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ABSTRACT

Linear feature space transformations are often used for
speaker or environment adaptation. Usually, numerical meth-
ods are sought to obtain solutions.

In this paper, we derive a closed-form solution to ML esti-
mation of full feature transformations. Closed-form solutions
are desirable because the problem is quadratic and thus blind
numerical analysis may be lured into the recess of numerically
valid, albeit poor, attractors. We decompose the transforma-
tion into upper and lower triangular matrices, which are esti-
mated alternatively using the EM algorithm. Furthermore, we
extend the theory to Bayesian adaptation.

On the Switchboard task, we obtain 1.6% WER improve-
ment by combining the method with MLLR, or 4% absolute
using adaptation.

1. INTRODUCTION

Linear feature space transformations have been subject to in-
tense investigation recently. They provide a conceptually ap-
propriate way of normalizing environment or speaker mis-
match. They are naturally integrated into the SAT paradigm
towards offering compact models for speech recognition.

The analytical mathematics are somewhat related to semi-
tied covariances [1] and MLLT [2]. Both acknowledge the
absence of a closed-form solution in the general case and pro-
ceed to define numerical expedient for that ailment. Numerical
methods are sensitive to conditioning and extra care is admon-
ished to ensure convergence. Additionally, more insight may
be gained from analytic solutions.

In this paper, we discover a non-trivial special case of linear
transformations that admits a closed-form solution: triangu-
lar matrices. We generalize to a full matrix by alternating the
estimation of upper and lower triangular matrix, in a pattern
which mimics the LU factorization.

Lastly, we define the MAP estimator which serves as a foun-
dation for smoothing.

2. FEATURE-SPACE TRANSFORMATIONS

2.1. Linear transformation of observations

LetX be a random variable with pdfpX(�). A corollary of the
plug-in rule for pdfs yields:

Y = AX + b) pY (y) = jAjpX(y): (1)

Note that the biasb does not appear in the jacobian. Therefore,
model-space offset is equivalent to (opposite sign) feature-
space offset. This is a well-known area and we will discard
the bias in most derivations for simplicity. The plug-in rule
may be stated as: plug in the transformed observation in the
pdf and divide by the JacobianjAj�1.

2.2. In the EM algorithm

The mathematics of Hidden Markov Models (HMMs) are
well-known. Using the plug-in rule, we re-compute the ex-
pected log-likelihoodQ. TheQ function becomes
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We know that stationary points of the gradient correspond to a
maximum or minimum inQ. This seemingly simple problem
is a multidimensional quadratic equation and has no closed-
form solution in general. Gales [3] assumes rows to be almost
independent and optimizes row by row. Gopinath [2] points
out that half of the function is quadratic and therefore suitable
for conjugate gradient descent. Digilakis [4] advocates itera-
tive numerical methods but cites none in particular.

2.3. Diagonal matrix

When the matrixA is diagonal, then there are two solutions
per dimension. We also assume precision matricesR to be di-
agonal. Letadd be thedth diagonal element ofA. The expres-
sion for the gradient is quadratic and may be found in Gales or



Digilakis. However, neither of them seem to give an explicit
expression nor bear a preference for either root. We choose:
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with the appropriate definitions of� and�:

� =
X
t;m


m(t)rdo
2
d;

� = ��1
X
t;m


m(t)rdod�d;

� = ��1
X
t;m


m(t):

The Hessian (second derivative) in this case indicates which
of the two solutions corresponds to a stable point by indicating
more negative values:
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Both roots of the characteristic equation correspond to maxima
in the likelihood. However, our choice guarantees a smaller
absolute value of the second derivative, and also a value closer
to unity. Without this additional hint, numerical methods
would converge arbitrarily to one of2N stationary points. The
closed-form solution affords more insight.

2.4. Upper-triangular matrix and its closed-form solution

Since all rows of the matrix are independent, thanks to the di-
agonality of covariances, we may set a dimensiond and solve
each dimension independently. Letak; k = d; d + 1; :::N be
the non-zero elements of thed th row ofA. Let b be the bias of
the featured. Define

a� = [ad+1; ad+2; :::; aN ; b]
T ; (5)

o� = [od+1; od+2; :::; oN ; 1]
T : (6)

We seek to find[ad; a�]. Since the determinant only depends
onad, it is treated differently. First, we solve a(N�d)�(N�
d) linear subsystem fora� using theN�d last elements of the
gradient. Then, we use the special equation forad to yield the
quadratic form of the previous section.

The objective function for the dimensiond is
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Differentiating with respect toak, k = d+ 1; :::; N andb, we
get a linear system
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It is solved by:

a� = M�1 (ady + z) ; (9)

with the following
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Now we need to findad and substitute back.
The solution forad is found using the last derivative, which

is merely a generalization of the diagonal case:
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We can use the linear dependency specified by eq.(9), and fi-
nally state thatad is again the solution of a quadratic expres-
sion
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When covariances are not diagonal, we must first solve the
quadratic equation foraNN . Then, knowledge of this coeffi-
cient will help findaN�1;N�1 andaN�1;N . We proceed thus
upwards until the top row, in the same fashion as the back sub-
stitution step in a Gauss-Jordan matrix inversion.

2.5. The LU decomposition

Looking at eq.(2), we see that the crux of the problem resides
in the presence of a log determinant, which implies in turn the
presence of the inverse matrix. A common way of dealing with
inverse matrices involves the LU decomposition of a matrix,
that is to say, our matrixA is written as

A = LU (11)

with U an upper-triangular matrix, andL a unitary, lower-
triangular matrix. The diagonal elements ofL are all equal
to 1.



