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Executive summary
The evolution of network technologies including the rise of 5G, 6G, and the Internet Of Things (IoT) is fun-
damentally transforming the landscape of digital connectivity. These new-generation networks introduce
unprecedented levels of complexity, distribution, and dynamism, making the detection of anomalies a critical
challenge for ensuring security, reliability, and performance.

This report provides a state-of-the-art survey of anomaly detection techniques tailored for future net-
works. It focuses on two main technical approaches: Artificial Intelligence (AI)-based Intrusion Detection
Systems (IDSs) and Runtime Verification (RV), a formal method for monitoring system behavior. In addition
to exploring these methodologies, the report presents a real-world application: anomaly detection in smart
home networks, with a focus on the Matter protocol.

Key findings of the report highlight the need for adaptive traffic representation, the combination of AI
and formal methods, and the need to develop efficient detection technologies for real-world applications like
smart homes. The report concludes with recommendations for future research directions to build scalable,
efficient, and robust anomaly detection systems for next-generation networks.
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1 Introduction

1.1 Context and Objectives
The rapid evolution of network technologies and the increasing complexity of network infrastructures have
brought forth new challenges in ensuring the security and reliability of future networks, including 5G/6G and
IoT ones. As we move towards the widespread adoption of future networks, the need for effective anomaly
detection mechanisms becomes critical. Anomaly detection is crucial in identifying and mitigating potential
security threats, network failures, and performance degradation issues.

This state-of-the-art report aims to provide a comprehensive overview of the latest advancements and
research trends in anomaly detection techniques for future networks. By examining the current landscape
of anomaly detection approaches, we seek to identify the most promising solutions and highlight the key
challenges that must be addressed to ensure the security and resilience of next-generation networks.

The objectives of this report are threefold: i) to survey and analyze the existing anomaly detection tech-
niques based on AI and formal methods ii) to identify the strengths, limitations, and potential synergies among
these approaches; and iii) to outline future research directions and opportunities in anomaly detection for fu-
ture networks, like smart home ones.

1.2 Sections Overview
This state-of-the-art report is organized into three sections, each focusing on a specific aspect of anomaly
detection in future networks.

Section 2 explores AI-based anomaly detection in networks. It introduces key machine learning ap-
proaches used for IDSs, outlines the challenges of next-generation networks, and presents recent solutions
such as distributed IDS and data reduction. The section also highlights the limitations of current methods
and proposes adaptive traffic representation as a promising direction for efficient and scalable IDS.

Section 3 delves into anomaly detection using runtime verification. It provides an introduction to runtime
verification of distributed systems, and its application in anomaly detection. An overview of existing runtime
verification approaches is given: assumptions on the systems, formalizations of specifications and different
monitoring architectures are surveyed. The section then discusses the challenges and perspectives for using
runtime verification for anomaly detection in future networks.

Section 4 focuses on smart home security and the Matter protocol. It begins with an introduction to
smart home security and an overview of proprietary systems. The section then presents a case study of the
Matter protocol, examining its network architecture, security and privacy features, and session establishment
mechanisms. The state of the art in smart home security and detection technologies is also discussed.

Finally, the report summarizes the main findings and insights from the state-of-the-art survey, highlighting
the key research gaps and future research opportunities in anomaly detection for future networks.

Dissemination: Public 6
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2 AI-Based Anomaly Detection

2.1 Introduction
AI has emerged as a powerful tool for anomaly detection in networks, leveraging machine learning (ML)
and deep learning (DL) algorithms to identify patterns, anomalies, and potential threats in network traffic.
AI-based approaches offer several advantages over traditional methods, such as learning and adapting to
changing network environments automatically, detecting unknown anomalies, and handling large-scale, high-
dimensional data. However, the emergence of new networks, such as 5G and 6G, adds a layer of complexity
to the intrusion detection problem in networks. Current solutions are no longer suitable and must be improved
to meet the new challenges.

In the following sections, we 1) present the most commonly used AI solutions for intrusion detection in
the literature, 2) describe the new challenges posed by next-generation networks, 3) focus on the problem
of very high bandwidth, and explore state-of-the-art solutions that address this issue. 4) We conclude by
discussing the need to develop new approaches for describing network traffic.

2.2 State-of-the-art ML Algorithms for Anomaly Detection
In the literature, the most commonly used AI algorithms for intrusion detection are supervised approaches
[99], which rely on labeled data to train the model. These models learn to classify data points based on
the provided labels, making them particularly effective in detecting known anomalies. However, despite their
excellent performance, supervised methods are often impractical for real-world scenarios. Their dependence
on large amounts of labeled data and the complexity of implementation in dynamic environments make them
less realistic for widespread adoption. This limitation partly explains why AI-based IDS solutions remain
scarce and underdeveloped in industrial settings [102].

In contrast, unsupervised methods do not require labeled data. Instead, they focus on learning the under-
lying structure of the data and identifying anomalies as deviations from the established patterns. While un-
supervised approaches generally yield slightly lower performance than supervised methods, they are more
adaptable to real-world scenarios. For instance, a combination of Auto-Encoders and One-class Support
Vector Machine (SVM), as demonstrated in the work of [24], have been successfully applied to detect anoma-
lies in network traffic. Given their practical advantages, further exploration of semi-supervised [2]—which
rely on a small amount of labeled data combined with a large volume of unlabeled data— and unsupervised
methods is highly recommended [93].

