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Abstract—With the high demands of 6G networking services
in terms of Quality of Service (QoS), managing these networks
requires intelligent next-generation Operations Support Systems
(OSSs). According to standardization bodies such as ETSI and
3GPP, OSS must support end-to-end, cross-domain management
across all 6G domains. They are making significant efforts
to standardize Application Programming Interfaces (APIs) to
enable Intent-Based Networking (IBN), which simplifies network
management by allowing users to express their intentions in a
declarative manner. However, these systems remain complex for
users with limited domain knowledge who need to interact with
these standardized APIs. Moreover, adding new functionalities
to OSS often requires users to learn new API endpoints and
structures, which can be time-consuming. To address these
challenges, we propose enabling natural language interaction
with OSS by leveraging Large Language Models (LLMs). Our
approach offers two key advantages: simplifying user interaction
with the system using natural language, and enabling the system
to autonomously adapt to new API features. Since fulfilling a
user’s intent may involve multiple low-level API calls, our solution
is designed to plan and execute them in a coordinated manner.
We employ multi-agent LLMs with a hierarchical planning
mechanism, creating a chatbot-like system that processes natural
language inputs effectively. Real-world experiments conducted at
EURECOM’s OSS demonstrated that the proposed approach can
efficiently manage all 6G domains using natural language.

Index Terms—6G, Operations support systems, Intent-based
networking, Large language models.

I. INTRODUCTION

The era of 6G is expected to support a wide range of

advanced services, such as eXtended Reality (XR) and Virtual

Reality (VR), which will enhance human lifestyles by enabling

critical use cases like teleoperated medical surgery and au-

tonomous transportation [1]. These applications will impose

stringent Quality of Service (QoS) and Quality of Experience

(QoE) requirements that traditional networking systems are

unable to meet. To address this, existing infrastructures will not

only be upgraded with additional functionalities like Recon-

figurable Intelligent Surfaces (RIS) and Cell-Free networks,

but methods for sharing and virtualizing these infrastructure

components will also become more advanced and efficient

[2]. Consequently, the 6G network management layer, enabled

by the Operations Support System (OSS) and responsible for

managing and orchestrating this infrastructure, must be highly

advanced and AI-powered, as emphasized by standardization

institutions such as ETSI and 3GPP [3, 4].

The next-generation OSS will have diverse and heteroge-

neous responsibilities. Some of the key functionalities are: (i)

managing the lifecycle of end-to-end (E2E) 6G services (e.g.,

creation, activation, deletion), which may span one or more 6G

domains, such as the Radio Access Network (RAN), Trans-

port Network (TN), Core Network (CN), and Edge/Cloud;

(ii) managing infrastructure resources that are shared across

different services and with other OSSs (e.g., those belonging

to different network operators); and (iii) enabling observability

and monitoring, as well as supporting Zero-touch network and

Service Management (ZSM), which involves detecting and

resolving anomalies without human intervention in services

or infrastructure components [5]. These requirements have

led standardization institutions to propose various Application

Programming Interfaces (APIs) to facilitate interactions be-

tween users and OSSs, using simplified structures to declare

user intention (intent), a concept known as Intent-Based Net-

working (IBN) [6].

The IBN concept was introduced as a simplified way to

interact with the OSS by defining the user’s intent in a

declarative manner, using standardized APIs. However, a key

drawback of IBN APIs is that their declarative structures

often rely on structured formats, such as YAML or JSON,

which may not be user-friendly for those with limited domain

knowledge. Furthermore, there are many heterogeneous IBN

APIs, each designed to address a specific functionality within

the OSS (e.g., TMF APIs) requiring users to learn and manage

a variety of APIs, which is time-consuming and inefficient.

These challenges have pushed the research community to

explore next-generation IBN systems that support natural

language interaction, allowing users to define their intent in

everyday language without imposing a predefined structure [7,

8, 9]. This can be enabled by Large Language Models (LLMs),

which excel at understanding human language.

However, existing research often focuses on specific func-

tionalities, which can be inefficient, such as addressing only

the configuration aspect of 6G services [7], typically involving

the generation of the body for a single API call. A key

challenge in research is enabling LLM-based systems to

autonomously execute multiple API calls, create their request

bodies (i.e., payload) and parameters, and adapt to new func-

tionalities and APIs. Our approach, OSS-GPT, addresses this

challenge by planning a sequence of API calls with their bod-



ies and parameters and executing them to fulfill a single high-

level intent. It adapts to new functionalities and API endpoints

by requiring updates only to the OSS API specifications [10].

