
SAAFL: Secure Aggregation for Label-Aware
Federated Learning

Aftab Akram1[0009-0003-2402-4058], Harry N. H. Pham1, Melek

Önen1[0000-0003-0269-9495], Clémentine Gritti2[0000-0002-0835-8678]

1 Department of Digital Security, EURECOM, 06410 Biot, France
{aftab.akram, huan.pham, melek.onen}@eurecom.fr

2 CITI Lab, INSA Lyon – Inria, 69100 Villeurbanne, France
clementine.gritti@insa-lyon.fr

Abstract. Secure aggregation (SA) has emerged as a vital component
of federated learning (FL), enabling collaborative training of a global
machine learning model while safeguarding the privacy of clients’ local
datasets. Most existing SA protocols implement the privacy preserving-
variant of federated averaging (FedAvg) as the aggregation technique
and assume independent and identically distributed (IID) datasets across
clients. This assumption makes FedAvg unsuitable for non-IID scenarios,
where variations in client datasets lead to less effective global model. We
propose SAAFL, a SA protocol specifically designed for non-IID settings
and more specifically for the recently proposed federated label-aware
aggregation (FedLA) protocol. SAAFL computes the weighted average
of clients’ inputs where weights depend on the label distributions and
should remain confidential. SAAFL is resilient to client dropouts and
supports client selection. Our experimental results show that it achieves
comparable model accuracy with FedLA and remains efficient in terms
of computation and communication.

Keywords: Federated Learning· Secure Aggregation · non-IID data.

1 Introduction

Federated learning (FL) [13] has received significant interest across various stake-
holders nowadays. In such a framework, machine learning models are trained
with the collaboration of multiple clients: FL clients train models locally with
their data and send them to a server, which aggregates them into a global model,
ensuring that data samples never leave clients’ premises. As for the aggregation
operation, Federated Averaging (FedAvg) [13] is widely used in FL which con-
sists of simply computing the average of all clients’ inputs. Unfortunately, recent
findings have shown that FedAvg falls short in achieving good model accuracy
level when datasets are heterogeneous or non-identically distributed (non-IID)
[15, 19]. To address this, authors in [9] develop a Federated Label-Aware Ag-
gregation (FedLA) protocol which assigns label-specific weights to improve the

2 Aftab Akram et al.

accuracy of non-IID data aggregation. On the other hand, the literature has
shown that sharing FL clients’ inputs in plaintext can leak information about
the training data [14, 17] and there has a been a plethora of secure aggregation
(SA) solutions [12] to thwart such attacks. Indeed, SA consists of computing
an aggregated value without discovering individual inputs. While existing SA
methods seem very promising when the aggregation operation consists of Fe-
dAvg, these methods, unfortunately, cannot be directly employed for FedLA.
Relying on FedLA with non-IID data makes the SA process much more complex
since the aggregation is not a simple sum anymore, and the assigned weights
should remain confidential, too. Client dropouts also pose a significant challenge
in the context of FedLA. While with FedAvg, dropouts were already addressed by
reconstructing an encrypted zero-value, such a solution unfortunately falls short
in the context of FedLA and may drop the accuracy of the model significantly.

In this paper, we propose a new FL protocol, named SAAFL3, that is cus-
tomized for FedLA. This solution ensures, through a new SA building block, a
privacy-preserving clients’ weighted model update aggregation along with secure
clients’ weight computations. Moreover, at each training round, SAAFL enables
online clients to reconstruct dropped clients’ contributions as specific weighted
updates based on the previous round’s model parameters.

Section 2 identifies the challenges for the design of SA customized for FedLA.
In Section 3, the main SA building block is described. Section 4 describes the en-
tire SAAFL protocol which is further studied in terms of performance in Section
5.

2 Towards privacy-preserving FedLA

In this section, we remind the FedLA algorithm and further identify the main
challenges to design its privacy-preserving variant. We finally introduce our so-
lution in high-level, explaining how each of these challenges are addressed.

2.1 FedLA Algorithm

As described in [9], FedLA is a FL framework designed to address non-IID data
distributions. Compared to the standard FedAvg [13] method whereby the aver-
age of FL clients’ model updates is computed, in FedLA the server computes a
weighted average of these updates, whereby weights translate the distribution of
classification labels among FL clients’ datasets. Indeed, each client is assigned a
so-called FedLA-weight that depends on the distribution of labels among data
samples. More specifically, with n clients participating in the training of the FL
model, and k labels represented in the entire dataset, let su be the number of
samples held by client u, sl be the total number of samples with label l across all
clients, and su,l be the number of samples with label l held by client u. To com-
pute the overall FedLA-weight of each client, the process begins by determining
the proportion of data that u owns with label l defined as: wu,l =

su,l

sl
. These

3 SAAFL means simple in Urdu

SAAFL: Secure Aggregation for Label-Aware Federated Learning 3

terms are further summed up across all labels to compute: wu =
∑k

l=1 wu,l.
Finally, the FedLA-weight for each client u is determined as:

wFedLA,u =
wu∑n
u=1 wu

(1)

