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Abstract—The prevalence of sophisticated evasion techniques
employed by phishing attacks in circumventing anti-phishing and
email security measures is on the rise. The present study offers an
exhaustive analysis of user-reported phishing messages pertaining
to five companies over a ten-month period. These messages are
of particular interest as they evaded all state of the art security
layers in place and were identified by the recipients themselves.

To study these elusive phishing attempts, we developed an
analysis infrastructure, CrawlerBox, designed to overcome cloak-
ing tactics that exploit browser fingerprinting and bot detection
challenges. CrawlerBox is made available as an open-source tool
to assist other researchers in pursuing further studies.

Over the course of ten months, we gathered 1,551 user-reported
messages that were confirmed to be malicious, with a particular
focus on those targeting the harvesting of corporate credentials.
Our analysis infrastructure enabled us to scan these messages and
crawl any associated web resources, including URLs, embedded
HTML, and JavaScript content.

Our findings indicate that the majority of observed phishing
attacks are low-volume but meticulously planned, exhibiting a high
degree of premeditation and strategic preparation. In particular,
a substantial number of sites were registered and had obtained
TLS certificates several weeks before the attacks in order to avoid
being flagged based on their young age, a common practice used
by products to defeat phishing websites. Furthermore, it was
observed that phishing pages are now safeguarded by advanced
evasion mechanisms, such as bot detection services and open-
source fingerprinting libraries. Notably, QR codes are increasingly
used to embed phishing content. The victim needs to use a
personal phone to flash the code and access the site; this activity
will typically fall outside the perimeter of the corporate security
defenses. These findings underscore the evolving sophistication
of phishing threats and the urgent need for resilient systems
to counter these advanced techniques, further emphasizing the
critical role of robust infrastructures like CrawlerBox in enhancing
the security and dependability of email systems.

Index Terms—phishing, crawler, cloaking

I. INTRODUCTION

Phishing attacks have evolved into one of the most pervasive
and dangerous threats in the digital landscape, exploiting
human vulnerabilities and technical loopholes alike. They have
undergone extensive research, and various detection systems
have been suggested. Nevertheless, this phenomenon is still
on the rise and has recently reached an all-time high [1].
Combating malicious emails resembles a perpetual cat-and-
mouse chase. New techniques rise continuously, making it
possible to bypass detection. In this paper, we assess the evasion
mechanisms used today by threat actors to slip through the
cracks of commercial email security filters. We propose to study
these techniques’ sophistication, prevalence, and efficiency.

Through industry cooperation, we had access to ten months
of email exchanges pertaining to five organizations: one
major multinational technology corporation and four additional

companies which email security is overseen by the first
organization. The multinational corporation provides software
solutions for the global travel and tourism industry, with more
than 20,000 collaborators distributed across four continents. The
four other companies each focus on different business activities,
including travel platforms, content aggregation, booking en-
gines, revenue management, merchandising, transportation, and
payment solutions. This range of services illustrates the diverse
activities within the studied environments. As is customary in
such cases, the architecture of the system in question entails
the preliminary analysis of any email sent to an employee by
a number of automated commercial security mechanisms. If
the message is classified as clean, i.e., it has not been found to
contain any kind of threat, it is delivered to the recipient’s inbox.
However, such security mechanisms are far from perfect, as
we will show in this paper. Some messages that are considered
clean may actually be false negatives (FNs). Thanks to a strong
security awareness program, some FNs are detected by end
users who have been instructed to report malicious emails.

This study focuses on user-reported emails that have been
subsequently confirmed as malicious by expert analysts. These
are the messages that evaded the detection of the entire set
of security layers in place, yet were identified by human
recipients. The data in question represents a veritable gold
mine of information, as it comprises the messages that were
able to circumvent the main security layers.

To deceive the evasion techniques that they might be
relying on, we develop our own analysis infrastructure. It
extracts web resources (including URLs and HTML/JavaScript)
embedded in the reported messages. It loads them afterward
in a carefully crafted sandbox, which we dub CrawlerBox,
constructed with high stealthiness requirements. Given that
some phishing pages are protected with bot detection or browser
fingerprinting services, as we will show in our paper, we made
sure that CrawlerBox defeats such state-of-the-art services by
incorporating an evasive crawler, which we refer to as NotABot.

In this work, we present our analysis infrastructure, the
results obtained from crawling evasive phishing pages, and an
inspection of the evasion techniques used by threat actors. Our
findings, as observed by analyzing user-reported emails from
the studied companies, indicate that the malicious messages in
question are predominantly associated with low-volume attacks,
namely, infrequent campaigns against which automated systems
have received limited data, thereby impeding their ability to
detect them on a large scale. Moreover, we observe that the
majority of the landing domains are created long before the
reception of the phishing messages. This suggests that attackers
register their phishing domains in advance before starting their



campaign. Interestingly, we notice that some rely on relatively
new services or open-source fingerprinting libraries to bypass
detection. In particular, QR codes are leveraged to embed
malicious URLs. Access to the website will not be done from
the corporate machine protected by the corporate defenses but
from the smartphone that flashes the QR code. As of now, most
personal smartphones are typically less monitored and protected
than machines in the corporate network. This is another way
to deceive the security measures in place within companies.