To achieve this, we employ multi-agent LLMs that collaborate

to perform hierarchical planning and execution of OSS API

calls. The system relies solely on the API specifications as

its knowledge base, ensuring automatic adaptation when new

functionalities or endpoints are introduced.

The main contributions of this work are manifold:

• Designing a general-purpose IBN system that allows

natural language interaction with the OSS.

• The IBN system uses multi-agent LLMs to satisfy high-

level user intent. Together, these agents plan API calls,

execute them, and report the results to the user, enabling

a chatbot system. Among the agents, we propose a spe-

cialized agent trained solely for generating request bodies

following specific standards, called blueprint generator.

• The system was implemented at EURECOM’s OSS,

adhering to ETSI standards for deploying and configuring

6G services using the Network Service Descriptor [11].

In this context, all agents are trained using In-Context

Learning (ICL) at inference time, except for the NSD

generator. The latter was trained using Low Rank adap-

tation (LoRa) [12], resulting in an LLM specialized in

generating NSDs.

• Evaluation was performed in real-world conditions using

the EURECOM’s OSS [13], demonstrating that all these

API calls can be replaced by a single chatbot, enabling

natural language IBN.

The rest of the paper is organized as follows: Section II

describes background on LLMs, IBN and the research gap.

Section III introduces the design of the OSS-GPT. Our OSS-

GPT at EURECOM is presented in Section IV and evaluated

in Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we present the related works and background

on LLMs and IBN. We then identify research gaps relevant to

our study.

A. Large language models

LLMs are advanced transformer-based AI systems designed

to comprehend human language and generate coherent re-

sponses based on their training data. These models excel in

various Natural Language Processing (NLP) tasks, such as

question answering, code generation, and sentiment analysis

[14]. However, their performance is typically tied to the tasks

covered by their training data, and they may underperform

on new, unseen tasks. Adapting LLMs to novel tasks has

become a significant area of research. Supervised fine-tuning

is a common approach for retraining LLMs on new datasets

[14], but it is computationally intensive and resource-heavy.

To mitigate these challenges, alternative methods like ICL

and Parameter-Efficient Fine-Tuning (PEFT) [15] have gained

attention for their efficiency. On the one hand, ICL allows

the model to learn tasks by embedding training data directly

within the context (input) during inference, without modifying

the model’s parameters. This technique facilitates the creation

of agentic LLMs, where the agent’s role is dynamically defined

in the model’s context [16]. PEFT, on the other hand, includes

approaches like LoRA (Low-Rank Adaptation) [12], which

freeze the LLM’s original weights and introduce small, train-

able parameter sets. These new parameters typically represent

a fraction of the model’s overall size, significantly reducing

computational costs.

An interesting application of ICL is the use of agentic

LLMs. With this approach, a single LLM can generate multiple

profiles (agents) during each inference run, using profile

descriptions embedded in the context. This enables the creation

of multi-agent LLM systems where agents can specialize in

different tasks and communicate with each other. This concept

arises from the observation that LLMs perform exceptionally

well on simple tasks, making a multi-agent system effective for

handling complex tasks by delegating specific responsibilities

to specialized agents, as demonstrated in [16]. Another notable

application of ICL is in data augmentation. Researchers have

leveraged powerful closed-source LLMs to generate synthetic

datasets, which are subsequently used to train smaller, more

efficient LLMs [17]. In this paper, we explore both use cases.

First, we apply data augmentation to create specialized service

blueprints using LoRA. Second, we implement agentic LLMs

using ICL for intent planning and execution, demonstrating

their utility in constructing robust, efficient multi-agent sys-

tems.

B. Intent-based networking

IBN is a transformative approach to network management,

aimed at simplifying interactions with/within the OSS to

enable autonomous networking [6]. It is being widely stan-

dardized by organizations like ETSI, TMF, and 3GPP [3, 18,

19]. In these standards, IBN consists of five main stages: Intent

Profiling, where users interact with the system to express their

intent; Intent Translation, where high-level intent is translated

into low-level configurations; Intent Resolution, to resolve

conflicts arising from multiple users’ intents; Intent Activation,

to activate and provision the necessary resources; and Intent

Assurance, to ensure that the intent is satisfied throughout its

lifecycle. In these standards, the intent is typically declared us-

ing YAML or JSON structures, which can be time-consuming

for beginner users to learn.

