R1-2503725

3GPP TSG RAN WG1 Meeting #121 St. Julian's, Malta, May 19th – 23th, 2025

Agenda Item:	9.4.1
Source:	EURECOM
Title:	Discussion on Physical Channel Design and Modulation Aspects for Ambient-
	IoT
Document for:	Discussion and Decision

1. Introduction

The WI item scope has been agreed in [1] with the RAN1 scope defined below:

RAN1 Scope: RP-243326		
• PRDCH and PDRCH, which are the only physical channels in R2D and D2R, respectively.		
• R2D and D2R signal(s)		
• Multiplexing/multiple access in R2D is by only TDMA, and in D2R is by only TDMA and FDMA.		
 R2D supports only OOK-4 modulation, one solution for CP handling. D2R backscattering supports only OOK and BPSK modulations. 		
R2D transmission supports only the Manchester line code in TR 38.769		
• D2R transmission supports:		
 Either the Manchester line code in TR 38.769 or no line code (one to be down-selected); and 		
• A corresponding small frequency shift method according to the options in TR 38.769.		
 R2D does not support FEC. D2R supports only convolutional code with generator polynomials as per TS 36.212 (unless RAN1 decides to use other generator polynomials by RAN1#120bis). 		
• PRDCH and PDRCH both support transmission without CRC, and with CRC as per the generator polynomials in TS 38.212 (unless RAN1 decides to use other generator polynomials by RAN1#120bis) for 6-bit CRC and 16-bit CRC. Cases to use which length of CRC, or no CRC, to be decided in RAN1.		
• D2R supports physical layer repetition transmission. R2D does not support physical-layer repetition transmission.		

This contribution focuses on modulation aspects and waveform design for the R2D (downlink) channel/signal.

2. R2D Waveform

It has been agreed that "R2D supports only OOK-4 modulation" [1]. That is, the time domain OOK sequence is DFT precoded and mapped to the corresponding frequency resources.

In the previous meeting, the following agreement has been reached

Agreement:	RAN1#120-bis
From reader pe for OOK-4 modu	erspective, for the needed certain specification of DFT-s-OFDM waveform generation ulation:
• An exar o	 nple is provided below, which does not presume any specific reader implementation: Step 1: The time domain OOK signal is the M chips of one OFDM symbol The specification only needs to reflect that one OFDM symbol contains M chips
0	 Step 2: A chip is represented (e.g. upsampled) by L samples The specification only needs to reflect that one chip contains L samples as the input to N'-points DFT
0	 Step 3: An N'-points DFT is performed on the samples of one OFDM symbol to obtain the frequency domain signal. The specification only needs to reflect that there is an N'-points DFT operation where N' = M*I.
0	 Step 4: Map the frequency domain signal obtained by N'-points DFT to the X subcarriers of B_{tx,R2D} The specification only needs to reflect that N' >= X, where X is corresponding to the B_{tx,R2D}
0	 Step 5: An N-points IDFT is performed to obtain the time domain signal. The specification only needs to reflect that there is an N-points IDFT operation
• Note: o 250216	ther examples were provided in contributions to RAN1#120bis, e.g. in annex 2 of $\frac{R1}{0}$
• From th	ne example above, some normative specification related to at least step 1 and step 5
are nee	ded.
0	Note: RAN1 to consider whether an information annex could describe other steps
0	Note: some normative RAN1 specification text about waveform is assumed to be needed for RAN4 requirements definition
0	Note: the specification also needs to reflect the timing of the CP insertion operation.
Since it is commo	in understanding that the ON-sequence is not specified and up to reader

Since it is common understanding that the ON-sequence is not specified and up to reader implementation, we suggest to directly refer to the time-domain signal $r_m(l)$ with l = 0, 1, ..., L - 1, where L is the chip length and m = 0, 1, ..., M - 1 is the m^{th} chip in the OFDM symbol. This signal $r_m(l)$ can be different for every chip depending on the encoded bit sequence that it modulates. The input to the DFT is the concatenation of all $r_m(l)$.

3. R2D CP Handling

The following has been agreed:

Agreement: RAN1#120-bi
For the below agreement, further update on the <u>followings</u>
Agreement
For further down-selection among CP handing which retains subcarrier orthogonality, at least for PRDCH, at least Method Type 1 is supported
 For supported M values <= 12 RAN1 will not further pursue additional CP handling design For supported M values > 12 RAN1 will further down-select one from the followings Option 1: Candidate 3 of M2-1-1 (as per agreements from RAN1#120) Insert padding chips only at the end OOK chips of OFDM symbol The last 2 out of M OOK chips at the end of an OFDM symbol are always 'ON'

It is our preference to use Method Type 1 irrespectively of the M value. Potential enhancements can be deferred to a future release if required.

Proposal 1: Support only Method Type 1 for all M.

4. R2D Chip Duration

There has been a lot of discussion during the last meeting. However, we maintain our view that the chip duration requires a simple definition independent from any additional impairments. In our view, the chip duration *C* should be defined independently of the CP as $C = \frac{1}{SCS} \frac{1}{M}$. If a potential CP-handling method modifies *C* this can be captured as C' = f(C), i.e. some function f() that modifies the original chip duration *C*.

Proposal 2: Define chip duration as $C = \frac{1}{SCS} \frac{1}{M}$.

5. Conclusion

In this contribution, the following proposals and observations have been made:

Proposal 1: Support only Method Type 1 for all M.

Proposal 2: Define chip duration as C = (1/SCS)/M.

6. References

[1] RP-243326, "New Work Item: Solutions for Ambient IoT (Internet of Things) in NR", RAN1 Vice-chair (Huawei), RAN#106, Dec 2024

[2] TR 38.769, "Study on solutions for ambient IoT (Internet of Things)", V19.0.0, Dec 2024.