We embed this decomposition by alternating the maximiza-
tion step in the EM algorithm:

o0 = Ao = L(Uo): (12)

The upper-triangular method was derived above, and the
lower-triangular method is a special case of MLLR.

3. BAYESIAN EXTENSION

The Bayesian framework is useful for parameter smoothing.
For instance, while using regression trees to define multiple
classes, the leaf transforms are derived by smoothing with the
parent nodes, as shown on Figure 1.

A010 A011

A01

A00

A0

Fig. 1. Using a regression tree: transformationsA00 andA01

are interpolated versions between ML andA0.

The MAP framework is usually greatly simplified by select-
ing the prior distributionp0(A) among the family of conjugate
priors forA.

MAP estimators and prior distributions were defined for all
but the diagonal term. The conjugate prior for the bias is a
Normal law. The conjugate prior for non-diagonal elements is
elliptic. The probability of diagonal terms has a transcendent
shape. The prior family does not appear frequently enough in
nature to justify a name. We proceed to define it.

3.1. The Maxwell-Rayleigh-Normal distribution

A subset of the family of conjugate priors is a mixture of (ex-
tended) Maxwell, Rayleigh, and Gaussian distribution. We
christen it hence theMaxwell-Rayleigh-Normal (MRN) distri-
bution.

Maxwell’s distribution models speeds of molecules in ther-
mal equilibrium. It is defined forx � 0; a > 0:

pM (xja) =
r

2
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Furthermore, the Rayleigh distribution models the attenuation
in fading channels and is

pR(xjs) =
x

2s2
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1

2
x2=s2 : (14)

Lastly, the Normal distribution is an old acquaintance of ours

pG(xjs) =
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x2=s2 : (15)
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Fig. 2. The MRN law for different values of�

We define the MRN distribution to be

pMRN (xj�) = ��1x2e�(x��)2 : (16)

The regularization constant� is chosen such thatZ
dpMRN = 1; (17)

and we include it here for the sake of completeness
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and the error function erf(x) =
R x
0
dye�y

2

. The distribution is
shown on Figure 2. The value of the hyper-parameter� with
respect to the mean is shown on Figure 3.

mean of the distribution
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Fig. 3. The mean of MRN w.r.t. �. The parameter that corre-
sponds to identity is � = �1:8.

We proceed by defining the raised MRN law constitutes a
family of conjugate priors:

pRMRN (xj�; �) = ��1
R (�; �)x2� e��(x��)

2

: (18)

Unfortunately, unless � is a multiple of 1
2

, moments have no
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Fig. 4. We select � , and choose � s.t. the mean is one.

closed-form expression. Nevertheless, since we are only inter-
ested in values of �; � such thatZ

dx

�
xpRMRN (x)

�
= 1; (19)

it is easier to use numerical integration and tabulate �(�). We
would then obtain the curve shown on Figure 4. The parame-
ter � is interpreted as the weight given to prior information.

4. EXPERIMENTS

4.1. Conditions

To validate our algorithm, we used the Switchboard conver-
sational telephone speech database. We report results on the
first evaluation test set of 2001 [5], which contains 20 conver-
sations from the Switchboard-I database. The acoustic fron-
tend uses 27 PLP coefficients (8 pole model plus energy, and
their first and second derivatives), which were normalized us-
ing side-based cepstral mean subtraction (CMS) and variance
normalization. We train a total of 256k Gaussians with diago-
nal covariances, pooled in 3600 mixtures using decision trees.

The language model (LM) for this task is a trigram model
containing compound words and frequent abbreviations [6].
It was kindly provided to us by Andreas Stolcke of SRI. It
contains 34k words, 5M bigrams, and 12M trigrams.

Our recognizer, called EWAVES [7], is a lexical-tree
based, gender-independent, word-internal context-dependent,
trigram Viterbi decoder with bigram LM lookahead. For adap-
tation, we use the transcription of the first pass. The second
pass is identical to the first pass but runs on adapted features
or with adapted models.

4.2. Results

Table 1 shows the results. The feature space transformation, or
MLLU for (Maximum-likelihood LU transformation), yields
an improvement comparable with MLLR when used in isola-
tion.

There is a .2% WER improvement if we only use block-
diagonal matrices. We have observed that MLLR behaves best
with 7 regression classes (1 for silence, 4 for vowels, and 2 for
consonants). In this case as well, constraining the transforma-
tion matrices to be block-diagonal, we get an improvement.

When we use MLLU as a feature normalization, followed
by MLLR model adaptation, we obtain a 1.6% WER improve-
ment over the baseline MLLR adapted models.

WER
SI 34.6%
MLLR 1 global class 32.8%
MLLU 1 global class 32.8%
MLLU block-diag 32.6%
MLLR 7 classes + block 32.2%
MLLU + MLLR(7) 30.6%

Table 1. Results

5. DISCUSSION AND FUTURE WORK

In this paper, we have exposed a closed-form solution for the
case of linear feature space triangular transformations. We
extended the algorithm in the EM algorithm to yield the LU
factorization of a full linear transformation. Furthermore, the
Bayesian framework was also explored.

On Switchboard, our new algorithm, MLLU, yields a sig-
nificant improvement over adapted models. Due to time
constraints, we were not able to investigate multiple-class,
Bayesian LU feature decomposition.
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