To address these complexities, researchers emphasize the

use of natural language for intent profiling, rather than pre-

defined structures. For example, in [7], the authors tackle

profiling with natural language and leverage LLMs to translate

the intent into an NSD. This work initially focused on the

Cloud/Edge domain but was later expanded to cover the RAN

domain in [8]. However, the system is limited to configuring

only a network service with the NSD. Similarly, Fuad et al. in

[20] proposed an LLM-based approach for intent profiling and

translation, but their work is limited to the TN domain where

they generate BGP and firewall configurations from natural

language. In addition, researchers in [21] also explored natural



language intent profiling using a different NLP technique,

called Named-Entity Recognition (NER), for intent detec-

tion and translation applied specifically to the TN domain.

However, their approach focuses on a single, clear intent

definition and one translation step. A significant limitation

of NER tools is their inability to handle different languages

of intent or address issues like typing errors, unlike LLMs,

which are more flexible in dealing with such complexities [8].

These studies highlight that no work has yet implemented a

natural language-based approach for all the stages of IBN that

addresses complex Intents across a wide range of use cases,

while encompassing all 6G technological domains.

C. Research gap

Our goal is to enable natural language-based IBN using

multi-agent LLMs. This system translates high-level natural

language intents into a sequence of OSS API calls, execut-

ing them sequentially to fulfill the user’s original request.

However, existing approaches, such as offline introspective

plan-then-execute methods [22] or the ReAct framework [23],

face challenges in adapting to API feedback and generating

viable plans. RestGPT [24], attempts to address these issues

by employing a more dynamic planning process. It adopts an

iterative, coarse-to-fine online planning mechanism, i.e., when

given a complex instruction, an LLM first generates high-level

natural language sub-tasks, which are then mapped by another

LLM to more granular API call plans. While RestGPT excels

at handling complex tasks for simpler API definitions, it faces

two primary challenges: (i) when applied to 6G OSS with long,

standardized request bodies (service blueprints), this method

struggles with generating these complex request structures, and

(ii) it relies heavily on few-shot learning for each LLM agent,

which is tightly coupled to the API specifications. As a result,

any changes in the API specifications require generating new

few-shot examples, making the learning process inefficient.

In OSS-GPT, we opt for an online planning and execution

approach, similar to RestGPT, but address its challenges in

two ways. First, to improve the efficiency of generating

standardized service blueprints, we introduce a specialized

LLM trained using the LoRa technique. This LLM is specif-

ically designed to generate the complex, standardized service

blueprints required for 6G OSSs. Second, to overcome the

inefficiency of few-shot learning, we designed OSS-GPT to

learn directly from the API specifications, without the need

for additional few-shot examples. Unlike RestGPT, which

employs a coarse-to-fine approach to translate high-level in-

tents into multiple natural language intents using few-shot

examples, OSS-GPT, trained solely on API specifications,

directly selects and executes individual API calls, one by

one. This approach enables autonomous updates within the

OSS, driven solely by changes in the API specifications. In

summary, we present a fully autonomous, user-friendly, intent-

driven OSS for next-generation 6G network management that

offers enhanced efficiency by eliminating the need for manual

learning updates.

III. OSS-GPT: SYSTEM DESIGN

In this section, we will define the problem related to

planning and executing API calls, followed by the presentation

of our solution design, OSS-GPT.

A. Problem Definition

Let the natural language intent be represented as a textual

input I . The objective is to map I to an output, a natural

language response R, which summarizes the results of exe-

cuting C. The response R provides an intent-driven summary

of I , where C = {C1, C2, . . . , Cn} is a sequence of API calls.

Executing these calls sequentially ensures that the intent I is

fulfilled. Each API call Ci is defined by an endpoint Ei ∈ E ,

where E = {E1, E2, . . . , Em} is the set of available API

endpoints. Each endpoint Ei is characterized by:

Ei = 〈m, p, is, os〉,
where m is the HTTP method (e.g., GET, POST, PUT), p is

the endpoint URI structure, is is the expected input parameters

(e.g., body, headers, query), and os is the structure of the

output or response.

The problem is defined as finding a mapping f : I → R,

where:

f = (fp, fe, fs),

with:

• fp : I → C: generates the plan (i.e., the sequence of API

calls) by selecting and ordering API endpoints Ei ∈ E .

• fe : C → D: executes the planned API calls C, producing

a set of execution results D = {D1, D2, . . . , Dn}, where

Di is the output of Ci.

• fs : D → R: synthesizes the execution results D into a

natural language response R, summarizing the outcome

of the API sequence.