This FedLA-weight serves as the global model’s averaging coefficient.4

2.2 Challenges when integrating secure aggregation in FedLA

Similar to traditional FL, FedLA is vulnerable to membership inference attacks
(MIA) if gradients are sent in the clear and, unfortunately, integrating SA into
FedLA is not straightforward and raises new challenges. We describe them below
after introducing the aligned threat model as in [11].
Threat model: An untrusted FL server may collude with some clients, along
with the possibility that honest clients unintentionally fail or drop out. These
failures can occur at any stage, and the adversary (comprising the server and
colluding clients) aims to extract private information about honest clients’ indi-
vidual inputs. Two adversarial settings are considered: in the passive model, the
adversary follows the protocol correctly but tries to infer private information
from the protocol transcript, while in the active model, the adversary manip-
ulates messages to uncover private data. We consider attacks that alter the
aggregated results or perform denial-of-service (DoS) attacks out of scope. Ad-
ditionally, attacks, where adversaries impersonate clients, are not considered
either, since these can be easily mitigated through the deployment of public key
infrastructures (PKI).
FedLA-weight privacy (C1): Unlike the traditional FL approach whereby the
aggregator only receives private model updates and executes SA, FedLA firstly
requires the private computation of each client’s FedLA-weights (which depend
on some private inputs from other clients as well). As described in the previous
section, these FedLA-weights should remain confidential to the server [21]. As a
result, FedLA introduces a dual-layer privacy requirement: one for the private
computation of each client’s weight based on other clients’ inputs and one for
the computation of the global model (through a dedicated SA protocol).
Client Dropout in FedLA (C2): Another challenge that arises with secure
FedLA as well as in the standard FL framework is client dropouts. In many
real-world scenarios, clients may be intermittently unavailable due to network
issues, device power limitations, or other reasons. When clients drop out, their
model updates are not received, which can disrupt the training of the model.
There already exist many solutions [2, 3, 8, 10, 11, 18] that are resilient to client
dropouts in privacy-preserving variants of FL frameworks. In these schemes,
online clients mainly reconstruct the encryption of a zero-value for dropped
clients [2, 3, 11, 18]. Unfortunately, these solutions fall short in the case of FedLA

4 The term
∑n

u=1 wu equals k in the dataset:
∑n

u=1 wu =
∑n

u=1

∑k
l=1 wu,l =∑n

u=1

∑k
l=1

su,l

sl
=

∑k
l=1

∑n
u=1

su,l

sl
=

∑k
l=1

sl
sl

= k

4 Aftab Akram et al.

because clients’ FedLA weights depend on the contributions of all the other
clients including the dropped ones. Hence, the reconstruction of the encryption of
a zero-value for dropped clients remains insufficient because this simple addition
could skew the FedLA aggregation, leading to inaccurate model updates and
degraded performance. Therefore, FedLA requires a new, dedicated fault-tolerant
SA scheme that can somehow reconstruct proper FedLA weights that would
remove the impact of dropped clients.
Client selection in SA for FedLA (C3): Another challenge in achieving
privacy-preserving FedLA through the use of SA consists of addressing client
selection at each round. Indeed, in SA, the aggregation key usually depends on
all clients’ individual keys, and at each FL round, SA should still be correct while
non-selected clients’ keys are not included. Since, in FedLA, the distribution of
clients is assumed to be non-IID and this is reflected through the use of FedLA
weights, these weights of non-selected clients also need to be omitted while still
achieving SA correctly.

2.3 Our Solution - Overview

In this section, we explain our design goals to address each of the three challenges
identified in the previous section are adressed in the newly proposed solution,
named as SAAFL, that is further described in details in Section 4.
Privacy-Preserving FedLA-weight Computation (G1): As previously men-
tioned, the new solution should incorporate two privacy layers: one to com-
pute each client’s FedLA-weight wFedLA,u and one to compute global (aggre-
gated) model parameters during the actual FL round. To compute wFedLA,u in
a privacy-preserving manner, we propose that each client u protects the local
label distribution su,l through a standard SA framework and transfers it to the
FL server. The server aggregates these received values from all clients to cal-
culate the overall weight per label sl, which is subsequently returned to each
client. Clients can now individually determine their wFedLA,u weight relative to
the global label distribution as described in Section 2.1, and this, without having
access to other clients label weights sv,l in cleartext. These weights should be
computed only once in the Registration step and require only one communica-
tion round. Once weights are determined, clients can proceed to the SA of the
weighted model parameters.
Fault-tolerant FedLA (G2): Regarding C2, because the inputs of each client
are not independent of each other due to wFedLA,u, to address client dropouts,
we propose a simple, yet effective, fault-tolerant SA solution based on a vari-
ant of the threshold Joye-Libert scheme proposed in [11]. In this new solution
named TJL-A, each online client sends the difference between their current and
previous round weighted inputs.

Once the server receives all inputs, the result will correspond to the aggre-
gation of online clients’ weighted parameters together with the previous model
parameters multiplied by the remaining weight (corresponding to the dropped
clients). Hence dropout clients’ inputs become previous model’s parameters that
are properly weighted. In Section 5, we experimentally demonstrate the perfor-
mance of this solution.