We even discovered a bug exploited in the wild that is used
to hide a URL inside a QR code without getting extracted
by email filters at scanning time. The wide usage and the
diversity of the found evasion techniques suggest that attackers
are putting great effort today into protecting their phishing
pages from detection.

The main contributions of this article are:
• The development of an automated analysis infrastructure,

including a crawler with the capacity to circumvent sophisti-
cated browser fingerprinting and bot detection services. It is
made available as open source [2].

• Providing a comprehensive insight into the nature of phishing
based on an analysis of user-reported messages from five
companies operating across diverse sectors.

• Identifying the most prevalent evasion techniques, thereby
indicating the areas where technological resources should be
concentrated to counter modern phishing.
All in all, this study offers a wealth of contributions

that can significantly enhance the security and dependability
of email systems by addressing both the technological and
behavioral dimensions of email-based threats. Namely, by
bridging the gap between human-reported observations and
automated system capabilities, this research not only bolsters
the technological infrastructure of email systems but also
emphasizes the indispensable role of end-user awareness and
vigilance in modern cybersecurity.

To discuss these topics, this article is structured as follows.
Section II presents the state of the art and positions our work.
Section III surveys the known evasion techniques. We introduce
in Section IV our analysis infrastructure and in Section V our
results and the newly discovered evasion implementations that
threat actors arm their infrastructure with to bypass detection.
In Section VI, we outline the key takeaways of our study and
provide a detailed discussion of the obtained results. Then, in
Section VII, we describe the limitations of this work. Finally,
our paper concludes in Section VIII, where after drawing the
final remark we describe our responsible disclosures.

II. RELATED WORK

In this section, we discuss prior work pertaining to the phish-
ing ecosystem measurement and analysis. We also describe
how our work is positioned in relation to the state of the art.

A. Studying the phishing ecosystem

In order to study the phishing ecosystem, previous research
often relied on public sources (mainly the Certificate trans-
parency logs, and open-source blacklist databases) [3]–[12].

Our research focuses on phishing targeting specifically a
corporate environment, based on live user-reported phishing
messages received by multiple companies in the travel and
tourism industry. We make a closer examination of the phishing
landscape, and the techniques employed to evade detection.

Meaningfully assessing long-term trends in the volume of
phishing attacks has been shown to be challenging [13]–[15]. In
2009, Moore et al. [16] examined both phishing websites and
the associated spam messages. The study revealed that spam
was predominantly sent around the time the phishing websites
emerged, leading several products to use the registration time
of the website and the creation of its TLS certificate as an
indicator of maliciousness. As we will show in our study, this
approach is becoming less effective as attackers have taken it
into account in their modus operandi.

In 2020, Oest et al. [17] studied the end-to-end life cycle
of phishing attacks while passively measuring victim traffic to
phishing pages. It was found that the typical phishing attack
lasted 21 hours from the first to the last victim’s visit and that
anti-phishing entities identified each attack nine hours after the
first victim’s visit. This highlights the fact that phishing attacks
are generally short lived. Yet, attackers attempt to maximize
any victim impact within that brief attack period. Later in
2021, Bijmans et al. [5] presented an empirical, longitudinal
measurement study of the end-to-end life cycle of Dutch
phishing campaigns. Interestingly, 69% of the phishing domains
returned a blank screen and no favicon. This measurement
confirmed that a large number of domains were either inactive
at scanning time or were already implementing techniques,
known as ”cloaking mechanisms”, to hide their true nature
from anti-phishing actors. We present cloaking in detail in
Section III. In 2022, Subramani et al. [4] developed a crawler
that scanned phishing URLs while simulating user interactions.
Modern user verification systems (including CAPTCHAs) were
seen in some of the studied phishing websites.

In 2024, [18] found that national companies and organiza-
tions are far more often impersonated using malicious newly
registered domains under their country’s own ccTLD (country
code Top-Level Domain). Whereas, international companies are
impersonated using compromised domains, decreasing overall
mimicry but avoiding any registration costs.

So called ”phishing kits” are unified collections of tools
used to deploy phishing sites on web servers [19]. In 2008,
Cova et al. [20] focused on the analysis of ‘free’ phishing kits.
They were found to contain backdoors which exfiltrated the
gathered information. This conclusion was also verified and
generalized in more recent work in 2022 by Tejaswi et al. [21].

Oest et al. [19] analyzed phishing kits in 2018 and revealed
the used .htaccess server-side filtering techniques. In 2021,
Bijmans et al. [5] identified 70 distinct phishing kits by finger-
printing the kits based on their unique properties (including
file names, paths, and uncommon strings). The authors identify
10 different phishing kits families.

In 2022, Merlo et al. [22] analyzed PHP, JavaScript, and
HTML codes from 20,871 kits collected from forensic teams
of private security firms. The static similarity analysis revealed



that 90% of the kits share 90% or more of their source code
with other kits.

In 2016, Han et al. [23] proposed a web honeypot which
attracted real attackers into installing phishing kits in a
compromised web application. The authors observed an average
blacklist detection latency of 12 days.