The planning step must consider:

• Logical dependencies between API calls (e.g., when one

API’s output is required as input for another).

• Constraints defined by the input and output schemas of

the APIs.

• The overall intent I , ensuring that C addresses all neces-

sary sub-tasks implied by I .

The execution step must:

• Generate or retrieve the input required for each API call

Ci based on is.

• Monitor the responses to ensure they conform to the

expected os.

• Handle any errors or replan fp dynamically as needed.

The summarization step must:

• Extract key information from D based on the outputs os
of the APIs.

• Generate a concise and coherent natural language re-

sponse R that aligns with intent I .

• Handle ambiguities or incomplete information in D using

contextual cues from I .
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Fig. 1: OSS-GPT design.

B. Solution design

To tackle the aforementioned problem, we propose a multi-

agent LLM framework, called OSS-GPT. Our solution in-

volves multiple LLMs that work collaboratively to fulfill the

intent I and provide the natural language response R. These

LLMs function as a chatbot, providing OSS users with the

results of their intents. As shown in Fig. 1, OSS-GPT is

composed of the following components:

1) Assistant: The role of the Assistant is to maintain

a chatbot-like interaction with the user. It accepts natural

language input I and responds in natural language output R.

This agent is trained using ICL, which handles two cases: (i) If

the user asks general questions not related to OSS functions,

the Assistant will respond directly to the user’s query; (ii)

If the user requests intents to be executed by the OSS, the

Assistant forwards the intent to the Planner and waits for

the Reporter’s response to provide it to the user. This design

allows for seamless natural language interaction between the

OSS users and the system.

2) Planner: The Planner’s primary responsibility is to

generate a sequence of API calls C = {C1, C2, . . . , Cn}
that will fulfill the intent of the user I . Upon receiving the

intent from the Assistant, the Planner analyzes the request and

determines the appropriate set of API calls needed to achieve

the desired outcome. To accomplish this, the Planner is trained

using ICL, where it leverages a knowledge base containing

brief descriptions of available API endpoints. Due to context

size limitations, the full specification of each endpoint Ei ∈ E
cannot be included in the context; instead, the Planner only

has access to these concise descriptions, which provide enough

information to select relevant API calls without overloading

the context. The Planner operates by selecting and sending

one API call at a time to the Executor. Once the Executor has

executed the API call:

• If the previous execution was successful, the Planner
proceeds to generate the next API call in the sequence.

• If an error or failure occurs during execution, the Planner
will dynamically replan, adjusting the sequence of API

calls as needed to fulfill the intent I .

• If no further planning is required, meaning I has been

fulfilled, the Planner requests the Reporter to generate

the natural language response R.

This dynamic replanning mechanism ensures that the system

remains flexible and robust, even when some executions fail

or need to be modified in response to changing conditions.

3) Executor: The primary responsibility of the Executor is

to execute each API call selected by the Planner and return

the execution results. The Executor is also trained using ICL,

which provides detailed descriptions of the available endpoints

Ei to guide the execution process. Upon receiving the API call

instructions from the Planner, the Executor not only executes

the request but also plan the necessary tools required for

the successful execution of the API call. Although additional

tools may be employed, the Executor typically relies on the

following three core tools:

• Blueprint Generator: Used to generate the necessary

blueprints for POST requests, such as standardized struc-

tures (e.g., Network Service Descriptions, NSD). This

tool is an LLM specifically trained to generate request

bodies from natural language inputs.

• Blueprint Explorer: Utilized for retrieving existing in-

formation for PUT requests (e.g., when updating or



modifying data), ensuring relevant context is included

in the execution. This is a straightforward program that

performs GET requests to the OSS to fetch the required

data.

• API Caller: Responsible for executing API endpoints by

making appropriate HTTP requests, including all neces-

sary parameters (headers, body, query parameters, etc.).

This is a straightforward program that executes all API

calls via the OSS.

• Human Validation: Ensures user approval is obtained

before executing critical API operations, such as POST

requests for creating services, PUT requests for modi-

fications, and DELETE requests. This tool is requested

before the API Caller is invoked for these operations.

Users can activate or deactivate this tool based on their

preference for system autonomy, enabling either human

oversight or a fully autonomous intent-driven system.

