected from the CSMS, they exploit this time
window to send a BootNotification request, impersonating
the target CS.

Since the CSMS registers the first connection it receives for
that serial ID, it accepts the attacker’s fake CS as legitimate,
thinking it is the legitimate charger that has finished rebooting.
When the victim CS attempts to reconnect, the connection
has already been stolen, leaving the legitimate CS unable to
re-establish communication with the CSMS.

The root cause of I2 is twofold: First, as in I1, the OCPP
protocol lacks clear guidance on how CS IDs should be se-
curely managed. This leads implementers to rely on static
and publicly accessible identifiers, which attackers can eas-
ily obtain. Second, CS status is trackable by any host in the
OCPP network regardless of the security profile in use. Many
CSs respond to unsolicited requests such as pings, enabling
attackers to infer when the CS is rebooting and time their
impersonation accordingly.

7 Evaluation

We describe our evaluation setup and the attacks and
EmuOCPP performance evaluation results. In our experi-
ments, we successfully exploit nine OCPP targets and intro-
duce them in Appendix A. The scripts for executing the eval-
uated attacks are at https://github.com/vfg27/EmuOCPP
in the charging/scenarios folder.

https://github.com/vfg27/EmuOCPP


Table 3: Emulated network specs. B: bandwidth, D: delay.

Link B (Mbps) D (ms)

Switch-Router 1000 1
Router-Router 100 15
Host-Switch 1000 -

7.1 Setup
We set up EmuOCPP in different configurations to evaluate
our attacks. Figure 9 shows the topology we used to test M1–
M4 and E1, while Figure 10 illustrates the one used to test
I1 and D1. In both topologies, the target CS and CSMS are
separated by two routers. This choice is motivated to emulate
a realistic deployment where the CS and CSMS are in 2
different LANs separated by a WAN.

Table 3 shows the emulated network bandwidth and delay,
which align with typical network configurations. A Local
Area Network (LAN) connection often features bandwidths
of 1000 Mbps with latencies under 1 ms. While a Wide Area
Network (WAN) generally offers lower bandwidths, such as
100 Mbps, with higher latencies around 15 ms [1].

This emulated topology reflects realistic LAN and WAN
conditions, ensuring that the security evaluations and attack
scenarios are not limited to a specific environment. As a re-
sult, the attacks tested within this setup can be generalized to
real-world deployments, as they accurately capture the net-
work characteristics and constraints commonly encountered
in operational OCPP networks.

We purchased an OpenEVSE charger [43] that supports
OCPP 1.6. We configured a network where an Ubuntu ma-
chine acts as the attacker and is connected to the same OCPP
network as the charger. While configuring the device, we
realized that it does not support any SPs.

We also deployed three VMs running SteVe, Open E-
Mobility and OCPP.Core, three popular open-source CSMS
implementations. SteVe and E-mobility [28, 51] support
OCPP 1.6 while OCPP.Core supports both 1.6 and 2.0. With
additional engineering effort, we plan to extend EmuOCPP
in future versions to support the automated deployment of
these CSMS implementations as customizable CSMS in the
topologies that can be built through EmuOCPP.

Finally, we tested the I1 and D1 attacks on a production
network running OCPP 1.6 and SP2. For confidentiality rea-
sons, we do not disclose the name of the company managing
the network. We got explicit permission from them to conduct
our tests.

7.2 Attacks Results
Summary. Table 4 summarizes our attack evaluation results
against nine OCPP implementations. All the tested attacks are
effective against the targets, except for OCPP.Core 1.6 and

2.0 that are not vulnerable to I1. The exploited targets cover
open-source (e.g., SteVe, OpenE-Mob) and closed-source
(e.g., Anon) OCPP stacks, the OpenEVSE EV charger, the
most recent OCPP versions (1.6, 2.0, 2.0.1), and all OCPP
SPs (SP1, SP2, and SP3). These results demonstrate the need
and effectiveness of EmuOCPP and that OCPP needs further
security and privacy studies. Next, we describe the result for
each attack target.

Mobilty House. We evaluated the eight attacks against our
OCPP implementation, built on top of the Mobility House li-
brary (see Section 5.3), using dedicated EmuOCPP emulated
networks. All attacks were successfully executed, regardless
of the OCPP version. For each attack, we developed a corre-
sponding OCPP implementation tailored to its scope with the
help of EmuOCPP.