SAAFL: Secure Aggregation for Label-Aware Federated Learning 5

Handling client selection in SA for FedLA (G3): To address the impact
of non-selected clients, we apply the same technique proposed in G2 to handle
dropout clients. Hence, non-selected clients are considered as dropouts.

In the sequel of the paper, we describe how SAAFL achieves these three
design goals starting by describing the new TJL-A building block.

3 Building Blocks

In this section, we outline the key building blocks necessary for designing our
solution SAAFL, including the newly proposed TJL-A aggregation solution.
Secret Sharing Over the Integers (ISS): ISS used to secret share clients’
keying material and some contributions for dropped clients.

– {(u, [∆s]u)}u∈U ← ISS.Share(s, t,U = {1, . . . , n}): This algorithm splits
secret s ∈ [−I, I] into n shares [∆s]u, assigning each share to a user u ∈ U ,
with t being the reconstruction threshold and ∆ = n!. The algorithm creates
a random polynomial p(x) of degree t − 1 where p(0) = ∆s and each share
is [∆s]u = p(u).

– s← ISS.Recon({(u, [∆s]u)}u∈U ′ , t): This algorithm reconstructs secret s ∈
[−I, I] from at least t shares received from users in U ′ ⊆ U . Using the
Lagrange interpolation, the secret is computed as:

s =

∑
u∈U ′ µu[∆s]u

∆2
, such that µu =

∆ ·
∏

v∈U ′\{u} v∏
v∈U ′\{u}(v − u)

.

µu represents the Lagrange coefficient for user u.

Label-aware Threshold Joye-Libert Aggregation (TJL-A): We propose a
new variant of the TJL scheme originally proposed in [11] that helps SAAFL take
into account the FedLA weights of dropped clients during aggregation. The main
difference between the newly proposed TJL-A scheme and TJL is that when FL
clients drop, their inputs are not replaced with zero-values anymore. Indeed, the
original TJL reconstructs the zero-value encrypted with the dropped clients’
individual keys. As also shown in Figure 3 in Section 5, in the context of a
non-IID distribution of FL clients, aggregating a zero-value for dropped clients
significantly impacts the accuracy of the actual model. Therefore, we propose to
replace this zero-value with a previous round’s model parameters weighted with
a specific coefficient. This carefully selected value compensates for the missing
contributions of the dropped clients more accurately and ensures the correctness
of the aggregation at the same time. Furthermore, the initial contribution of
each FL client becomes a weighted differences of their model parameters and the
previous model parameters: xu,τ = wFedLA,uθ

τ
u −wFedLA,uθ

(τ−1). Therefore, at
the aggregation phase, the server will reconstruct a weighted average of online
clients’ inputs and previous model parameters for dropped clients.

Accordingly, the proposed TJL-A scheme consists of the following PPT al-
gorithms:

6 Aftab Akram et al.

– (sk0, {sku}u∈U , N,H, σ) ← TJL-A.Setup(λ) : Given security parameter
λ, this algorithm outputs one secret key per client sku, the aggregator key
sk0 = −

∑
u∈U sku and the public parameters pp = (N,H) such that N = pq

(p and q being large and equal-size prime numbers) and H is a cryptographic
hash function H : ZN → ZN2 . Additionally, it sets security parameter σ for
ISS.

– {(v, [∆sku]v)}v∈U ← TJL-A.SKShare(sku, t,U) : This algorithm invokes
ISS.Share with sku ∈ [−2b, 2b], with b representing the bit-length of mod-
ulus N and outputs the output of ISS, namely the secret shares of sku for
each user v ∈ U .

– Yu,τ ← TJL-A.Protect(pp, sku, τ, xu,τ) : This algorithm encrypts private
input xu,τ as described in equation 2 for round τ using sku and outputs
ciphertext Yu,τ using the original JL algorithm [7]:

Yu,τ = (1 +Nxu,τ) ·H(τ)sku mod N2 (2)
– [Y ′τ]u ← TJL-A.ShareProtect(pp, {[∆skv]u}v∈Uoff , τ, x

′
u,τ): As opposed to

the original TJL.ShareProtect, this algorithm protects x′u,τ which is a
non-zero value using the shares of the keys of dropped clients Uoff and ISS
parameters ∆ and µu:

[Y ′τ]u = (1 +Nx
′

u,τ)
∆2µ−1

u ·H(τ)
∑

v∈Uoff
[∆skv]u mod N2 (3)

– Y ′τ ← TJL-A.ShareCombine({u, [Y ′τ]u}u∈Uon , τ): This algorithm calls ISS.-
Recon and reconstructs the non-zero value that will be further used for the
final aggregation. Hence, Y ′τ is computed as

∏
u∈Uon

([Y ′τ]u)
µu mod N2 , here

Uon being the set of online clients, and we obtain:

Y ′τ =

(
1 +N

∑
u∈Uon

x
′

u,τ

)∆2

·H(τ)
∆2 ∑

v∈Uoff
skv mod N2 (4)

– xτ ← TJL-A.Agg(pp, sk0, τ, {Yu,τ}u∈Uon , Y
′
τ) : Given public parameters pp,

aggregation key sk0, the ciphertexts of online clients u ∈ Uon, and the ci-
phertext of the non-zero value corresponding to dropped clients v ∈ Uoff,
this algorithm first computes the aggregated ciphertext Yτ for round τ as
Yτ =

(∏
u∈Uon

(Yu,τ)
)∆2

· Y ′τ mod N2 which corresponds to:

Yτ =

[
1 +N∆2

(∑
u∈Uon

xu,τ +
∑

u∈Uon

x
′

u,τ

)]
·H(τ)∆

2·
∑

u∈U sku mod N2

(5)
Finally, to obtain the overall aggregate in cleartext, the algorithm computes:

Vτ = H(τ)∆
2·sk0 · Yτ , xτ =

Vτ − 1

N∆2
mod N.

This recovers the sum of the inputs:

xτ =
∑

u∈Uon

wFedLA,uθ
τ
u +

(
1−

∑
u∈Uon

wFedLA,u

)
θ(τ−1) (6)

SAAFL: Secure Aggregation for Label-Aware Federated Learning 7

4 SAAFL

In this section, we describe SAAFL, which uses TJL-A to compute each client’s
FedLA weight in a privacy-preserving manner, along with a traditional fault-
tolerant SA scheme for aggregation. SAAFL also makes use of a pseudo-random
generator (PRG), key aggreement scheme (KA), authenticated encryption (AE),
and the Shamir’s secret sharing Scheme (SS) which due to space constraints are
not described in the paper but the reader can refer to [11] as these are the same
protocols. SAAFL consists of two phases: (1) Setup Phase whereby FL clients
are registered and each party receives its keying material and (2) training phase
whereby model parameters are aggregated and updated in several FL Rounds.
Setup Phase. The protocol starts with the Setup Phase which comprises three
steps: Registration, Key Setup and FedLA-weight Calculation. Each of these steps
is executed only once. At the Registration step, a trusted dealer (TD) generates
the secret keys sku for each client and aggregation key sk0 for the server along
with relevant public parameters pp required by the clients and server. Each
client generates public-private key pair over the pp using KA.Gen and registers
itself by sending the public key to the server. At the Key Setup step, once each
client receives the list of all registered clients together with their public keys,
they establish pairwise keys with each of them and use TJL-A.SKShare to
generate the shares of their individual TJL-A key sku. Finally, at the FedLA-
weight Calculation step, each FL client u encrypts su,l of data samples with label
l with the TJL-A secret key sku (generated in the previous Key Setup step)
and sends them to the FL server. The server performs their aggregation using
TJL-A.Agg and sends sl of samples with label l to all FL clients. Then, each
client calculates its FedLA-weight wFedLA,u (see Eq. 1).
The training phase. The training phase consists of the execution of several FL
Rounds until reaching a certain level of accuracy. Each FL Rounds consists of
two steps: Protection and Aggregation. At the Protection step, all selected clients
encrypt their inputs and send them to the server. Then, at the Aggregation step,
clients interact with the server to account for the dropped and non-selected
clients so that the server can perform the aggregation correctly and accurately.
Each FL round begins with the selection of clients Uτ ⊆ U that will participate
in the aggregation, and this is performed based on selection ratio kτ as in the
FedLA and ensures that all parties are aware of which clients will participate in
the current FL Rounds τ in advance.

At the Protection step, after training the local models, each client generates
a random seed bu,τ to generate a blinding mask Bu,τ for masking its input xu,τ

and then encrypts it using TJL-A.Protect. These blinding masks are used in
the same way as in [11, 4] to protect the privacy of the clients’ inputs in case
the server receives the protected values of a given client (usually a straggler)
twice using the same τ . Each client then secretly shares seed bu,τ with other
clients using SS.Share through the server and transmits its protected input
Yu,τ masked with Bu,τ to the server.

At the Aggregation step, the clients receive the list of encrypted shares of
blinding mask seeds bu,τ and deduce the list of online clients Uτ

on from those

8 Aftab Akram et al.

SAAFL - Setup Phase

Registration: |U| = n. |L| = k.

– Trusted Dealer (TD):
1. Run ppKA ← KA.Param(λ) and (sk0, {sku}u∈U , N,H, σ)← TJL-A.Setup(λ).
2. Set pp = (ppKA, N,H, σ, t, n,m,R, F) where m is the number of model parameters

defined in ZR, t is the threshold and F is the field for the SS scheme.
3. Send (pp, sku) to each client u and (pp, sk0) to server.