For example, when the Executor receives a request to create

a 6G service, such as a 6G CN, it first invokes the Blueprint
Generator to produce the necessary blueprints for the POST

request. Afterward, the Executor uses the API Caller to send

the request to the appropriate API endpoint Ei, based on the

specified HTTP method m, and waits for the response. Upon

receiving the response, the Executor performs the following

tasks:

• It verifies that the response conforms to the expected

output structure os.

• If the response is successful and matches the expected

schema, the Executor returns the result Di to the Planner

for further processing.

• If the response indicates an error, or if there is a mismatch

with os, the Executor notifies the Planner. In such cases,

the Planner may initiate a replan.

In addition to these tasks, the Executor is responsible for

providing debugging information, which supports dynamic

replanning by the Planner. This ensures that the system

remains resilient and capable of adapting to unexpected issues

that may arise during the execution of the API calls.

4) Reporter: The Reporter agent is an LLM that takes the

conversation history between the Planner and Executor, along

with the user’s intent I , as input, and generates a natural

language report R as output. It is trained using ICL and sends

the response to the Assistant agent.

IV. EURECOM’S OSS-GPT

In this section, we first present the design of EURECOM’s

OSS and then proceed with the instantiation of OSS-GPT

within EURECOM’s OSS framework, focusing specifically on

the Blueprint Generator tool, which is specific to the OSS.

This contrasts with the other agents described in the previous

section, which are general-purpose.

A. EURECOM’s OSS

The design of EURECOM’s OSS is inspired by the 3GPP

MANO architecture standards, adhering to the principles of

the Service-Based Management Architecture (SBMA) [25].

The OSS is structured into multiple microservices, each ded-

icated to a specific role: (i) Service Manager, responsible

for deploying and configuring 6G services, using the NSD

from ETSI to define service configurations; (ii) Infrastructure

Manager, tasked with provisioning virtualized and physical in-

frastructure; (iii) Monitoring Manager, deploying components

responsible for KPI collection and monitoring of services and

infrastructure [26]; and (iv) Fault Manager, which detects and

resolves faults within services and infrastructure, leveraging

the KPIs collected by the monitoring manager. These microser-

vices communicate with each other via API calls, coordinated

through a centralized API gateway that serves as the entry

point and houses the complete API specifications. Without

OSS-GPT, users interact with the API gateway through HTTP

requests, which are routed to the appropriate microservice

based on the type of request (e.g., service creation, infrastruc-

ture provisioning, KPI collection, or ZSM activation). Figure 2

illustrates the high-level design of EURECOM’s OSS.

Service Manager

OSS API Gateway

Monitoring Manager

Fault Manager Infrastructure Manager

RAN

6G Infrastructure

TN CN AppsRAN TN CN Apps

Fig. 2: EURECOM’s OSS components.

To integrate OSS-GPT within EURECOM’s OSS, training

all the AI components (LLM agents) shown in Fig. 1 is essen-

tial. For all AI components except the Blueprint Generator,

training with EURECOM’s OSS API specifications is suffi-

cient, as these components rely on ICL using the specifications

during inference, thus only pushing the API specs into the

knowledge base is required. However, the Blueprint Generator
has a distinct role: it must generate accurate NSDs directly

from natural language inputs. To achieve this, we developed

a specialized LLM specifically trained for NSD generation.

We opted for fine-tuning in this case because, in our previous

work [7], this task was explored using ICL with a 34B LLM.

While ICL demonstrated high accuracy, the complexity of

the task resulted in significant generation times (over one

minute for three applications). This delay created a bottleneck,

particularly in multi-agent LLM systems where other agents

must wait for completion. Fine-tuning enabled us to create a

smaller, specialized LLM that eliminates the need for extensive

context learning, processing only the natural language intent

to generate accurate NSDs efficiently.

B. Blueprint Generator - The NSD-expert
To train the NSD-expert, two main steps are crucial: (i)

dataset generation; and (ii) LLM training. Dataset generation



posed a significant challenge because there is no open dataset

available containing natural language intents paired with their

corresponding NSDs. To address this, we developed a dataset

from scratch, containing examples that map natural language

inputs to their respective NSD representations. Another chal-

lenge was adapting existing open-source LLMs through fine-

tuning without compromising their general abilities to generate

coherent text and respond to human queries. The goal was to

create an LLM capable of generating NSDs when required,

while still understanding and responding to natural language in

a chatbot-like manner. This capability is essential for use cases

where the user might need to modify a generated NSD via

natural language interactions. To achieve this, a method was

needed to inject the specialized knowledge of NSD generation

into an existing LLM without erasing or degrading its prior

knowledge. Next, we describe these two steps.