AI methods used in intrusion detection can also be categorized into shallow and deep approaches. Shal-
low methods, such as decision trees (DTs) or SVMs, rely on handcrafted features and represent classical
ML techniques. Deep methods, including deep neural networks and autoencoders, consist of multiple layers
that can automatically learn features from raw data.

Current trends highlight a growing interest in deep methods [5] due to their superior performance and
ability to uncover complex patterns in data. However, shallow methods remain valuable due to their simplicity,
maturity, and interpretability. For example, decision trees and random forests are easier to parameterize and
provide transparent explanations for their decisions, as illustrated in the work of [75], which employs decision
tree model for intrusion detection. Deep methods, while initially perceived as "black boxes," are increasingly
benefiting from advancements in explainability techniques [87]. These developments make deep learning
solutions highly effective but also interpretable and understandable, bridging the gap between performance
and trustworthiness [3]. Both shallow and deep methods have unique advantages, and their complementary
strengths continue to drive innovation in AI-based intrusion detection.

2.3 Challenges for Designing IDS for 5G and Beyond
The advent of 5G and future networks introduces new challenges and requirements for designing effective
IDS. While AI-based methods for classification, including intrusion detection, already face significant chal-
lenges—such as data imbalance, high false positive rates, and the need for large labeled datasets— these
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difficulties are further amplified by the emergence of next-generation networks. These advanced networks
bring unique complexities that demand IDS solutions that address novel challenges including the next four
ones [31]:

C1: Increasing volumes of data: The massive amount of data generated by future networks poses signif-
icant challenges for traditional IDS. Processing and analyzing such vast amounts of traffic in real-time
is difficult, often resulting in delayed detections and increased vulnerability to security breaches.

C2: High transmission rates: The ultra-high-speed nature of these networks necessitates IDS that can
operate at exceptional speeds to match the data flow. This requirement amplifies the difficulty of achiev-
ing reliable real-time intrusion detection.

C3: Data structure heterogeneity: The diverse ecosystem of devices, protocols, and services in next-
generation networks generates data in various formats and structures. This heterogeneity complicates
feature extraction and anomaly detection, making it harder to achieve accurate results.

C4: High mobility: The mobility of devices within these networks introduces further complexity, as IDS
must continuously adapt to dynamic network topologies and rapidly evolving device behaviors.

This project focuses on C1 and C2 as they are the most critical. To address them, we provide a detailed
state-of-the-art review of intrusion detection methods that are designed to tackle these issues effectively.

2.4 State-of-the-Art of AI-Based IDS for Future Networks
The rapid evolution of future networks, such as 5G and beyond, has spurred significant advancements in
AI-based IDS. These systems aim to address the challenges posed by high bandwidth, ultra-low latency,
and diverse traffic patterns through innovative techniques, including essentially i) distributed processing,
and ii) data reduction methods.

Distributed processing: By distributing IDS functionality across multiple nodes, this approach enables
parallel traffic analysis, reducing latency and improving scalability. For instance, Viegas et al. [111] intro-
duce BigFlow, a distributed intrusion detection system (IDS) designed for high-speed networks. BigFlow
leverages stream processing frameworks to perform real-time feature extraction and classification across
multiple nodes, ensuring scalability and maintaining high detection accuracy while processing traffic rates up
to 10 Gbps. Similarly, Qadeer et al. [92] propose an efficient multicore IDS architecture that distributes packet
capturing and processing across multiple cores. Their design incorporates PF_ring, an efficient packet cap-
turing library, and achieves load balancing using IP hash. By employing 16 cores, their system can process
network traffic at rates exceeding 1 Gbps. These distributed architectures significantly reduce computational
overhead, minimize packet loss, and enable real-time threat detection in high-speed network environments.

Data reduction techniques: Advanced data reduction methods, such as feature selection and dimen-
sionality reduction, are also employed to reduce the volume of data that needs to be processed by the IDS.
These methods aim to identify the most relevant features for anomaly detection, discarding redundant or
irrelevant information. By reducing the data dimensionality, the IDS can process data more efficiently, en-
abling real-time detection in high-speed networks. This area of research has been extensively explored in
the literature. For example, Nabi and Zhou [86] compare the impact of Principal Component Analysis (PCA)
and Random Projection (RP) on the classification accuracy of IA-based IDSs. Their results demonstrate
that Random Projection outperforms PCA for most classifiers while requiring significantly less computation
time. In another study, the authors of [114] propose using a deep learning approach, specifically the Stacked
Sparse Autoencoder (SSAE), for feature extraction in intrusion detection systems. The authors introduce the
original classification features into the SSAE to automatically learn high-level, low-dimensional sparse fea-
ture representations of intrusive behavior information. These learned features are then used to train various
basic classifiers.

Another promising direction for addressing the challenges of real-time detection (C1) and large-scale
data processing (C2) in AI-based IDS is the way network traffic is represented. The representation of
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network data directly impacts the performance of IDS, particularly in terms of detection speed and scalability.
A well-chosen representation can significantly reduce processing overhead while preserving the quality of
information needed for accurate classification.