More recently, Kondracki et al. [24] presented in 2021 the
first analysis of MITM phishing toolkits used in the wild. These
toolkits operate as reverse proxy servers, positioned between
victims and target web servers. They mimic web servers when
interacting with victims while functioning as clients when
connecting to the target web servers. The authors’ findings
revealed that phishing sites relying on MITM phishing toolkits
are significantly underrepresented in anti-phishing blocklists.
Specifically, only 43.7% of domains and 18.9% of IP addresses
associated with these toolkits appeared on blocklists. These
results emphasize the importance of developing more advanced
anti-phishing bots for scanning malicious sites.

In 2024, Lee et al. [8] conducted a comprehensive study
of phishing kits at the script level. The utilized web crawler
(Selenium Chrome WebDriver) failed to evade most of the
sophisticated cloaking mechanisms (e.g. fingerprinting-based
techniques). During our study, we made sure to develop an
evasive crawler in order to correctly assess the analyzed
phishing landscape – presented in Section IV.

B. Comparison with our work

Previous work [8] confirmed that attackers are increasingly
relying on evasion techniques, and more particularly on one
subcategory called ”cloaking” to avoid detection. Some security
crawlers attempt to overcome this by simulating user interaction
for example. Yet, many fail to bypass advanced evasion
strategies [6], [9], [11], [25]–[28].

We propose in this paper to make a deep analysis of
malicious user-reported emails from five companies. These
messages reached the users’ inboxes despite all the security
defense layers in place, which makes them particularly stealthy.
We build our own analysis infrastructure (Section IV) and we
examine the prevalence of cloaking techniques associated to
these messages (Section V). The objective is to have a good
understanding of today’s phishing ecosystem, while taking into
consideration the threats that usually fly under the radar of
automated security scanners.

III. TAXONOMY

The lifecycle of a phishing message from its creation to
delivery can be broken down into four distinct stages.
1) The message is prepared by the threat actor with the

intention of luring the victim into visiting a malicious
URL embedded within the message. This URL usually
points to a website that allows the user to inadvertently
leak sensitive information. To send the message, attackers
may use compromised email servers or accounts, third-
party services, or malicious sender accounts. They may also
employ tactics such as domain spoofing or email header
manipulation to disguise the true origin of the message.

2) The email is sent to the recipient using the Simple Mail
Transfer Protocol (SMTP). At this point, some evasion
techniques can be used, such as SMTP smuggling [29].

3) Once the email reaches the recipient’s mail server, it
undergoes various security checks before being delivered to
the inbox. At this point, the server checks the integrity and
the origin of the message with SPF (Sender Policy Frame-
work), DKIM (DomainKeys Identified Mail), and DMARC
(Domain-based Message Authentication, Reporting and
Conformance). The email is parsed and its attachments
are scanned for known malware signatures. The embedded
links are checked against regulary updated URL denylists or
analyzed in real time in an isolated environment. Additional
checks such as content filtering (based on, for example,
phishing keywords, obfuscated text, or brand impersonation)
and reputation-based scanning can be applied.

4) If the message is categorized as benign, it is delivered to
the recipient’s inbox. If not, it is quarantined or deleted.

This lifecycle is designed to ensure that phishing emails are
detected and blocked before reaching the recipient. Nonetheless,
sophisticated phishing campaigns might evade these defenses.

In this section, we propose a taxonomy of the evasion
techniques employed to bypass the email security parsers and
scanners. In particular, we categorize these techniques into two
distinct classes:
1) Message-level evasion: it refers to techniques used to

hide an embedded URL in a message, such that it is
not successfully retrieved by email security parsers. This
category also includes alterations made to a message to
deceive anti-phishing tools.

2) Cloaking: it refers to techniques used when a client visits
a phishing website. The goal is to conceal the phishing
page from web crawlers and security bots (stage (3)), while
keeping it visible to human victims [30]. If the visitor is
identified as a bot, a benign content is displayed. Thereby,
security detection efforts are obstructed.

A. Message-level evasion

Message level evasion can be based for instance on obfusca-
tion, character substitution, and character encoding (where parts
of the message are encoded in Base64 for example). Attackers
might also embed malicious text in images to evade text-based
filters [31]. This technique was proved to be efficient especially
with the rise of malicious QR codes [32].

To evade content-based detection, attackers might add
benign content (noise) to dilute malicious signals or to mimic
the behavior of legitimate emails (e.g., including a lengthy
newsletter or formal corporate email structure) [33]. In other
cases, the message might contain minimal content (e.g., a
single malicious link or one sentence), limiting the information
available for behavioral analysis systems to flag the email [34].

B. Cloaking

Cloaking has gained popularity among attackers [9]. Yet,
security scanners have struggled to keep pace with these
evolving threats [6], [9], [28]. It can occur on both the client



side and the phishing server side, depending on where the
logic for concealing the phishing content is applied. Client-
side cloaking involves techniques executed within the user’s
browser or system. For example, some checks are run on
the client to collect information about the environment or the
user’s behavior. Depending on the result, a different content
is displayed to the visitor (benign or malicious). Server-side
cloaking is executed on the phishing server itself. In this case,
the server decides what content to serve based on attributes of
the incoming request, such as IP address or User-Agent. The
phishing content is only displayed to targeted users.