The first tested CSMS implementation allowed duplicate
sessions, keeping legitimate and fake CS connected. Thus, I1
was successful, resulting in both the legitimate and fake CS
being connected. The second implementation accepted the
latest connection as legitimate and terminated the old one, al-
lowing I1 to succeed. The third implementation preserved the
first connection as legitimate and rejected any new connection
attempts with the same ID, effectively preventing I1.

However, I2 was successful against all CSMS implemen-
tations, including the third one that rejects duplicate IDs. By
waiting for the legitimate CS to reboot, the attacker could ex-
ploit the temporary disconnection window to impersonate the
CS and establish a connection before the actual device could
reconnect, effectively taking over the session and rendering
the legitimate CS inoperative.

SteVe. SteVe is vulnerable to all tested attacks as it im-
plements no SP. While analyzing I1, we found that SteVe
provides two options for handling duplicate BootNotification
messages. The first allows the server to maintain old and new
connections, leading to I1. The second (default) ensures only
one active connection per CS ID by terminating the old ses-
sion when a new one is established, which is still vulnerable to
I1. I2 also succeeded against these two configuration options,
and the outcome was similar to I1. We could not test M2–M4
because there is no SP. M1 and E1 were both successful since
no SP was supported. D1 was successful, as no rate limitation
mitigation is in place.

Open E-Mob. All attacks are effective as Open E-Mob
does not support SPs (like Steve). When investigating the
outcome of I1, we found that Open E-Mobiltiy considers the
last authenticated CS with a valid ID legitimate, and this logic
enables both I1 and I2. We could not test M2–M4 because
there is no SP. M1 and E1 were both successful since no
SP was supported. D1 was successful, as no rate limitation
mitigation is in place.

OpenEVSE. The OpenEVSE charger does not support
any SP. However, it introduces a custom CS authentication
mechanism. You can authenticate with a username and a
password for the CS with the CSMS, where either one can



Table 4: Evaluation results of eight attacks against nine OCPP implementations. ✓ means that an attack is successful and ✗ that it
is not successful. NA: Not Applicable due to lack of SP.

Target Ver SP M1 M2 M3 M4 E1 D1 I1 I2

Mobility House 1.6 All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mobility House 2.0 All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mobility House 2.0.1 All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SteVe 1.6 None ✓ NA NA NA ✓ ✓ ✓ ✓

Open E-Mob 1.6 None ✓ NA NA NA ✓ ✓ ✓ ✓

OpenEVSE 1.6 None ✓ NA NA NA ✓ NA ✓ ✓

OCPP.Core 1.6 None ✓ NA NA NA ✓ ✓ ✗ ✓

OCPP.Core 2.0 None ✓ NA NA NA ✓ ✓ ✗ ✓

Prod Network 1.6 SP2 NA NA NA NA NA ✓ ✓ ✓

be anything and is not restrained by the formats enforced
by OCPP standards. Adapting to the custom authentication
mechanism, we could still run E1, M1, I1, and I2, where we
found the CSMS to consider the last CS to authenticate with
the same ID to be the legitimate charger; the server terminates
the old connection.

OCPP.Core. We successfully tested OCPP.Core 1.6 and
2.0 implementations. We connected our Mobility House
CSs successfully with SP1. E1 and M1 are viable attacks
for this implementation and were successfully tested. Be-
cause OCPP.Core does not support InstallCertificate,
SignCertificate, and CertificateSigned messages. We
could not test M2 and M3 as the relevant SPs are unsupported.

For I1, if a new connection attempts to use a serial number
already employed, the CSMS rejects it. Thus, the OCPP.Core
implementations are not vulnerable to classical I1. I2, on the
other hand, worked against OCPP.core and effectively took
over the connection of the targeted CS.

Prod Network A major company permitted us to run the
I1 and D1 attacks against their productively deployed OCPP
network. We confirmed the effectiveness of I1 and D1 on a
target device in their quality assurance (QA) environment.
We found the CSMS vulnerable to a D1 attack and did not
implement any rate limiting or protection against DoS attacks.
We validated that the production deployment suffered from
the same limitation.

Furthermore, while testing I1, we discovered that the CSMS
handles duplicate CS IDs by accepting the new connection as
legitimate after successful authentication with valid creden-
tials. The CSMS does not terminate the old connection at the
TCP layer with the victim CS. This results in a bug where
the victim CS continues to send heartbeat messages to the
CSMS and is not terminated. In other words, the attacked CS
remains unaware it has been disconnected.

7.3 Performance Results
Table 4 showcases that EmuOCPP satisfies in practice the
six requirements we set in Secion 4.2. It is capable of testing

Table 5: RAM usage per number of devices.