Two main approaches to traffic representation are commonly used:

• Packet-based: This method analyzes individual network packets, capturing fine-grained information
and enabling precise anomaly detection. However, due to the high volume and granularity of data,
packet-based analysis is computationally intensive and may struggle to scale in high-speed environ-
ments such as 5G networks.

• Flow-based: This method aggregates packets into flows, offering a summarized view of traffic that
reduces the computational load. While more scalable and faster to process, flow-based approaches
may miss low-level anomalies that are only detectable at the packet level.

To balance the trade-offs between granularity and efficiency, recent research has proposed hybrid traffic
representation strategies that combine the strengths of both approaches. For instance, Kim and Pak [66]
propose a two-stage IDS architecture: initial real-time detection is performed at the flow level using a
lightweight, fast decision algorithm. When necessary, the system then triggers a packet-level analysis
for suspicious flows, applying a more thorough but slower method. This design prioritizes speed without
compromising accuracy, reducing memory usage by up to 30% compared to traditional approaches.

Similarly, Seo and Pak [103] introduce a two-level classification scheme in their hybrid intrusion prevention
system. At Level 1, a high-speed classifier handles traffic with fast decisions based on flow-level features. If
the confidence level is low, the traffic is escalated to Level 2, where a more precise, packet-based classifier
ensures detailed inspection. This tiered approach allows the system to maintain real-time responsiveness
while significantly improving detection reliability.

2.5 Adaptive Traffic Representation for efficient IDS in Future Networks
The representation of network traffic data remains a fundamental challenge for intrusion detection in future
networks. Packet-based and flow-based approaches have strengths and limitations, and hybrid methods
offer a promising pathway. However, most current hybrid approaches follow fixed decision rules that do not
adapt to changing network conditions. This lack of flexibility reduces their effectiveness in dynamic and
high-speed environments, where the optimal level of data granularity may vary. For instance, packet-level
inspection may be suitable during low traffic periods due to its precision, while flow-level aggregation is more
appropriate under heavy loads for better scalability.

A promising avenue for future work involves the development of adaptive traffic representation strate-
gies. These would dynamically select the appropriate level of detail—packet or flow—based on real-time
traffic characteristics, system load, and detection requirements. For example, an adaptive IDS might use de-
tailed packet analysis when anomalies are suspected, while relying on flow-level summaries during normal
conditions to reduce computational cost.

Key challenges include designing algorithms capable of dynamically switching between packet-level and
flow-level representations, ensuring that adaptive techniques maintain high detection accuracy without intro-
ducing excessive computational overhead, and integrating these methods into existing AI-based IDS frame-
works for seamless operation in high-speed networks. Addressing these challenges is essential to meet the
scalability and efficiency requirements of next-generation IDS and ensure robust security for future networks.
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Figure 1: Example of a runtime verification set-up for a distributed system with four components at three
locations.

3 Anomaly Detection using Runtime Verification
Future networks, such as 5G networks, are distributed systems that are often large and open, making them
susceptible to attacks and failures. Our goal is to define new approaches for detecting attacks at operation
time. Section 2 explored solutions based on AI to identify intrusions. In this section, we explore another
family of approaches, called runtime verification, which is based on formal methods and that we will also
use for intrusion detection. Runtime verification consists of confronting system executions to a formal refer-
ence, i.e. a specification, to identify specification violations in these executions. We intend to define system
specifications so that their violations can be considered hints of intrusion occurrences.

3.1 Introduction to Runtime Verification
Runtime verification focuses on analyzing system executions at runtime. More precisely, executions are
checked against a specification, which formalizes either a desired property of the system or a model of the
expected behavior of the system. This process occurs in two steps which can be intertwined: (1) System
executions are observed and pieces of information, relevant to the analysis, are recorded into sequences
of events called traces; (2) One or several components, called monitors, are in charge of checking that the
traces comply with the specification. If they do not, the monitor sends an error message.

In the context of this project, we pay attention to distributed systems, that is, systems composed of several
sub-systems, or components, deployed on different locations and which collaborate by means of message-
passing. The reason of this focus is that we are interested in adapting runtime verification to detect potential
network intrusions, whose effects are observable as communication protocol violations. In this context, we
are interested in techniques where: (1) observations can occur simultaneously at different locations and,
(2) the monitoring phase can confront these different observations to identify protocol violations (possibly
caused by malicious actions).

Figure 1 illustrates a runtime verification scenario where the system under observation is made up of four
components C1, C2, C3 and C4. These are distributed over three locations, with components C1 and C2 at
the same location. Observation interfaces O1, O2, O3 are placed at each location. They record the traces at
their location and send these to a monitor for analysis. The monitor checks the received traces against the
specification and answers pass or fail.

3.2 State-of-the-Art
Runtime verification has its roots in different research fields of formal methods such as model-checking,
model-based testing, and process algebras. We now provide an overview of the literature on runtime ver-
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ification, with a focus on the aspects most relevant to our objectives. Since we target systems leveraging
future networks, we are specifically interested in runtime verification techniques for distributed systems. Ad-
ditionally, given that our primary goal is to detect intrusions, we will place particular emphasis on techniques
that enable the analysis of communication flows.