1) Dataset collection & augmentation: In the experiments

described in [7], we requested volunteers to test an ICL-

based NSD generator LLM. Volunteers provided scores for

the LLM’s output and corrected any mistakes in the generated

NSDs. This process resulted in a small, high-quality dataset

containing 100 entries of natural language intents paired

with their corresponding NSDs. To augment this dataset, we

leveraged the ICL capabilities of LLMs. Specifically, we used

few-shot learning by providing 3-4 examples from the existing

dataset in the LLM’s context, accompanied by an instruction

to generate a new example. For instance, let

Dexisting = {(x1, y1), (x2, y2), . . . , (xn, yn)}
represent the original dataset, where xi denotes the natural

language intent and yi is the corresponding NSD. Given a

subset Dfew-shot ⊆ Dexisting, the LLM generates a new example

(xn+1, yn+1) by conditioning on the context:

P (yn+1|xn+1,Dfew-shot)

The newly generated examples were reviewed for quality

and subsequently added to the knowledge base, effectively

expanding the dataset iteratively. This method ensured that the

augmented dataset retained high relevance and correctness.

2) Training: For training, we employed LoRa [12], a PEFT

technique designed to reduce computational complexity while

achieving effective adaptation of LLMs to specific tasks. As

shown in Fig. 3, LoRA adds trainable low-rank matrices to

the pre-trained weights of an existing LLM, freezing most of

the original weights and significantly reducing the number of

parameters that need adjustment.

Let W ∈ R
d×k denote a weight matrix in the pre-trained

LLM. In LoRA, this matrix is approximated as:

W ≈ W0 +ΔW

where W0 is the frozen pre-trained weight, and

ΔW = AB, A ∈ R
d×r, B ∈ R

r×k, r � min(d, k)

ensures the rank of the adaptation matrices A and B is low,

reducing the number of trainable parameters from d × k to

r× (d+ k). The process of fine-tuning can thus be expressed

as minimizing the loss L over the task-specific data:

L =
1

N

N∑

i=1

�
(
fθ(xi), yi

)

where fθ is the LLM with LoRA applied, and �(·) is the task-

specific loss function. The adaptation is efficient because only

ΔW is updated during training, while W0 remains static. LoRa

enabled us to specialize the LLM for NSD generation while

retaining its original language understanding capabilities.

Input

Pre-trained
Weights

Output

Trainable Frozen

Fig. 3: LoRa [12].

V. PERFORMANCE EVALUATION

The section is structured into three subsections: Experiment
Setup, which describes the experimental configuration; Experi-
ment Results, which presents and analyzes the performance of

the OSS-GPT approach; and Experiment Conclusion, which

provides additional insights from the experiment, discusses

challenges, and outlines potential future work.

A. Experiment setup
Our experimental setup, illustrated in Fig. 4, involves two

machines hosting the Kubernetes-based cluster and the OSS-

GPT framework, respectively. The first machine, equipped

with an Intel(R) Xeon(R) Silver 4314 CPU (2.40GHz) and run-

ning Ubuntu 22.04.3 LTS, manages a single-node Kubernetes

cluster that hosts the virtualized 6G services and infrastruc-

ture components. At EURECOM, we utilize OpenAirInterface

components to create an end-to-end 6G service, encompassing

the RAN (oai-nr-ue and oai-gnb), CN (oai-amf, oai-smf, oai-

upf, etc.), and edge applications. The second machine, a Mac-

Book with an Apple M1 Pro chip featuring an integrated GPU,

hosts the infrastructure management components, including

OSS components and OSS-GPT, running on Docker and

bare-metal, respectively. The OSS-GPT is implemented using

LangGraph1, and interacts with two LLMs: OpenAI’s GPT-42,

accessed remotely, and NSD-expert, a locally deployed model

with 8 billion parameters running on the Ollama framework3.

1https://www.langchain.com/langgraph
2gpt-4o-2024-08-06
3https://ollama.com
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Fig. 4: Experimentation setup.

The NSD-expert model was fine-tuned on a third machine

equipped with an NVIDIA A100 GPU with 40GB of vRAM,

using Llama 3.2 (3B parameters)4 as the base model and

applying the LoRA technique. For training, we employed

the Unsloth framework5 with a training setup that included

120 steps, a learning rate of 2e-4, and a linear learning

rate scheduler. The model was trained using a per-device

batch size of 2 with gradient accumulation over 4 steps to

simulate a larger effective batch size. Mixed-precision training

was enabled, dynamically selecting FP16 or BF16 based on

hardware compatibility, and the AdamW optimizer was used

with an 8-bit implementation to reduce memory usage.