CS CSMS RAM (MB)

1 1 210
10 1 590

100 1 4195
150 2 6240

the newest OCPP versions (R1) and all OCCP SPs (R2). It
emulates OCPP networks with heterogeneous hosts (R3). It
facilitates discovering new and old security and privacy issues
(R4). It scales to complex topologies with many hosts (R5).
It is reproducible, open-source, and low-cost (R6).

We stress-tested EmuOCPP to evaluate its performance and
scalability using VMware 17 Player on a machine running
Ubuntu 24.04.1 LTS with 10 GB DDR5 RAM, 8 CPU cores,
and 40 GB SSD storage. Our stress-test script is available
at https://github.com/vfg27/EmuOCPP. It includes a
configurable parameter to set the number of emulated CS.
Each CS is configured dynamically with random but valid
security profiles and OCPP versions.

During the stress tests, the network topology adapts dy-
namically based on the number of deployed CS. For instance,
when only two CS are deployed, the network follows the topol-
ogy illustrated in Figure 11. As the number of CS increases,
the topology scales accordingly. When deploying 20 charging
stations, the expanded topology is shown in Figure 12.

A key observation is that since CS passwords, certificates,
and serial numbers are generated during execution, initial
startup time increases as the CS number grows. On average,
launching each CS takes between 1 to 3 seconds. We mon-
itored memory consumption using the free -m command,
reporting RAM usage in megabytes (MB). The results are in
Tables 5 and 5.

Table 5 demonstrates the efficient scalability of EmuOCPP
under increasing load. Even with 150 CSs and 2 CSMSs,
the total memory usage remains within 6.2 GB, showing

https://github.com/vfg27/EmuOCPP


Figure 5: RAM usage with the increasing number of CSs.

that the emulator can support large-scale deployments on
standard hardware. The near-linear RAM consumption sug-
gests that each CS operates with minimal overhead ( 40
MB per CS) while the core emulation framework remains
lightweight. Additionally, system initialization times remain
manageable, with CS boot-up times averaging 1-3 seconds,
making EmuOCPP practical for high-density OCPP network
simulations without excessive resource demands.

8 Countermeasures

We discuss how to fix or mitigate our eight attacks and their
root causes summarized in the last column of Table 2.

M1, E1. To defend against M1 and E1, implementers must
use either SP2 or SP3. Furthermore, they can deploy pro-
tections such as Secure Neighbor Discovery (SEND) for
IPv6 [11] and Dynamic ARP Inspection (DAI) [17] for IPv4
to prevent link-layer MitM attacks.

M2, M3. M2 can be mitigated by mandating the CS to
use AdditionalRootCertificateCheck with trusted cer-
tificates. The latter provides certificate pinning and would
require the attacker to leak the CSMS certificate. Moreover,
OCPP should ban the usage of self-signed certificates, adopt
a trusted CA architecture like the web PKI, and use certificate
pinning. Additional network-level defenses, such as SEND,
provide defense in depth.

M4. To fix M4, the OCPP standard should define how to
handle SP downgrades and related Connection Profile con-
figurations. OCPP 2.0 and 2.0.1 must ensure that once a se-
curity profile update occurs for a CS, all network connection
profiles are upgraded to the same SP value, and legacy pro-
files are erased. Properly testing the network profile rollback
mechanism after an update is recommended to ensure OCPP
compliance and protection against this attack.

D1. CSMSs must be protected against DoS and DDoS at-
tacks, as they operate as web applications and face threats
similar to traditional web servers. Failure to implement appro-
priate defenses can result in multiple CPs losing connection
to the CSMS and unable to authenticate EV users properly. To

mitigate D1, CSMS deployments should apply standard web
security measures, including connection rate limiting [10],
SYN flood protection [10], IP reputation filtering [48], con-
nection timeouts [10], and early-stage traffic filtering using
Web Application Firewalls (WAFs) [18, 35]. Load balanc-
ing and resource scaling [10] can also reduce the impact of
volumetric attacks targeting the CSMS.

I1. To mitigate the boot notification concurrent ID unde-
fined behavior, we recommend enforcing a whitelist of valid
CS IDs on the CSMS to prevent unauthorized or duplicate CS
connections. Additionally, CSMS implementations should
allow only one active connection per CS ID. Furthermore,
deployments should use SP2 or SP3 when feasible, and CPs
and CSMSs must be hardened against implementation vul-
nerabilities, such as those listed in the OWASP Top 10 [44],
which could be leveraged to bypass SP2 or SP3.