We start by reviewing the different assumptions made about the distributed systems (in our case, the
networks) we work with. We then examine the different formalizations for writing specifications (in our case
the expected network behaviour), and finally explore the existing monitoring solutions.

3.2.1 Characteristics of Distributed Systems
Distributed systems are assumed to have some form of message-passing between components. That is,
components can send messages which can be received by some or all other components. More or less
information may be known about the structure of the systems under observation. In some cases, the only
information are the events that can be observed at runtime (for example using a Wireshark to capture packets
at certain locations of the system). Sometimes there is information on the communication architectures
between components; for example, whether they are lossy, i.e. whether messages may be lost. In [53, 84],
the authors assume lossless FIFO channels, which implies that the system components receive messages
in the order in which they are sent, and no messages are lost. Systems components may be known in more
detail: in some papers they are defined using processes, as in the field of process algebras (e.g. in [23,25]).
These are small program descriptions with internal events, variable assignations and message passing to
other processes.

A global clock may be assumed, as in [33, 44, 46]. This allows the events of the different components
to be totally ordered into a global trace. A global clock may be reasonable in some settings, e.g. when the
components execute on several cores of the same CPU, and it allows for many precise runtime verification
techniques. However, for large distributed systems with components in different locations, the assumption
of a global clock is often not realistic. One must then make use of the local clocks which order events on
co-located components.

Several solutions for dealing with separate clocks appear in the literature. Vector clocks [50, 71, 82] are
used to synchronize local clocks: the distributed components each keep a vector with their knowledge of
other components’ local clocks. Every time a component sends a message, it appends its vector, and every
time a component receives a message, it updates its vector with the information received in the message.
This allows the total ordering of all system events, but comes with a high communication overhead. It is
used for example in [84, 100]. Another approach, seen in papers [52, 53], is to assume that the distributed
system has a clock-synchronization algorithm which bounds the skew among the local clocks of the different
components; this setting is called partial synchrony. One may also work directly with multi-traces, that is the
collection of local traces, without trying to order them, and adapt the runtime verification approach accordingly
(e.g. [76]).

3.2.2 Specifications
We want to check a real system, via the (multi-)traces we observe, against a model of the system that
specifies what should happen. For example, consider a network in which the network nodes interact via a
message-passing protocol. This protocol constitutes a model of the expected behavior for communication in
the network. The formalization of an expected behaviour is called a specification.

Several formal languages for writing specifications exist. A popular language for writing specifications is
linear temporal logic (LTL) [91]. LTL is evaluated over infinite traces: given an LTL formula, infinite traces
either satisfy the formula or do not. However, in runtime verification, finite traces are observed and evalu-
ated. In general the system under observation continues running, therefore these finite traces may be seen
as prefixes of infinite traces. To accommodate this, a three-valued modification to the semantics of LTL was
introduced, called LTL3 [21]. Given a finite trace and a formula, the trace evaluates to ⊤ if all infinite contin-
uations of the trace satisfy the formula, ⊥ if none of them do, and ? otherwise; ⊤,⊥, ? are called verdicts.
Runtime verification papers using LTL or LTL3 with verdicts include [33,44,53,84,97]. Verdicts can also be
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Figure 2: A specification formalized as an interaction.

used for specifications that are not LTL but regular languages, as in [46]. Other variations on LTL appear in
runtime verification papers, like PT-DTL [101] which is used for specifications across different locations of a
distributed system, and which talk about other components as well as about past events.

Another line of work uses the multi-party session types (MPST) framework [59] to write and enforce spec-
ifications for distributed systems. Paper [25] writes specifications as global types, which are then projected
into local types checked by local monitors attached to a single component.

Interaction models are a class of specification formalisms which are designed to be easy to write and
understand from an engineering perspective. They describe the communication flow between different com-
ponents of a distributed system. They include UML [26], message sequence charts (MSC) [83] and inter-
actions [78]. UML is extensively used as a modeling language in applications, but its semantics are not
defined in a way suitable for formal verification methods. [9, 69] use MSCs as specifications. Interactions
are used for runtime verification in a recent line of work [76, 77, 79]. Other specification formalisms used in
runtime verification papers are Petri nets, a classic model for concurrent systems used here to model desired
behaviour [64], and trace expressions [11–13].

Figure 2 shows a specification formalized as an interaction. This interaction describes a toy MQTT-
style publish-subscribe protocol between a phone, a base station and a server for Google Maps. These
three components are represented by three lifelines l1, l2, l3 that interact via message-passing. The modeled
behavior is a session that starts with message begin sent from l1 to l2, then a loop with two alternative
behaviors, and finally a message end from l1 to l2.

3.2.3 Monitoring Solutions
Runtime verification may be offline or online. In offline runtime verification, the system’s execution traces
are logged at runtime and checked against the specification at a later time. This implies that full traces are
recorded, and that the complexity of checking the traces will not interfere with the system. Some examples
of papers that analyze traces offline are [76,88,97].

In online runtime verification, execution traces are checked while the system is running. The runtime
verification machinery (observation, recording, monitoring) must be considered as part of the system, which
entails considerations absent from offline runtime verification. For instance, one must take into account the
difference between the speed at which traces are recorded and the speed of analysis by the monitor. Traces
are recorded into a structure, for example a buffer, which is necessarily finite. Either the monitoring speed
must be faster than the recording speed, or the monitor must be designed to deal with loss of data.