In this Section, we present the known client-side and server-
side cloaking techniques.

1) Client side cloaking techniques: In 2021, Zhang et al. [9]
presented an in-depth analysis of client-side cloaking techniques
found in the wild and classified them into three high-level
categories:

1) User interaction: the phishing content remains hidden until
a button in a pop-up window is clicked or if a mouse activity
is detected. In other cases, user interaction such as scrolling
or filling out form fields are needed to show the malicious
content.

2) Fingerprinting: if the cookies are disabled or if the browser
cache is enabled, the client is detected as an automated
environment and the phishing page is not displayed. This
detection can also be made based on the origin of the
traffic (by checking the Referrer field), or on the user
agent string, accessed via the navigator.userAgent
property. Some additional checks can be made based on
attributes like the screen resolution for instance.

3) Bot behavior: the phishing content is randomly displayed or
is delayed by a few seconds. While scanning a URL, some
security crawlers do not wait enough time before the page
is reloaded with malicious content. This leads to a false
negative verdict. Additionally, Google reCaptcha was seen
in previous phishing campaigns since at least 2020 [25].
It presents the user with the ”I’m not a robot” checkbox,
prompting them to solve image-based puzzles.

2) Server-side cloaking techniques: Based on decisions
made by the phishing server, they include:

1) Delaying the activation of a phishing URL: before its
activation, all visitors are redirected to a benign page. This
technique can be used to prevent email security filters
from reaching the malicious page while scanning the URL
extracted from an incoming message. For example, attackers
might choose to send a phish message when the victim is
supposed to be unavailable (in the middle of the night for
instance). At delivery time, the URL does not display any
malicious content. A few hours later, the URL is activated.

2) User Agent filtering: the phishing content is only accessible
for specific clients, for example the ones associated with
a mobile browser (such as Safari on iOS). This technique
might be part of the attacker’s strategy, for instance, when
the phishing URL is embedded in a QR code, which should
normally be decoded by a mobile phone, not a desktop or

a laptop.
3) IP blacklists: used to block access to clients whose IPs are

associated to known security scanners.
4) Displaying the phishing site only if the GET request is made

to a valid tokenized URL: The attacker generates URLs
containing unique tokens. For example, a URL might look
like the following: https://evil-site.com/dhfYWfH, where the
token is ”dhfYWfH”. Any request lacking a valid token
is redirected to a benign webpage. Additionally, attackers
can disable individual tokens, preventing even those URLs
from displaying the phishing content.

IV. ANALYSIS INFRASTRUCTURE

In order to study evasive phishing messages, we had access
to all the emails reported by the employees of a major
multinational technology company, supervising the security
of four additional companies. The multinational corporation
specializes in software solutions tailored for the global travel
and tourism industry, with a workforce exceeding 20,000
employees across four continents. The remaining four compa-
nies operate in various sectors, encompassing travel platforms,
content aggregation, booking systems, revenue management,
merchandising, transportation, and payment processing. This di-
versity underscores the wide-ranging operational environments
considered in our study.

Figure 1 shows our analysis pipeline. It is composed of 3
phases: (1) fetching newly reported malicious messages and
pruning them, (2) parsing and crawling the found web contents,
and (3) logging the results.

A. Pruning the data

In total, these companies handle over 60 million inbound
emails monthly. These email messages are initially intercepted
and analyzed by state of the art security products. Only the
messages classified as clean are delivered to the intended
recipients. At this stage, 17% of all messages are filtered out
because they were detected as malicious or spam. Among
the remaining 83%, about 14,000 are monthly reported as
suspicious by end-users (corresponding to 0.03% of the total
delivered messages). The companies in question maintain a
robust awareness policy, actively encouraging their staff and
consultants to report any suspicious emails they receive and
frequently engaging them in phishing simulation campaigns.
Then, once a message is reported, a security expert examines it,
and, in the end, one of three possible tags is given: malicious,
spam, or legitimate.

The primary distinction between emails labeled as “spam”
and those categorized as “malicious” lies in their intent and po-
tential risk. Spam refers to unsolicited messages primarily used
for undesired advertising and promotions. In contrast, malicious
messages are associated with fraudulent activities, including
phishing attempts. These messages seek to deceive recipients
into divulging sensitive information, e.g., login credentials,
credit card details, or confidential data, by masquerading as
communications from trusted entities. On average, among the
reported emails, about 3.7% are found to be malicious, while the



Figure 1: CrawlerBox Analysis Pipeline

rest are flagged as either legitimate (35.0%) or spam (61.3%). In
absolute numbers, 500 are reported and confirmed as malicious
every month, i.e., 25 per working day on average. While spam
emails present a fascinating area of research, they fall outside
the scope of this work, which concentrates on emails with
malicious intent.

In this work, we only consider emails that are tagged as
“malicious”. As such, our objective is not to perform phishing
detection but rather to carefully study stealthy messages and
gain insights into the tactics used to fly under the radar of
security products. Therefore, our ground truth is based on
user-reported suspicious emails later confirmed as malicious
by security experts. Among these “malicious” messages, and
as we will further explain in Section V, 29.9% lead to active
phishing, namely, such emails lead to an active web page with
a login form impersonating a trusted entity.