B. Experiment results

In this subsection, we first evaluate the quality of the NSD-
expert. Next, we assess the overall performance of the frame-

work, OSS-GPT. Finally, we analyze the cost-effectiveness of

OSS-GPT in realistic scenarios, focusing on training costs,

inference execution time, and pricing.

1) NSD-expert evaluation: Fig.5 shows the loss function

of fine-tuning the Llama3 LLM on the generated dataset. This

demonstrates that the LLM’s loss function was decreasing,

indicating effective training, and it converged after 80 steps.

The resulting NSD-expert is evaluated in Fig.6 against the

previous Llama3 version using four metrics: (i) Perplexity,

which measures how well the model predicts the next token

in a sequence; (ii) BERTScore, which evaluates the semantic

similarity between generated and reference text using contex-

tual embeddings; (iii) Cosine similarity, which measures the

cosine of the angle between the vector representations of the

4https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
5https://unsloth.ai

generated and reference texts; and (iv) Exact Match (EM),

which assesses the percentage of exact matches between the

generated and reference outputs.

Fig. 5: Training loss.

As shown in Fig.6, the perplexity metric of NSD-expert is

very low, indicating that the model was confident in generating

the JSON files. However, the perplexity of the old version of

Llama3 is smaller than that of NSD-expert, suggesting that the

Llama3 distribution makes more sense for text generation. This

is because perplexity is an appropriate metric for evaluating

text generation, but it does not effectively assess structured

outputs like JSON. To evaluate the quality of the JSON genera-

tion, we used Cosine similarity, BERTScore, and Exact Match

(EM). The BERTScore and Cosine similarity values are low

for Llama3, indicating that this model struggled to generate the

JSON structure correctly. In fact, it did not even recognize that

the NSD output is a JSON structure. This is further evidenced

by the 0 score for Llama3 in the EM metric. In contrast, NSD-
expert generated highly accurate JSON files, closely matching

the reference JSON file, achieving approximately 0.99 for

BERTScore and Cosine similarity, and a 60% EM, which is a

very strong score. This demonstrates that the NSD-expert LLM

can be trusted by the OSS-GPT system. Next, we evaluate the

whole OSS-GPT system, using also the NSD-expert.

Fig. 6: Metrics.

2) OSS-GPT evaluation: As mentioned earlier, the OSS-

GPT functions as a chatbot from the OSS user’s perspective,

enabling interactions to obtain information about services and

infrastructure, create or delete them, and more, using high-

level intents. An example of this interaction is illustrated in

Fig. 7, where OSS-GPT generates a plan consisting of a set



of API calls, including parameters and body requests for each

API call, and executes them sequentially in the background.

The minimum number of API calls required to satisfy an intent

is referred to as the golden path. For example, in Fig. 7, two

questions are presented. In the first question, the golden path

consists of one API call, a single GET request to fetch the list

of services. In the second question, the golden path consists of

three API calls: a GET request to retrieve the list of services, a

GET request to obtain information about a specific service, and

a POST request to create a subservice with gNB configuration

(generated by the blueprint generator).

How many 6G services are deployed ? 

There are 3 6G services deployed and running.

Can you add a subservice within the first one,
that contains one gNB?

Sure, the RAN subservice containing one gNB is
successfully added and running in the first service
named: demo-service.

Fig. 7: Chatbot example when trust is activated.

To evaluate the quality of OSS-GPT, we prepared a dataset

of intents generated by domain experts, ranging from simple

to complex ones requiring multiple API calls (golden paths).

For this purpose, we defined 8 levels of intents, corresponding

to 8 golden paths (n). A golden path of i indicates that OSS-

GPT needs to make at least i API calls (where i = 0 means

that OSS-GPT responds entirely on its own without making

any requests to the OSS). Fig. 8 illustrates two key metrics:

(i) the number of API calls executed to fulfill an intent (Path

Cost) compared to the golden path (orange curve); and (ii) the

accuracy of OSS-GPT in successfully fulfilling intents for each

golden path (blue). It can be observed that for intents requiring

fewer than 4 API calls, OSS-GPT achieved an accuracy close

to 1.0, successfully fulfilling all intents, which represents a

perfect score. However, for intents with golden paths greater

than 4, the accuracy gradually decreases as the complexity of

the intents increases and more API calls are required. Notably,

for golden path 7, OSS-GPT maintained an accuracy of 0.80,

which is a strong performance given the complexity of the

task. This demonstrates the capability of LLMs in planning

and executing API calls effectively. On the other hand, as the

golden path increases, OSS-GPT tends to make more API calls

than necessary. This indicates occasional errors in the planning

process. Nevertheless, thanks to its replanning mechanism,

most intents are eventually fulfilled successfully.
3) Cost assessment: In this part, we evaluate the costs

associated with training and inferring OSS-GPT. Our approach

involves creating a custom LLM, designated as the blueprint

generator (i.e., NSD-expert), while leveraging GPT-4 for other

components, as it is currently the leading reasoning model.

Thus, the costs can be divided into two categories: training

and inference: (i) The training of the NSD-expert required

Fig. 8: Accuracy vs golden path.

only 3.07 minutes, with a reserved memory of 4.006 GB

(of which 1.371 GB was allocated for LoRA). This training

process is highly efficient and inexpensive, as the primary task

of this LLM is generating NSDs. The domain-specific knowl-

edge was injected rapidly, minimizing resource consumption;

(ii) The inference cost is measured using two metrics: the

generation time required for OSS-GPT to respond to queries

and OpenAI’s pricing, as GPT-4 is not an open-source LLM.

These metrics were evaluated per golden path. As shown in

Fig. 9, the execution time increases with the golden path.

Remarkably, for golden paths up to 7, the execution time

remained under one minute, demonstrating very fast planning

and execution. Additionally, the pricing increases with the

golden path due to multiple LLM requests. However, even

for complex requests requiring seven API calls, the cost of

$0.175 per request is affordable, especially for large-scale

industrial OSS deployments. It is worth noting that OpenAI’s

pricing is continuously decreasing due to the competition with

other closed-source and open-source models. Furthermore,

advancements in open-source models, particularly in reasoning

capabilities, are narrowing the gap between open- and closed-

source solutions. This progression makes open-source models

a viable alternative for systems like OSS-GPT in the near

future.

Fig. 9: OSS-GPT cost assessment.



C. Experiment conclusion

From the results, we can conclude that implementing nat-

ural language-based IBN is a challenging but highly useful

approach for enhancing user experience and eliminating the

complexities associated with traditional standardized struc-

tures. Indeed, OSS-GPT demonstrates remarkable performance

in simplifying the user experience for OSS users and reducing

time spent on learning standards and adapting to new APIs.

However, as the experimental setup revealed, EURECOM’s

implementation of OSS-GPT relies heavily on closed-source

LLMs, such as GPT-4, which are less secure compared to

local private LLMs. This reliance arises because existing

open-source LLMs struggle to consistently generate structured

outputs. This capability is critical for OSS-GPT, as each LLM

must adhere to a predefined output structure to communicate

effectively with other LLM agents. Current advancements in

open-source LLMs face challenges in consistently generating

accurate structures (structured output), which is crucial in

multi-agent LLM systems. In such systems, other agents

rely on the LLM’s output to proceed with their tasks. This

represents a critical area where open-source LLMs lag behind

closed-source LLMs, such as OpenAI’s GPT. Open-source

LLM frameworks should focus on enhancing the accuracy

of structured outputs to a 99% level. Achieving this would

make multi-agent LLMs based on open-source LLMs a fea-

sible solution. Another important consideration is that OSS-

GPT, as presented, is not equipped to handle multiple OSSs.

This capability is essential for the future of 6G networking,

where tenants or service providers can send intent to multiple

OSSs corresponding to different Mobile Network Operators

(MNOs). Our future work will focus on addressing this limita-

tion by developing a chatbot that implements natural language-

based, intent-driven networking across multiple OSSs that

serve multiple MNOs.

VI. CONCLUSION

This paper presents a novel approach to managing 6G

networks by leveraging natural language-based, intent-driven

management powered by multi-agent LLMs. By enabling nat-

ural language interactions, the proposed system simplifies user

engagement with complex OSS platforms and autonomously

adapts to evolving API functionalities. This is achieved

through advancements in LLMs, which enable the under-

standing of natural language intents and the collaborative,

hierarchical planning and execution of API calls. Experimental

results at EURECOM demonstrate the effectiveness of this

approach in automating 6G network management. Future work

should focus on extending OSS-GPT to support multiple OSSs

corresponding to different MNOs and optimizing inference

costs by adopting open-source LLMs instead of closed-source

alternatives.
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