Different monitoring architectures are possible for online runtime verification. As shown in Figure 1, there
may be one centralized monitor which receives the traces to be checked against the specification (see e.g.
[20, 21, 100]). Alternately, there may be local monitors that perform checks locally. This strategy is called
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Figure 3: Distributed monitoring architectures.

decentralized monitoring in the presence of a global clock, and distributed monitoring in the absence of a
global clock (though the terms are sometimes used interchangeably).

In orchestrated monitoring, the local monitors communicate with a central monitor. In choreographed
monitoring there is no central actor and the monitors exchange messages with each other. Figure 3a shows
an orchestrated monitoring scenario, while Figure 3b shows a choreographed monitoring scenario. Monitors
may communicate with each other through their own channels [46], or they may “piggyback" the existing
message framework: when process P sends a message to another process, the monitor in the same location
as process P adds information into the message being sent, for example a vector clock or the result of its
local computation (e.g. [84,101]).

When a trace does not satisfy the specification, the monitors may send an error message or interrupt
the computation. The monitors may also enforce the correct behaviour at runtime by not letting the system
perform bad actions, as is the case in [25]. A classification of existing runtime verification tools (up until 2021)
can be found in [47].

3.3 Challenges and Perspectives
5G networks and future networks are an ideal application domain for runtime verification techniques, which
are developed for distributed systems. We want to be able to detect as many deviations as possible from
the expected flow of communication. We propose to write our specifications as interactions, as these are
well suited for describing communication protocols. We will develop online runtime verification techniques,
since these sorts of networks have ongoing communication flows and we want to raise errors as soon as
possible. To deal with the speed of communication, we propose to look at distributed monitoring architectures:
monitors placed at nodes of the network can perform efficient local checks, and additional communication
with other monitors allows the detection of global errors. Additional challenges that we will keep in mind
when designing our solutions are (1) the potential loss of data due to the speed of communication versus
the speed of verification, and (2) the mobility of devices in dynamic networks, implying the need to design
solutions in which sub-components may join or leave the system.
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4 Smart Home Future Network

4.1 Introduction
A smart home network, also known as home automation or domotic network, monitors and controls a home
using connected smart devices like smartphones, hubs, cameras, water sensors, and doorbells. It typically
includes point-to-point links and an Internet connection. It employs various communication technologies,
such as Wi-Fi, Bluetooth Low Energy, and Thread, as well as cloud backends from vendors like Amazon,
Google, and Apple.

As shown in Figure 4, a smart home network comprises local devices, one or more gateways, and a
cloud backend. The local device communicates in point-to-point or mesh (multi-hop) networks. They can
use wireless access points or wired networks. The gateways translate among different protocols and im-
prove interoperability. For example, a Thread border router connects devices in a low-power mesh network
with those in the local area network. Different cloud backends must communicate to enable seamless de-
vice control. For instance, a Google smart controller sends control commands to the Google cloud, which
communicates to the smart-controlled device cloud and relays the command.

Early development of smart home networks and related pros and cons can be traced back to the beginning
of the 2000s. MIT’s House_n [62] was centered around context-aware sensing and presentation of informa-
tion. The adaptive home presented a house that programs itself (other than a programmable house) [85].
eHome [68] presented a case study focusing on the usability of three smart home user interfaces (a PC,
a smartphone, and a media terminal). In [113], the authors conducted a case study of home automation
usage for religious purposes on 20 American Orthodox Jewish families. The Georgia Tech aware home [65]
was a multi-disciplinary attempt at designing a smart home emphasizing families and aging people. These
early attempts did not find broad adoption mainly because of four reasons: 1) high monetary and time cost
of ownership, inflexible devices, poor manageability, and difficulty in achieving security [28,95]. We focus on
the last challenge, i.e., smart home security, and also smart home privacy.

Smart home devices’ abundance, heterogeneity, and connectivity result in a massive attack surface with
critical associated security and privacy risks. For example, an attacker can try to remotely tamper with a
smart home device exposed to the internet or reachable via the cloud. They can also try to connect to the
local area network and conduct passive and active attacks locally. Finally, the attacker can target the system
with proximity-based attacks using wireless technologies or physical attacks. Smart home networks have
historically been proprietary, but they are moving to open architecture. Next, we describe both approaches
and the related state of the art.

4.2 Propietary Systems
There are four major smart home players: Google, Amazon, Samsung, and Apple. Each provides a pro-
prietary and historically difficult-to-interoperate smart home system. The situation has improved with the
introduction of Matter, a standard for interoperable smart home networks, which is discussed in Section 4.3.
Next, we describe the four major smart home players and survey the state of the art of proprietary smart
home security and privacy.

Google Home. Google’s smart home ecosystem is centered around the Nest hubs and smart speak-
ers [55]. These devices can manage and control smart home devices using the Google Assistant voice-
enabled system. Google also offers a Home application for Android and iOS that collaborates with the
Google Nest devices—a smart home device compatible with Google Home, as a dedicated logo.