To analyze this very interesting and rich dataset, we
developed an analysis infrastructure which we call CrawlerBox
(4600 lines of Python code), and we release its source code
as a contribution of this work [2]. Moreover, given that
the detection of automated tools (bots) follows a continuous
adversarial cycle, CrawlerBox has been designed with a
modular architecture, allowing for interchangeable use of the
crawling component. We named our crawler NotABot. It was
engineered to circumvent the evasion techniques presented in
Section III. Finally, given that phishing URLs may be short-
lived, CrawlerBox analyzes the reported emails as soon as they
are tagged by experts.

B. CrawlerBox– Parsing phase

First, each message’s mail header is extracted. Then, we
carefully developed a parser that scans recursively all the parts
and subparts of an email message. Depending on its content
type, as extracted from the associated ”Content-Type” header
field [35], each part is parsed differently. Globally in our
dataset, the most prevalent content types are: HTML, images,
Octet Stream files (i.e., binary files), EML (short for electronic
mail, in our case EML attachments), text (including Rich Text
Format attachments), PDF, and ZIP files.

Our URL extraction methodology works as follows:

• URLs are statically extracted from text-based formats.
• Inline and attached images are scanned for the presence of

URLs (using a combination of Optical Character Recognition

libraries) and QR codes. URLs are extracted from the found
QR codes if any.

• For PDF files, we use two approaches: (1) extracting
embedded and text-based URLs, and (2) taking a screenshot
of each page, which is then analyzed like the images
described above.

• Octet Stream files are analyzed according to their file
signature determined by magic numbers.

• Any discovered HTML or JavaScript code is dynamically
loaded with our crawler, as we explain below. Dynamic
analysis in our case is fundamental given the use of
obfuscation to hide malicious URLs.

• ZIP files are unpacked, and each file within is subjected to
the appropriate analysis described in this list.

• Finally, EML files are processed recursively.

C. CrawlerBox– Crawling phase

The crawling phase is thoroughly logged, capturing the
visited domains, their associated TLS certificates, corresponding
IP addresses, as well as the requests and responses exchanged
with the browser (including the content, the loaded HTML
and JavaScript). The collected data is enriched with WHOIS
information, Shodan [36] service banners and Cisco Umbrella
[37] details. Moreover, once the page is fully loaded, a
screenshot is taken.

The objective of this phase is to visit the malicious sites
while evading cloaking techniques. In this context, we introduce
NotABot, the crawler component within CrawlerBox. We show
in Section IV-D that it is able to bypass advanced bot detection
solutions. NotABot is based on Puppeteer [38]. An instance
of the original Chrome browser is launched for each crawled
website or retrieved HTML/JavaScript code. We chose it since
it is the most popular browser [39]. Running the real Chrome
browser in non-headless mode helps to avoid a few browser
inconsistencies that could be used to detect the crawler. To
defeat some timing tests that can be used to detect when
the browser is running in a virtual machine [40], we use a
Dell Precision 3571 physical machine (Intel(R) Core(TM) i7-
12800H 2.40 GHz, with 32 GB of RAM) running Windows 11.
Moreover, detection techniques can identify bots by checking
whether the associated IP address is associated with cloud
providers, proxies, or VPNs [41]. To circumvent this issue, our
machine is connected to the Internet using a 4G modem with
a SIM card under a commercial mobile data plan.



Next, we hide the attributes that are injected by Puppeteer. Re-
cent studies [42] [43] show that websites and bot detection com-
panies extensively depend on attributes introduced by instru-
mentation frameworks, such as navigator.webdriver, to
identify crawlers. This property indicates if the user agent is
under automation control [44]. To bypass this detection, we
disable the AutomationControlled flag, which sets the
property value to False before loading the page content.

During our early experiments, to automatically log the
requests and responses exchanged by the browser, we enabled
request interception in Puppeteer and set up listeners for the
traffic. By construction, once request interception is enabled,
every request will stall unless it is continued, responded
to, aborted, or completed using the browser cache [45].
Unfortunately, this setting resulted in a peculiar browser
caching behavior, which made our crawler identifiable using
the HTTP headers Cache-Control and Pragma. Interestingly, we
noticed that this could be evaded by disabling the page request
interception in Puppeteer while also keeping the handlers for
logging the traffic.

Finally, to avoid behavioral analysis detection, NotABot
generates fake mouse movements. Since Puppeteer relies on
the Chrome DevTools protocol, these actions are recognized as
legitimate by the browser, thus setting the browser’s isTrusted
event property to True [41]. Fingerprinting scripts often use
this property to check if the browser ran programmatic actions
(actions not initiated by a human).

D. Fingerprint test of NotABot

To test the robustness of our crawler NotABot, we check its
associated verdict when challenged against popular browser
fingerprinting services and advanced bot detection tools. Fur-
thermore, we assess its performance in comparison to state-of-
the-art open-source security crawlers.
1) Passing basic bot detection tests: We use BotD [46], an

open-source library designed for detecting basic bots.
2) Passing advanced JavaScript-based anti-bot challenges:

We employ Cloudflare’s Turnstile [47], an alternative to
conventional CAPTCHA systems. It executes a sequence
of JavaScript challenges that collect data about the browser
environment, incorporating methods like proof-of-work,
proof-of-space, web API probing, and other techniques
to detect browser quirks and human behavior.