– Clients (∀u ∈ U):
1. Receive (pp, sku) from TD.
2. (cPK

u , cSK
u)← KA.Gen(ppKA): Generate a key pair and send cPK

u to the server.
– Server:

1. Receive (pp, sk0) from TD and cPK
u from each client u ∈ U .

2. Broadcast to all clients the list {u, cPK
u }u∈U .

Key Setup:

– Clients (∀u ∈ U):
1. Collect {v, cPK

v }v∈U of all registered clients.
2. ∀v ∈ U \ {u}, cu,v ← KA.Agree(ppKA, cSK

u , cPK
v , H): Establish pairwise shared keys.

3. {(v, [sku]v)}v∈U ← TJL-A.SKShare(sku, t,U): Generate t-out-of-n shares of sku.
4. ∀v ∈ U \ {u}, ϵu,v ← AE.Enc(cu,v, u ∥ v ∥ [sku]v): Encrypt each share with cu,v and

send {(u, v, ϵu,v)}v∈U to server.
– Server:

1. Collect and forward {(u, v, ϵu,v)}v∈U to registered clients.

FedLA-weight Calculation:

– Clients (∀u ∈ U):
1. ∀l ∈ L,Wu,l ← TJL-A.Protect(pp, sku, τ0, su,l): Protect the local label distribution

su,l and send Wu,l to the server.
– Server:

1. Collect all Wu,l from clients.
2. ∀l ∈ L, sl ← TJL-A.Agg(pp, sk0, τ0,Wu,l, Y

′
τ0

): Aggregate all Wu,l to obtain the total
number sl of samples with label l. Here, Y ′

τ0
= 1.

– Clients (∀u ∈ U):
1. Compute wFedLA,u (see Eq. 1 in Section 2.1).

Fig. 1: Detailed description of the Setup Phase of SAAFL

shares. Online clients encrypt the relevant value x′u,τ for non-selected and dropped
clients U \ Uτ

on with TJL-A.ShareProtect and the key-shares of these clients.
This is to ensure that the FedLA-weights of non-selected and dropped clients
also appear in the final aggregation as discussed in Section 2.3. Then, each online
client sends to the server the shares of the blinding mask seeds for other online
clients and the share of the protected non-zero value [Y ′τ]u for the non-selected
and dropped clients. The server reconstructs the blinding masks using SS.Recon
and PRG and combines the shares of the protected approximated value [Y ′τ]u
using TJL-A.ShareCombine. Finally, the server computes the masked sum cτ
of the weighted inputs of online clients xu,τ and the approximated value x′u,τ
for non-selected and dropped clients with TJL-A.Agg and removes the clients’
blinding masks to obtain the aggregated model xτ for FL Round τ .
Security Analysis: SAAFL must guarantee the privacy of the clients’ inputs
against the passive and active adversaries. We sketch the proofs following [11].

SAAFL: Secure Aggregation for Label-Aware Federated Learning 9

SAAFL - FL Round (τ)

Client Selection: Clients are selected based on the parameter kτ and previous round model
θτ−1. Let Uτ ⊆ U represent the set of selected clients in the current FL round τ .
Protection:

– Clients (∀u ∈ Uτ):

1. bu,τ
R← F: Sample a seed for PRG.

2. Bu,τ ← PRG(bu,τ): Extend the seed using PRG to produce the blinding mask.
3. xu,τ ← wFedLA,uθ

τ
u − wFedLA,uθ

(τ−1): Compute client u’s input.
4. Yu,τ ← TJL-A.Protect(pp, sku, τ, xu,τ + Bu,τ): Mask and protect the input xu,τ .
5. {(v, [bu,τ]v)}v∈Uτ ← SS.Share(bu,τ , t,Uτ): Generate t-out-of-n shares of bu,τ .
6. ∀v ∈ Uτ \ {u}, e(u,v),τ ← AE.Enc(cu,v, u∥v∥[bu,τ]v): Encrypt shares.
7. If any of the above steps fails, abort. Otherwise, send ({e(u,v),τ}v∈Uτ , Yu,τ) to the

server.
– Server:

1. Collect ({e(u,v),τ}v∈Uτ , Yu,τ) from remaining clients.
2. Define the set of online clients Uτ

on ⊆ U
τ based on received tuples. If |Uτ

on| < t, then
abort. Otherwise, send {(u, v, e(u,v),τ)}u,v∈Uτ

on
to online clients.

Aggregation:

– Clients (∀u ∈ Uτ
on):

1. Receive {(v, u, e(v,u),τ)}v∈Uτ
on

from the server and deduce Uτ
on.

2. ∀v ∈ Uτ
on \ {u}, v

′∥u′∥[bv,τ]u ← AE.Dec(cu,v, e(v,u),τ): Decrypt secret shares. Assert
that v′ = v and u′ = u.

3. x′
u,τ = 1

|Uτ
on| θ

(τ−1): Compute the approximation for non-selected and dropped clients.

4. [Y ′
τ]u ← TJL-A.ShareProtect(pp, {[∆skv]u}v∈U\Uτ

on
, τ, x′

u,τ): Protect x′
u,τ with

client u’s key shares of non-selected and dropped clients.
5. If any of above steps fails, abort. Otherwise, send ({[bv,τ]u}v∈Uτ

on
, [Y ′

τ]u) to the server.