I2. It is challenging to fix I2 as the attacker can use dif-
ferent techniques to check if a CS is online, including traffic
analysis on encrypted data and side-channel attacks. As a mit-
igation, we recommend that a CS not communicate its status
to unauthenticated network hosts. In addition, CSMSs should
monitor for anomalous reconnect patterns, such as serial ID
reuse from unexpected network origins.

9 Related work

MiniV2G is an open-source emulator combining Mininet
and RiseV2G to simulate Vehicle-to-Grid (V2G) communi-
cations. It enables security research, including attack simu-
lations like message modification and denial-of-service [12].
While it provides a virtualized testing environment, it lacks
physical-layer simulations, such as real-time voltage analysis.
Despite this, MiniV2G is a valuable tool for V2G security
research.

The "MiniV2G" emulator by Attanasio [13] and our work
share a common approach to building a testing framework on
Mininet [38]. In contrast, we used IPMininet [50] for IPV6
support. While "MiniV2G" focuses on the Vehicle-to-Grid
(V2G) end to explore security vulnerabilities in the commu-
nication between the EV and the charging point [13], our re-
search emphasizes the Open Charging Point Protocol (OCPP),
simulating various security challenges such as handling Boot
Notifications and potential Denial of Service (DoS) attacks.
Both projects provide a lightweight testing framework and
can be integrated.

Alcaraz and Lopez analyzed the protocol’s security threats
and challenges, identifying vulnerabilities that could compro-
mise the system [2]. Garofalaki et al. conducted a compre-
hensive survey on the security issues and challenges of OCPP
[30]. Johnson and Smith investigated how specific attacks on
OCPP 1.6 could lead to privacy breaches, particularly concern-
ing user identity and charging habits [36]. The Swiss Federal
Institute of Technology’s report also sheds light on privacy



vulnerabilities within the protocol, suggesting measures to
mitigate potential data leaks [49].

Dalamagkas et al. proposed a federated learning approach
to detect cyberattacks on OCPP 1.6, aiming to enhance privacy
preservation in intrusion detection systems [22]. Sarieddine et
al. reveal significant security weaknesses in OCPP back-ends
through a detailed analysis and simulation study. The authors
designed a test bed requiring multiple virtual machines to
validate their findings and extended their investigation by
implementing proof-of-concept attacks on real-world OCPP
systems [47].

In contrast to existing OCPP testing frameworks,
EmuOCPP is lightweight, capable of running hundreds to
thousands of CPs and CSMS instances on a commodity lap-
top, as demonstrated in Section 7.3. Conversely, Sarieddine et
al. [47] managed to run only a few dozen CPs, relying on mul-
tiple virtual machines, each representing a CP or CSMS. Fur-
thermore, EmuOCPP offers a configurable testbed supporting
all OCPP versions, including the latest (2.0 and 2.0.1, whereas
only 2 out of 6 surveyed open-source implementations provide
partial support for 2.0, and none support 2.0.1 [21, 28, 46, 51].
In addition, most existing frameworks are limited to CSMS
or CP roles, while EmuOCPP enables concurrent testing of
both ends in a single testbed.

Moreover, EmuOCPP allows running various OCPP imple-
mentations, such as those in [19, 46, 51]. Related work [47]
might also be able to use their setup to support various setups,
but they don’t allow for the same performance as EmuOCPP.
Future work may extend EmuOCPP to support OCPP with
V2G implementations by integrating, for example, some parts
of MiniV2G [12].

Lastly, OCPP penetration testing tools, including the
OCPPStorm fuzzer [21], and automated attack generation
tools based on model checking [39] can be integrated with
EmuOCPP to test potential vulnerabilities and attacks in an
emulator running actual OCPP implementations. Hence, our
tool is complementary to effective security testing methodolo-
gies.

10 Conclusion

The paper presents EmuOCPP, a new OCPP security and
privacy testing framework. EmuOCPP covers all major OCPP
versions (1.6, 2.0, and 2.0.1) and all OCPP SPs (SP1–SP3). It
emulates an OCPP network using containers and reproduces
complex topologies running hundreds of hosts and different
OCPP configurations and implementations. It is configurable
via a YAML file to support diverse testing scenarios. It allows
the creation of multiple attacker nodes with arbitrary capabil-
ities, like eavesdroppers, spoofers, and MitM. EmuOCPP is
low-cost and easy to reproduce. We implement the tool us-
ing open-source software, including IPMininet and the THC
toolkit.