3) Evading the detection of an advanced anti-bot commercial
solution: We visit a website protected by an advanced
commercial Web Application Firewall (WAF) with each
tested crawler. Due to legal restrictions, we cannot explicitly
name this WAF, and therefore, we will refer to it as
AnonWAF. This solution employs sophisticated techniques,
including TLS fingerprinting, behavioral analysis, JavaScript
fingerprinting, and HTTP header inspection, to identify bot
activity. We check the verdict associated with each visit by
accessing the WAF’s logs.

For our comparison, we choose seven open-source crawlers,
selected for their reputation as state-of-the-art tools in this field.
They are widely recognized for their advanced capabilities

Figure 2: Number of the scanned messages per month

and frequent use in security research and threat analysis.
First, we choose Kangooroo [48], a Java utility designed
by the Canadian Center for Cyber Security for crawling
malicious URLs. Today, it is integrated with Assemblyline’s
[49] URLDownloader service. Second, we select Lacus [50]. It
is a web capturing system built on Playwright and is integrated
within the AIL framework [51]). Third, we test Puppeteer
with the puppeteer-extra-plugin-stealth package
[52]. This plugin helps mitigate bot detection mechanisms by
disguising headless browsing indicators. Fourth, we select Sele-
nium associated with the selenium-stealth package [53].
According to its official description, this implementation helps
to ”prevent almost all selenium detections.” Fifth, we choose
undetected_chromedriver [54]. This tool is described
as “an optimized Selenium Chromedriver patch which does
not trigger anti-bot services.” Finally, we used Nodriver [55]
and Selenium-Driverless [56] for the sixth and seventh. These
last two frameworks do not rely on Chromedriver or Selenium.
Instead, they leverage low-level Chrome DevTools Protocol
(CDP) commands to implement bot automation functions.
These two projects are relatively recent, and our research
predates their development. Furthermore, they have not been
presented in any previously published peer-reviewed studies.
However, for the sake of completeness and in recognition
of their promising results, we have included them in our
assessment.

Table I presents a summary of our assessment. Only three out
of eight crawlers, including NotABot, were able to bypass all
the bot detection tools. In fact, NotABot passes both Turnstile
and AnonWAF without requiring any interaction. As explained
in more detail in the last section of the paper, we responsibly
disclosed this finding to both companies. Cloudflare rewarded
us with a bug bounty associated with a medium-severity
vulnerability, while the anonymous company developing Anon-
WAF acknowledged the issue and is working on remediation.
These recognitions highlight our implementation’s novelty and
effectiveness.

However, Nodriver and Selenium-Driverless also achieve the
same stealthiness levels. The reason why we developed NotABot
is because when the project started in January 2024, they were
not available. For future work, we consider expanding Crawler-
Box by integrating them. Diversifying crawler components
within an analysis infrastructure such as CrawlerBox can only
be beneficial in studying sophisticated phishing campaigns.

V. ANALYZING USER-REPORTED EMAILS

For 10 months, from January 2024 to October 2024, when
the experts classified 5,181 reported emails as malicious,



Table I: Assessment of open-source crawlers in defeating SOTA bot detection tools

Tool
Crawler Kangooroo Lacus Puppeteer +

stealth plugin
Selenium +

stealth plugin
undetected

chromedriver Nodriver Selenium-
Driverless NotABot

BotD ×
√ √

×
√

*
√ √ √

Turnstile × × × × ×
√ √ √

AnonWAF × × × ×
√ √ √ √

1 (
√

) The examined crawler is able to evade detection and pass the test.
2 (×) The examined crawler fails the test.
* Only when used in non-headless mode.

CrawlerBox immediately analyzed them. Figure 2 presents
the distribution of the scanned messages over time. Our
infrastructure processed 518.1 messages per month on average,
with a standard deviation equal to 278.4.

Furthermore, we had access to the final 10 months (March
to December) of 2023 despite the fact that our study had not
yet commenced at that time. During the aforementioned time
frame, the experts identified an average of 885.2 user-reported
messages per month as phishing 1, with a standard deviation
of 454.7. In fact, the apparent peak observed in January 2024
is instead part of a downward trend. In the final three months
of 2023, experts identified 1,959, 1,533, and 1,249 phishing
messages, respectively.