Amazon Alexa. Amazon’s smart home ecosystem relies on the Echo and Tap smart speakers. These de-
vices act as hubs, similar to Google’s, and are compatible with Alexa, Amazon’s virtual assistant. Many smart
home devices are compatible with Amazon’s smart home, which are sold in the Amazon marketplace [10].

Samsung SmartThings. Samsung SmartThings [98] has three main components: a hub, a backend,
and a SmartThings mobile application for Android or iOS. The hub supports ZWave, ZigBee, and Wi-Fi and
can interact with the devices in proximity. The smartphone companion app can communicate with the hub,
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Figure 4: Smart home network architecture comprises local devices, gateways, and cloud backends.

manage the smart devices, and install SmartApps on the devices from a dedicated store. The hub and
SmarThings communicate using a proprietary application layer protocol over TLS with the backend.

Apple Home. Apple Home [16] is a smart home platform developed by Apple. It is based on the HomeKit
framework and related APIs [17]. It is compatible with Siri, Apple’s voice assistant, and the iOS, macOS,
and iPadOS Apple OSes. It enables developers of mobile applications and smart home devices to take
advantage of Apple’s protocols (HAP) and services.

4.2.1 Smart Home State-of-the-Art
Before the Matter standard, discussed in Section 4.3, several works analyzed the security and privacy of
proprietary and competing smart home systems. Dennis [41] presented a framework for evaluating secu-
rity risks in the modern home, including new attacks and known ones with novel consequences. Ur [107]
presented a study on smart home access control focusing on Philips Hue lighting and Kwikset door lock,
demonstrating the challenges of shared control with proprietary systems.

Fernandes in [48] discussed a security evaluation of Samsung SmartThings. They analyzed 499 Smar-
tApps and 132 device handlers and uncovered two design flaws that led to overpermissioning attacks, in-
cluding leaking a door lock. Then, Fernandes proposed FlowFence [49], a system based on a finer-grained
permission model, as a defense against the prior attack. In [57], the authors concluded from a case study
involving 425 participants that a smart home access control policy should be based on device capabilities
other than devices.

Wang in [112] discussed ProvThings, a tool to instrument IoT home automation apps to add centralized
audit logging capabilities, and tested its efficacy against 26 IoT attacks on the SmartThings platform. Alrawi
in [8] presented a methodology based on scorecards to analyze and systematize the security of a home
automation system and evaluated it on 45 IoT devices. In [116], the authors compared five smart home
platforms and modeled their cloud, IoT, and mobile app components using state machines.

Kumar [70] described a large-scale case study involving 83M devices and 16M households, showing
that home automation is widespread across continents and involves heterogeneous devices. Moreover,
they show that IoT security weaknesses vary across manufacturers and within a manufacturer based on the
device’s geographical location. Similarly, the IoT Inspector work [61] shows that by collecting an extensive
and labeled dataset of smart home communication, one can infer bad security and privacy issues across
vendors, including the use of weak Transport Layer Security (TLS) versions or data exfiltration to advertising
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Figure 5: Matter stack centered around IPv6. Bluetooth Low Energy (BLE) and Bluetooth Transport Protocol
(BTP) are used only for discovery and PASE.

services. In [4], the authors show a multi-stage attack based on machine learning methods to infer smart
home device data even if it is encrypted.

Proprietary smart home management systems were analyzed in [63] and shown to be uncoordinated and
vulnerable to access control attacks. In [115], the authors systematize research related to privacy-preserving
smart hub devices from 10 industrial proposals and 37 research papers. Privacy techniques include packet
obfuscation and local data processing, minimization, and obfuscation. Mandalari in [80] evaluated eight
popular IoT security services, mostly provided via commercial routers, to protect smart homes and found
that they provide limited security and privacy protection even against basic attacks and might introduce extra
privacy risks.

Proprietary wireless protocols for home automation like Z-Wave [51,110] and ZigBee [32,96], have been
found vulnerable as well. Researchers presented, among others, battery depletion and impersonation at-
tacks.

4.3 Matter Smart Home Standard
Matter is a standard technology for interoperable, secure, private, and usable smart homes [39]. It is centered
around IPv6 and allows the management of heterogeneous devices, including cameras, vacuum robots,
access points, energy and light management, smoke and carbon monoxide detectors, presence sensing,
and closure sensors. It does not require an Internet connection to operate. Matter was formerly known as
Project Connected Home IP (CHIP).

Matter is specified in a set of open documents maintained by the Connectivty Standards Alliance (CSA), a
consortium with more than 200 companies, including Apple, Google, Amazon, Comcast, IKEA, Huawei, and
Schneider [39]. The Matter v1.0 standard was introduced in October 2022 [35] and is updated biannually.
The paper refers to Matter v1.4, the latest standard version. The CSA also provides an official and open-
source Matter Software Development Kit (SDK) [37] and related documentation [36], including a reference
Matter implementation and examples.