– Server
1. Collect ({[bv,τ]u}v∈Uτ

on
, [Y ′

τ]u) from online clients.
2. ∀u ∈ Uτ

on, bu,τ ← SS.Recon({[bu,τ]v}v∈Uτ
on

, t): Reconstruct blinding mask seeds.
3. ∀u ∈ Uτ

on, Bu,τ ← PRG(bu,τ): Reconstruct the blinding masks.
4. Y ′

τ ← TJL-A.ShareCombine({[Y ′
τ]u}u∈Uτ

on
, t): Reconstruct the protected approxi-

mations.
5. cτ ← TJL-A.Agg(pp, sk0, τ, {Yu,τ}u∈Uτ

on
, Y ′

τ): Aggregate all inputs from the online
clients and all approximations from the dropped and non-selected clients.

6. xτ = cτ −
∑

v∈Uτ
on

Bu,τ =
∑

u∈Uτ
on

xu,τ +
∑

u∈Uτ
on

x′
u,τ : Calculate the final result by

removing the blinding masks.

Fig. 2: Detailed description of the FL Round in SAAFL

Security in the Passive Model: In the honest-but-curious model, the server
follows the protocol but colludes with up to n − t clients. Let UC represent
the corrupted clients, and C = UC ∪ S where S is the server. The view of C is
computationally indistinguishable from a simulated view if |UC | = n − t < t.
Therefore, t > n/2, allowing recovery from up to n/2 − 1 client failures. This
relies on the security of the underlying cryptographic primitives. KA ensures that
entities in C cannot distinguish the honest clients’ pairwise keys from random
values. The TJL-A scheme ensures that protected inputs and honest clients’
shares appear random if entities in C have fewer than t shares. SS (and ISS)
guarantees that entities in C cannot distinguish the shares from random values
if they have no more than t− 1 shares.

10 Aftab Akram et al.

Security in the Active Model: In the active model, the server can manipulate
its inputs. The server only distributes clients’ public keys and encrypted shares,
which it cannot alter due to the AE scheme. The server’s power is limited to
withholding shares, potentially misleading clients about which are online. Im-
portantly, the server can provide different views to clients, convincing some to
send a protected approximation Y ′τ for client u, while others send shares of the
blinding mask bu,τ . If the server obtains both Y ′τ and bu,τ for the same client u
in round τ , it can unmask the input. Colluding with n− t corrupted clients, the
server can gain n − t shares of Y ′τ and bu,τ . For the remaining t honest clients,
it can manipulate half to send shares of Y ′τ and the other half shares of bu,τ ,
learning up to n − t + t/2 shares. Hence, n − t + t/2 < t, implying t > 2n/3,
allowing recovery from up to n/3− 1 client failures.

5 Performance Evaluation

Experimental Setup. We have implemented SAAFL5 and to evaluate its per-
formance, experiments are conducted on a machine equipped with an AMD
EPYC 7272 processor, 128 GB of RAM, and 4 NVIDIA GeForce RTX 3090
graphics cards. The underlying cryptographic primitives consist of the same
building blocks and libraries as in [11]. We use the EMNIST-balanced dataset
[6] with k = 47 labels, each of which represented by 2400 samples. This is one
of the two datasets utilized in [9] to evaluate the original FedLA. We also em-
ploy the same CNN model of [9] which consists of two convolutional layers, one
dropout layer, and two linear layers. The model is configured with a batch size
of 256 and a learning rate of 0.01.

To evaluate the accuracy of the resulting model, similar to [9], the EMNIST-
balanced dataset is distributed among n = |U| = 10 clients according to two
parameters: the number of unique labels that each non-IID client has, denoted as
uniquec and noniids which is the proportion of non-IID clients. We vary uniquec
across {1, 2, 3, 4, 6} and noniids across {0.1, 0.3, 0.5, 0.7}. Each IID client holds
2400 samples while each non-IID client holds all samples of the labels to which
it is assigned: e.g., if uniquec = 2, each non-IID client holds 2 × 2400 = 4800
samples. At each FL round, we define the selection ratio kτ ∈ {0.7, 0.8, 0.9}.
Each setting is evaluated by running experiments over 100 FL rounds each with
10 local epochs. In our protocol, non-selected clients are treated as dropped.
We set the TJL-A threshold to t = 6 and allow a maximum dropout rate f
of 0.1, 0.2, or 0.3 when kτ is 0.7, 0.8, or 0.9, respectively. We further evaluate
the performance of SAAFL in terms of computation and communication while
considering 100 users and kτ = 0.8, f = 0.2.
Experimental Results. First, we compare testing accuracy of SAAFL under
a non-IID setting with that of FedAvg, original FedLA, and FedLA-FTSA [11]
which executes TJL with dropout clients’ inputs set to zero. We evaluate worst-
case scenario for SA, i.e., a maximum dropout rate that each method can handle.