A closer look at our dataset of 2024 revealed that: In
2,572/5,181 cases (49.6%), the messages do not contain any
embedded web resources (such as URLs); these are generally
associated with fraud when attackers try to establish first contact
with the recipient. An example of such deceptive emails is
a plain-text message impersonating the billing department of
a partner company, falsely asserting a past-due balance and
pressuring the recipient to reply urgently to facilitate payment.
This tactic often employs the threat of service disconnection
to enhance the perceived legitimacy of the fraudulent claim.
Whereas 823 messages (15.9%) lead to error pages (NXDomain
error, page unreachable, etc.), despite our efforts to analyze
them in real time. These instances might correspond to phishing
websites that had been deactivated. However, some may be
attributed to phishing pages that CrawlerBox was unable
to access due to server-side filtering mechanisms, such as
geolocation restrictions or User-Agent filtering (e.g., requiring
a mobile-specific User-Agent). Furthermore, 235 messages
(4.5%) lead to pages requiring specific user interaction (e.g., a
Dropbox document, a Google Drive page, or a website requiring
solving a traditional CAPTCHA system involving image-based
puzzles). Only five (0.1%) messages resulted in the download of
external files, specifically ZIP archives. Each archive contains
an HTA (HTML Application) file that retrieves a JavaScript
file from a domain identified as malicious by VirusTotal (more
than 16/94 detections). HTAs are Windows applications that
utilize HTML and scripting languages. They are executed using
mshta.exe and run with the same privileges as the user,

1A paired samples t-test was employed to compare the means of the 2023
and 2024 datasets (the two means originate from the same group and were
measured at two distinct points in time), yielding a p-value of 0.008. Given a
significance level of α = 0.05, the null hypothesis is rejected, indicating a
statistically significant difference between the two years.

granting them extensive access to system resources, including
the ability to create, modify, or delete files and registry entries.
This elevated level of trust makes HTAs a potential security
risk; therefore CrawlerBox does not run them. To err on the
side of caution, an analysis of the Endpoint Detection and
Response (EDR) logs associated with our machine confirmed
that no compromise had occurred. Finally, 1,551 out of 5,181
(29.9%) correspond to active phishing; namely, such emails
redirect to a web page with a fake login form.

A. Spear phishing

Given CrawlerBox takes a screenshot every time the browser
loads a webpage, we compared such screenshots with the five
known legitimate login pages of the companies under study.

However, screenshots associated with these messages often
contain the victim’s email address and some injected noise.
To identify such malicious portals, we use fuzzy hashes:
pHash (perceptual hash) and dHash (differential hash). The
perceptual hash was also used in previous work [9] while
studying client-side cloaking techniques. Both are robust against
small alterations in the images, such as scaling, cropping, or
noise. The (dis)similarity is measured by the hamming distance
between the screenshot’s hash and the hash of the real legitimate
pages. We manually define a threshold under which we confirm
that two images are considered similar. The combination of
both hashes proved to result in better performance in identifying
fake lookalike login pages.

Using this method, 1,137/1,551 (73.3%) messages were
automatically classified with high confidence as spear phishing
attacks because they led to the display of fake, well-known,
lookalike login pages that were specific to a particular organi-
zation. This observation warrants careful interpretation. The
phishing messages analyzed were those bypassing automated
defense systems but subsequently reported by company em-
ployees. Notably, approximately three-quarters of these emails
were targeted attacks specifically directed at the companies.
This finding can be understood in two ways, not mutually
exclusive. First, attackers often study defense mechanisms and
craft phishing messages capable of evading detection. Second,
employees may more readily recognize phishing attempts that
mimic their own company’s branding or target their specific
organizational context. However, irrespective of the reason,
this measure suggests a complementary relationship between
technological solutions and human intervention, emphasizing
the need for a multifaceted approach to dependable systems.



We collect a total of 1,438 distinct landing URLs and 522
distinct landing domains. Table II shows the distribution of the
associated top-level domains (TLDs). We observe that domains
with the .com TLD are the most common, confirming the
result obtained by Kondracki et al. [24]. Surprisingly, the
second most common TLD is .ru. The widespread presence
of .ru domains suggests that registering Russia-based domains
offers some advantages to phishers (cheaper or easier to register
domain names for example). This theory is confirmed by Liu et
al. [57]: due to Russia’s .ru registry policy and price changes,
the number of .ru spamming domains have increased in the
past years. Note that the companies which we are collaborating
with had no Russian headquarters during the analysis period,
excluding that threat actors would use the .ru TLD for adding
any sense of legitimacy in tricking victims. The associated
.ru registrars are: REGRU-RU, R01-RU, RU-CENTER-RU,
REGTIME-RU, and OPENPROV-RU.

After identifying the phishing URLs leading to fake lookalike
login pages, we inspect the requests made by our automated
browser while visiting these pages. We notice that in 339/1,137
cases (29.8%), the client downloads in real-time embedded
resources, including the logo and the background image
from the third-party domains belonging to the organization
being impersonated. This is a crucial observation because by
identifying referrals in requests made for the aforementioned
web resources within their own systems, organizations can
track, at early stages, pages impersonating their login sites.

Table II: Number of phishing domains discovered per TLD

Rank TLD Domains Rank TLD Domains
1 .com 262 (50.2%) 6 .xyz 9 (1.7%)
2 .ru 48 (9.2%) 7 .org 8 (1.5%)
3 .dev 45 (8.6%) 8 .click 7 (1.3%)
4 .buzz 27 (5.2%) 9 .br 7 (1.3%)
5 .tech 9 (1.7%) 10 Other 100 (19.2%)

Next, we evaluate the phishing deployment timeline from
creation to delivery by analyzing the landing domains’ WHOIS
information, TLS certificate details, and the associated mes-
sages delivery timestamps. For each domain, we compute
the average time difference between the domain registration,
the issuance of the TLS certificate, and the average delivery
timestamp of the associated phishing messages.