Matter employs two secure session establishment protocols called Passcode Based Session Establish-
ment (PASE) and Certificate Based Session Establishment (CASE). PASE is a Password-Authenticated Key
Exchange (PAKE) protocol used to generate an authenticated session key to protect the Matter onboard-
ing process (i.e., Matter commissioning). The protocol protects against online and offline dictionary attacks
while allowing low-entropy static or dynamic passcodes. CASE is a SIGn-and-MAc (SIGMA) based protocol
generating authenticated session keys using X.509 certificates. The Matter commissioner distributes the
certificates and acts as the Certificate Authority (CA).
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4.3.1 Matter Network
Matter aims to standardize universal smart home technology based on IPv6. As shown in Figure 5, Matter
supports wired and wireless link layers for device interoperability, including Ethernet, Wi-Fi, Thread, and
BLE. Being centered around the IPv6 network layer, it is compatible with all protocols running over IPv6,
including the TCP and UDP transport layer protocols. It defines a Matter application layer protocol based on
a standard data model. Moreover, it provides two custom TCP-like transport protocols: BTP to talk Matter
over BLE (MATTERoBLE) and Message Reliability Protocol (MRP) to add reliability to UDP.

A Matter network is called fabric and is identified by a unique 64-bit Fabric ID. A fabric is not centrally
owned, but it is shared among devices. Each device connects to the fabric using one network interface,
like wlan0. A unique 64-bit Node ID identifies a device or a group of them within a fabric. A fabric can be
established without an Internet connection and behind a firewall (i.e., no globally routable IPv6 infrastructure
is needed). It can cover one or multiple IPv6 subnets. For example, a fabric can include a Wi-Fi network
with Internet access bridged to a Thread network for low-power and long-range mesh communication. The
two networks are bridged by a Matter Border Router.

Matter defines specific roles to establish and manage a fabric [38, Sec. 1.3]. A Node is a Matter en-
tity with one or more addressable Endpoint and can have multiple roles. A Device includes one or more
Nodes. A Node can be a Commissioner, a role able to commission (i.e., let other devices join) the fabric.
It can be Commissionable, a role to join the fabric. The latter becomes a Commissionee while it is being
commissioned. A commissioned device acts as Controller if configured to control other Nodes or Controlee
if configured to be controlled. The mapping between these terms and HomeKit, Weave, Thread, and Zigbee
is provided in [38, Sec. 1.4].

A Node can join multiple fabrics, each with a unique set of administrators, permissions, and settings.
For example, a smart home device, like a thermostat, could be part of a home and service provider’s fabric.
The homeowner sets up and controls the former, allowing household members to control the temperature
settings. The latter is managed by a utility company for remote diagnostics or energy-saving programs.

4.3.2 Security and Privacy
Matter security relies on five properties [34]: i) Comprehensive protection provides self-contained device au-
thentication and attestation, encrypted communication, and secure firmware updates. ii) Strong mechanism,
such as AES-CCM, SHA256, and ECC over secp256r1, ensure that Matter takes advantage of standard and
battle-tested cryptographic ciphers and protocols. iii) Easy to use security aspects enable vendors and users
to take advantage of standard and reference implementations without creating potentially vulnerable solu-
tions. iv) Resilient approaches are used to protect, detect, and recover from a security or privacy incident. v)
Crypto agility enables the update of the Matter cryptographic primitives and protocol to address future threats
without breaking the specification.

Matter privacy is guaranteed by the four properties [34]: i) Confidentiality of data in transit, ii) Device
authentication using x.509 certificates signed by a trusted CA, iii) Data minimization to minimize the amount
of information exchanged during a session iv) Privacy-preserving mechanisms in the standard, including
unique random node IDs, non-trackable IP addresses, and encrypted session metadata.

The Matter standard discusses threats and countermeasures [38, Sec. 13.7]. Each threat has an ID,
description, threat agent (attacker model), threat evaluation (impact and severity), and countermeasure. The
threat list includes impersonation and machine-in-the-middle threats. Next, we describe Matter’s state of the
art.

4.3.3 Matter State of the Art
There are a few research papers about Matter. Next, we present them based on their category.

Survey. Authors in [22] provide a concise description of the Matter standard, survey research work by
academia and industry, and offer insights on addressing current limitations.
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Discovery. In [18] the authors present a detailed analysis of the Multicast DNS (mDNS) and DNS-Based
Service Discovery (DNS-SD) specifications and discuss their attack surface including eavesdropping, im-
personation, and Machine-in-the-Middle (MitM) threats. Attacks and defenses on proprietary Apple services
using mDNS and DNS-SD, including AirDrop, were presented in [19, 43, 106]. Other prior work touched on
similar issues [54, 90], including getting mDNS responses from outside the local network using a unicast
query [30].

Attacks. Several research works presented theoretical and practical attacks on Matter. In [104], the
authors highlight a security issue in Matter’s commissioning process, enabling unauthorized access via an
unenrolled channel. They tested 15 devices, underscoring IoT risks, and recommend enforcing a single
active device channel to enhance IoT security. In [72], the authors highlight the Matter standard’s device
pairing and delegation process vulnerabilities. They introduce the Hidden Eavesdropping Attack, in which
unauthorized hubs exploit flaws to eavesdrop on IoT devices, exposing sensitive data and compromising
user privacy. One paper studied low-level jamming attacks on Thread, focusing on OpenThread [56] and its
jamming detection mechanism [67].