Using EmuOCPP, we uncover five attacks affecting OCPP.
The attacks include MitM, impersonation, DoS, and eaves-
dropping. They cover the major OCPP versions and all SPs.
They exploit novel design issues, including undefined behav-
iors with CS serial IDs and SP downgrade or upgrade logic.
We confirm the effectiveness of the attacks by testing them
on nine OCPP targets, including open and closed source im-
plementations, some of which were running on EmuOCPP.
Specifically, we test Mobility House clients and servers, a
SteVe server, an Open E-Mobility server, an OpenEVSE
charger client, OCPP.Core servers, clients, and servers in a
production network run by an Anonymous company. To ad-
dress the risks posed by our findings, we discuss effective mit-
igations. We responsibly disclosed our findings to the OCPP
consortium. Moreover, we empirically test the performance
of EmuOCPP by stress testing it and confirm that it can run
150 hosts on a mid-range Linux laptop.
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A OCPP Implementations

A.1 OpenEVSE
OpenEVSE [43] and its derivative, EmonEVSE [24], are open-
source platforms offering customizable charging solutions.
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EmonEVSE is a physical charging station designed for Eu-
ropean installations, providing up to 22kW charging power
and compliance with IEC 60947-5 and BS EN 61851-1:2011
standards. Both platforms currently support OCPP 1.6 (beta);
however, they lack implementations for security profiles and
do not support versions beyond OCPP 1.6.

A.2 SteVe

SteVe [51], developed at RWTH Aachen University, is an
OCPP server supporting versions 1.2 to 1.6. While it provides
basic functionality like RFID authentication, it lacks support
for OCPP 2.0 and security profiles.

A.3 SAP EV Simulator

SAP EV Simulator [28] is a Node.js tool designed to simulate
and scale a set of charging stations based on the OCPP-J pro-
tocol. While it facilitates testing and development, it currently
supports only OCPP 1.6 and lacks support for the latest OCPP
versions and the OCPP security profiles.

A.4 Open E-Mobility

Open E-Mobility [46] is an open-source project that provides
a comprehensive solution for managing electric vehicle charg-
ing infrastructure. It includes charge point management, user
administration, and billing integration features. The platform
supports OCPP 1.6, enabling communication between charg-
ing stations and the central system. However, like other im-
plementations, it lacks support for newer OCPP versions and
advanced security profiles, which are essential for ensuring
secure and reliable operations in evolving EV charging ecosys-
tems.

A.5 Java-OCA-OCPP

Java-OCA-OCPP, [16] maintained by ChargeTimeEU, is an
open-source client and server library for OCPP. This Java-
based library supports OCPP versions 1.6 and 2.0, providing
a framework for developers to implement OCPP-compliant
charging stations and central systems. While it facilitates the
development of OCPP solutions, users must ensure the im-
plementation of necessary security measures, as the library’s
primary focus is on protocol compliance rather than security
features.

A.6 Mobility House

Mobility House [34] offers an open-source Python library that
implements the JSON version of the Open Charge Point Pro-
tocol (OCPP), supporting versions 1.6, 2.0, and 2.0.1. This

library provides developers with the foundational tools to con-
struct charging stations (charge points) and central manage-
ment systems (CSMS). While it facilitates the development
of OCPP-compliant applications, developers must build upon
its framework to create complete solutions tailored to specific
use cases.

A.7 OCPP.Core
OCPP.Core [19] is an OCPP server written in .NET 8. It
provides a CSMS capable of managing charge points and
tokens (RFID-Token) through a Web UI. The system sup-
ports WebSocket-based communication and implements es-
sential OCPP functionalities, including charging point regis-
tration, message exchange, and basic authentication mecha-
nisms. It currently supports OCPP1.6J and 2.0(JSON/REST).
OCPP.Core is currently used with 6 KEBA P30c/x charge
points operating in load management and OCPP1.6J.

B Figures

Figure 6: CSMS DoS Attack (D1).

Figure 7: IPv6 link-layer NDP Spoofing.



Figure 8: I1 user authentication token theft.

Figure 9: Topology for E1, M1, M2, M3 and M4.

Figure 10: Topology for I1 and D1.

Figure 11: Topology with two CSs.

Figure 12: Topology with twenty CSs.

Figure 13: EmuOCPP’s graphical user interface with an ex-
ample of an emulated topology.

Figure 14: Public information on a production CS, as serial
number and manufacturer.
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