5 The code is available in https://github.com/Aftab201/SAAFL.git.

SAAFL: Secure Aggregation for Label-Aware Federated Learning 11

(a) kτ = 0.7, f = 0.1 (b) kτ = 0.8, f = 0.2 (c) kτ = 0.9, f = 0.3

Fig. 3: Testing accuracy for FedLA, FedAvg, FedLA-FTSA, and SAAFL with
uniquec = 1, noniids = 0.7.

Since FedLA has been proved to have superior accuracy to FedAvg in data
distribution in which the non-IID clients are the majority [9], we choose to dis-
cuss the results of the experiments in which uniquec = 1 and noniids = 0.7. As
shown in Figure 3 and as expected, FedAvg suffers more unstable performance
than FedLA and SAAFL because of the highly non-IID data distribution. We also
observe that FedLA-FTSA yields worst performance mainly because dropped
clients’ inputs are considered as zero and this does not help achieve aggregation
correctness in FedLA. Meanwhile, SAAFL achieves almost as good accuracy level
as FedLA thanks to the proposed TJL-A scheme which sets dropped clients’
inputs as model parameters of the previous round weighted with specific coef-
ficients. Furthermore, in Figure 3a, FedLA has significant accuracy drop in one
early round in which all selected clients have non-IID data distribution. This may
happen when proportion of non-IID clients noniids is equal to the selection ratio
kτ . On the contrary, SAAFL avoids this issue by adding to FedLA-weighted aver-
age

∑
u∈Uτ

on
wFedLA,uθ

τ
u an approximated value

(
1−

∑
u∈Uτ

on
wFedLA,u

)
θ(τ−1)

that compensates for the impact of non-IID clients.
Furthermore, we also propose to integrate differentially private stochastic gra-

dient descent (DP-SGD) [1] in the local training of each client using Opacus[20]
in order to add another layer of privacy protection to protect against global mem-
bership inference attacks. We compare the performance of FedAvg and SAAFL.
DP-SGD requires three extra parameters: the maximum gradient norm C, pri-
vacy budget per client per FL round (ϵ, δ). Fine-tuning of these parameters is re-
quired to balance the negative impact of DP to the performance and the privacy
protection level. We choose optimized parameters C = 7.0, ϵ = 2.0, δ = 10−5 for
these experiments. Figure 4 shows the accuracy of the FedAvg and SAAFL when
applying DP-SGD. While, due to the noise added to the models, both methods
experience a performance decrease, compared to the results without DP-SGD,
FedAvg has a more significant drop in testing accuracy than SAAFL does.

We finally evaluate the performance of SAAFL in terms of computation time
and communication cost. We set the number of clients to 100. As shown in Table
1, with kτ = 0.8, and f = 0.2, each client takes 249 ms to run the Key Setup
whereas the server takes 1.55 ms. The calculation of FedLA-weights, takes 38 ms

12 Aftab Akram et al.

(a) kτ = 0.7, f = 0.1 (b) kτ = 0.8, f = 0.2 (c) kτ = 0.9, f = 0.3

Fig. 4: Testing accuracy for FedAvg, and SAAFL with DP-SGD (C = 7.0, ϵ =
2.0, δ = 10−5) with uniquec = 1, noniids = 7.

at the client and 1085 ms at the server. Finally, at each FL Round, each client
takes 6463 ms for the SA of model updates and the server, 46475 ms. The data
transfer at each client in Key Setup, FedLA-weight Calculation, and FL Round
are measured as 14.27 KB, 14.64 KB, and 24.88 KB, respectively.

Table 1: Computation and Communication Cost of SAAFL with n = 100, kτ =
0.8, f = 0.2.

SAAFL Server Client BW
Key Setup 1.55 ms 249 ms 14.27 KB

FedLA-weight Calculation 1085 ms 38 ms 14.64 KB
FL Round 46457 ms 6463 ms 24.88 KB

When compared with the solution in [11], SAAFL incurs the same complex-
ity, namely: O(n + m) for the client and O(n2 + nm) for the server both for
communication and storage, and O(n2 +m) for the client and O(n2 + nm) for
the server in terms of computation. (n and m being the number of clients and
the number of model parameters, respectively).

6 Related Work

We study the related work according to the three challenges that we have identi-
fied in Section 2. Many SA schemes have been proposed for FL [12]: The majority
of them unfortunately omit the case with non-IID clients (C1) and use the stan-
dard FedAvg solution to obtain the aggregated model. Such solutions become
ineffective in the non-IID case. Regarding client dropouts (C2), existing solutions
either (i) rely on online clients to reconstruct offline clients’ inputs [4, 11] or, (ii)
define dedicated parties such as decryptors in [10], to ensure aggregation correct-
ness, or (iii) consider online clients’ inputs only and define aggregation keys on
the fly [18] (this also seems to address client selection). SAAFL, relies on online

SAAFL: Secure Aggregation for Label-Aware Federated Learning 13

clients but to achieve a good level of accuracy in the non-IID context, the recon-
structed value for dropped clients is not zero but a customized one. Recently, [16]
develops a FL scheme that uses a dedicated polynomial integer neural network
to address both non-IID distribution and client dropouts. Regarding C3, most
of the existing solutions, including [16], assume that client selection has already
happened and usually omit this important operation, whereas in SAAFL, non-
selected clients are considered as dropouts too. Finally, the very recent work in
[5] considers the use of DP mechanisms for non-IID clients. This work can be
considered as independent as it does not implement SA. A combination of this
work with SAAFL can be an interesting future work direction.