Standard security. Other research analyzed the security of the Matter standard. In [40,73], the authors
evaluate the security of the Matter standard through threat modeling and vulnerability analysis, highlighting
potential weaknesses, vendor-specific risks, and deviations from security promises while providing recom-
mendations and symbolic verification models to enhance Matter’s security framework. In [105], the authors
examine Matter’s design, where controllers are not required to verify their trustworthiness to devices. Through
experimentation, the authors highlight scenarios where malicious controllers could harm the Matter system.

Communication. Significant research efforts have been allocated to Matter’s Wi-Fi, Thread, and Blue-
tooth communication technologies. What follows is a sample from the many research works in these fields.
Wi-Fi security mechanism, including WEP, WPA, WPA2, and WPA3 have been found vulnerable to impactful
attacks [27, 108, 109]. Regarding Thread, its side channel resistance against differential EM analysis was
assessed in [42]. Thread’s commissioning protocol, called J-PAKE, was formally modeled and analyzed [1].
Moreover, in [6], the authors study battery depletion and online password-guessing attacks on a Thread net-
work. MUDThread [60] shows how to integrate the Manufacturer Usage Description (MUD) IoT standard into
a network of constrained Thread devices. BLE has been found vulnerable to several therats, including the
KNOB [14] and BLUR [15] attacks.

Testbed. In [81], the authors examine the Matter protocol’s role in enhancing smart home interoperability,
introducing a network utility device to analyze IoT network traffic, and providing insights from an academic
testbed setup.

Fuzzing. In [74], the authors introduce mGPTFuzz, utilizing large language models to automate test
input generation based on Matter’s extensive specification. Evaluated on 23 devices, mGPTFuzz discovered
147 new bugs, including three CVEs, outperforming existing IoT fuzzers.

4.3.4 Smart Home Intrusion Detection
Several works propose generic intrusion and anomaly detection/prevention techniques for the smart home.
Ramapatrun [94] explores machine learning techniques to identify anomalies in a smart home. The presented
Hidden Markov Model (HMM) achieves an accuracy of 97% when trained with sensor data from the network.
Reinforcement learning was also considered in smart home intrusion detection, and MAGPIE was proposed
as an IDS capable of dynamically adjusting its detection logic based [58]. Power consumption was also
used as a metric for anomaly detection attacks [89]. Hybrid approaches for anomaly detection were also
discussed. In [7], the authors evaluate the CSE-CIC-IDS2018 public dataset with different Machine Learning
(ML) classification algorithms, including random forest, xgboost, and decision trees. For a survey on the
field, please refer to [45,115].

However, there is no standardized intrusion detection technology for Matter. The standard relies on its
security and privacy mechanisms and protocols, such as CASE and PASE, to defend the network from threats
such as impersonation and MitM threats.
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5 Conclusion and Future Directions
AI-based anomaly detection has made significant strides in recent years, providing powerful tools for secur-
ing next-generation networks (Cf. Section 2) . However, the emergence of 5G and beyond has exposed
key limitations, particularly in how network traffic is represented. Although packet-based, flow-based, and
hybrid methods each offer strengths, they fall short in fully capturing the complexity of modern traffic. Future
research should focus on adaptive and dynamic traffic representation to meet the demands of high-speed,
heterogeneous, and evolving network environments, enabling more scalable and effective intrusion detection
systems.

Runtime verification techniques, as described in Section 3, are well-suited for anomaly detection in future
networks. They analyze execution traces at runtime to detect violations of a specification, offering exact
results with formal guarantees. Among the many existing approaches, we propose to focus on distributed
runtime verification architectures: local monitors analyze local executions efficiently, and communicate with
the other monitors to catch global errors. We will formalize our network specifications as interactions. These
are designed for expressing communication flows, and are easy to use and understand. The challenge
resides in bringing these solution elements together and designing an efficient procedure which can deal
with a high speed of communication, eventual losses of data and nodes leaving and entering the network.

In Section 4 we introduce future networks for smart homes. We survey the state of the art about (legacy)
proprietary systems and standard ones based on Matter. As stated in Section 4.3, there is no standard
intrusion detection technology for Matter. This is problematic, as the standard is used on billions of devices.
We aim to address this gap by proposing a novel IDS for Matter and testing it in a smart home testbed with
actual devices. We envision an IDS taking advantage of the AI and runtime verification solutions discussed in
Sections 2 and 3. Moreover, we will include traffic analysis techniques capable of (probabilistically) detecting
anomalities as we did in prior work on IoT electric scooters [29].

ML-based intrusion detection offers considerable adaptability and can identify anomalous behaviors, in-
cluding those not explicitly defined in advance (Section 2). Nonetheless, supervised approaches often re-
quire large, labeled training datasets, which can be challenging to get. In addition, supervised and unsuper-
vised techniques may produce false positives, potentially impacting the reliability of alerts. In contrast, the
runtime verification techniques presented in Section 3 monitor system behavior against formally specified
properties. These methods do not rely on training data, and each alert is directly tied to a concrete violation
of the specified behavior, resulting in greater precision and fewer false positives. However, their effectiveness
is inherently limited to the scope and quality of the specifications, which domain experts must generally craft.

Investigating the complementarity of these two intrusion detection paradigms represents a promising
avenue for enhancing intrusion detection systems’ overall effectiveness and robustness. Moreover, testing
these two techniques in a real-world use case, such as a Matter smart home network (Section 4), would be
highly beneficial.
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