7 Conclusion and Future Work

We have developed a new privacy-preserving FL framework named SAAFL that
is suitable to environments where clients datasets are non-IID and runs in two
communication rounds, only. SAAFL is based on a customized SA protocol TJL-
A where the dropped clients’ shares depend on the previous round’s parameters.
Thanks to TJL-A and as shown by our experimental results, SAAFL exhibits
an acceptable level of accuracy. Finally, the DP-SGD mechanism is used to add
another protection level for global model parameters. For future work, we aim
to address stronger threat models, ensuring the privacy and correctness of the
aggregated value even in the presence of malicious users and/or aggregators.

Acknowledgments

This work has been partially supported by the TRAIN project number ANR-22-
FAI1-0003, the 3IA Côte d’Azur programme reference number ANR-23-IACL-
0001 and the project number ANR-23-CPJ1-0060-01.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep Learning with Differential Privacy. In: ACM SIGSAC Conference
on Computer and Communications Security (ACM CCS) (2016)

2. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure Single-
Server Aggregation with (Poly)Logarithmic Overhead. In: ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2020)

3. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, B., et al.: Towards federated
learning at scale: System design (2019)

4. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel,
S., Ramage, D., Segal, A., Seth, K.: Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2017)

5. Chen, L., Ding, X., Bao, Z., Zhou, P., Jin, H.: Differentially Private Federated
Learning on Non-iid Data: Convergence Analysis and Adaptive Optimization.
IEEE Transactions on Knowledge and Data Engineering 36, 4567 – 4581 (2024)

14 Aftab Akram et al.

6. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: Emnist: Extending mnist
to handwritten letters. In: International Joint Conference on Neural Networks
(IJCNN) (2017)

7. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: International Conference on Financial Cryptography and Data Se-
curity (FC) (2013)

8. Kadhe, S., Rajaraman, N., Ramchandran, K.: Fastshare: Scalable secret sharing by
leveraging locality. In: 2021 IEEE International Symposium on Information Theory
(ISIT) (2021)

9. Khalil, A., Wainakh, A., Zimmer, E., Parra-Arnau, J., Anta, A.F., Meuser, T.,
Steinmetz, R.: Label-aware aggregation for improved federated learning. In: Inter-
national Conference on Fog and Mobile Edge Computing (FMEC) (2023)

10. Ma, Y., Woods, J., Angel, S., Polychroniadou, A., Rabin, T.: Flamingo: Multi-
round single-server secure aggregation with applications to private federated learn-
ing. In: IEEE Symposium on Security and Privacy (SP) (2023)

11. Mansouri, M., Önen, M., Ben Jaballah, W.: Learning from Failures: Secure and
Fault-Tolerant Aggregation for Federated Learning. In: 38th Annual Computer
Security Applications Conference (ACSAC) (2022)

12. Mansouri, M. and Önen, M. and Ben Jaballah, W. and Conti, M.: Sok: Secure
aggregation based on cryptographic schemes for federated learning. In: Proceedings
on Privacy Enhancing Technologies (PoPETS) (2023)

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.:
Communication-efficient learning of deep networks from decentralized data. In: In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS) (2017)

14. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive Privacy Analysis of Deep
Learning: Passive and Active White-box Inference Attacks against Centralized and
Federated Learning. In: IEEE Symposium on Security and Privacy (SP) (2019)

15. Oza, P., Patel, V.M.: Federated learning-based active authentication on mobile
devices. In: IEEE international joint conference on biometrics (IJCB) (2021)

16. Shao, J., Sun, Y., Li, S., Zhang, J.: DReS-FL: dropout-resilient secure federated
learning for non-IID clients via secret data sharing. In: 36th International Confer-
ence on Neural Information Processing Systems (NIPS) (2022)

17. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: IEEE Symposium on Security and Privacy
(SP) (2017)

18. Taiello, R., Önen, M., Gritti, C., Lorenzi, M.: Let them drop: Scalable and ef-
ficient federated learning solutions agnostic to client stragglers. In: International
Conference on Availability, Reliability and Security (ARES) (2024)

19. Xiao, P., Cheng, S., Stankovic, V., Vukobratovic, D.: Averaging is probably not
the optimum way of aggregating parameters in federated learning. Entropy 22(3),
314 (2020)

20. Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D., Prasad, K., Malek, M.,
Nguyen, J., Ghosh, S., Bharadwaj, A., Zhao, J., Cormode, G., Mironov, I.: Opacus:
User-friendly differential privacy library in PyTorch (2021)

21. Zari, O., Xu, C., Parra-Arnau, J., Ünsal, A., Önen, M.: Link Inference Attacks in
Vertical Federated Graph Learning. In: 40th Annual Computer Security Applica-
tions Conference (ACSAC) (2024)