We refer to “timedeltaA” as the time difference between the
registration of the domain and the average delivery time of
the messages. Similarly, we refer to “timedeltaB” as the time
difference between the creation of the domain’s TLS certificate
and the average delivery time of the messages.

The kurtosis values associated with the distributions of
timedeltaA and timedeltaB are equal to 8.4 and 6.8 respectively,
indicating fat tails distributions (right-skewed). For better
visualization of this data, we focus in Figure 3 on the domains
where timedeltaA and timedeltaB are under 90 days. Notably,
102 domains have a timedeltaA over 90 days. But only 5
domains have a timedeltaB over 90 days. Four out of the five
domains are legitimate but were compromised to host phishing.

We choose the 90-day duration because several security and
anti-spam firms use this value as a threshold [58]: domains
younger than 90 days are given the ”new domain” status,
resulting in low reputation scores.

Figure 3: Domain count per average time difference under 90
days (A) between the domain registration and the average mes-
sage delivery timestamp, and (B) between the TLS certificate
creation time and the average message delivery timestamp

The median time for delivering a phishing message is
575 hours (approximately 24 days) after creating the landing
domain, and 185 hours (approximately 8 days) after issuing the
associated TLS certificate. Email security filters use a domain’s
reputation as a key factor in determining its maliciousness score,
with the age of the domain frequently impacting its reputation.
This would potentially explain why, nowadays, some threat
actors carefully register in advance the phishing domains before
sending the malicious messages. This approach contrasts with
the tactics seen a few years ago, when spam was typically
sent shortly after the associated phishing websites were created
[16]. By registering phishing domains well before sending the
associated emails, attackers demonstrate their ability to adapt
to modern defensive measures that rely on reputation-based
detection.

For both distributions, we check the outliers corresponding to
71 distinct domains out of 522 (having a timedeltaA over 273
days or a timedeltaB over 45 days). After a close inspection,
we make the following observations: 42 of these domains are
created from scratch. Whereas at least 20 domains are legiti-
mate domains corresponding to small businesses which were
exploited to host phishing. The remaining cases (9 domains)
correspond to legitimate services abused to host malicious
webpages (vercel.app, cloudflare-ipfs.com, workers.dev, r2.dev,
oraclecloud.com, and cloudfront.net).

Our analysis also reveals that the average number of reported
messages linked to the identified landing domains is 2.62.
Some landing domains are linked to multiple reported phishing
messages (maximum number equals 58). Yet, the median
number is only 1.0. This suggests that many of these phishing
attempts may be part of more targeted attacks rather than
large-scale phishing campaigns 2. This could indicate that a
significant portion of the associated landing domains could be
designed for specific, low-volume operations, making them
harder to detect in targeted scenarios.

2Please note that these numbers are based only on self-reported messages
from the studied companies. We cannot generalize to all email traffic due to
legal reasons since this measurement would require accessing the content of
all employees’ emails.



To verify this statement, we use Cisco Umbrella. Using this
tool, we have access to Cisco’s massive passive DNS database,
which is considered one of the largest in the world [37].
Umbrella resolvers analyze over 180 billion DNS requests daily.
We examine the DNS query volumes for the malicious landing
domains during the last 30 days before the reception of their
associated message. We filter the domains by dropping the ones
corresponding to compromised websites or some legitimate
providers (e.g., cloudflare-ipfs.com) because we believe that
their DNS query volume would not be representative of the
phishing traffic. We find that the domains associated with only
one phishing message have significantly lower DNS query
volumes (median maximum query volume per day equals to
18.5 and median total number of DNS queries in the past 30
days equals to 43.0) compared to those associated with multiple
messages (median maximum query volume per day equals to
50.5 and median total number of DNS queries in the past 30
days equals to 100.5). These median numbers are relatively low.
Nonetheless, we notice that the domain associated with the
most reported messages has also by far the highest DNS query
volume in the past 30 days (665,126,135), confirming that it is
not associated with a targeted campaign. The domains with the
second (37,623,107) and third (15,362) highest query volume
are associated to only 5 and 1 reported messages, respectively.

Next, we study the syntax of the 522 credential harvesting
landing domains. Among these domains, only 15.7% (82/522)
include combosquatting, target embedding, homoglyphs, key-
word stuffing, or typosquatting. No domain included punycode.
In prior work [24], [27], security scanners were shown to be
limited by computational constraints, crawling only domains
that appeared in the Certificate Transparency logs and employed
at least one of the deceptive techniques mentioned above.
Since most of the observed malicious landing domains do
not use any of these tricks, they might have avoided being
scanned by a significant number of security crawlers. This is
another indication of the attention paid by malicious actors to
understand how the mitigation tools work in order to defeat
them.

Key Findings

• More than 29% of phishing pages dynamically load
logos and background images from the imperson-
ated organization’s domains, providing a critical
opportunity for organizations to detect and track
these malicious activities early by monitoring referral
requests for such resources.

• Usually, domains are registered long before their
associated TLS certificate is created and before
delivering phishing messages. Some of these domains
are compromised, but the majority are created with
malicious intent. Domains with the .ru TLD are
unusually prevalent among phishing attacks

• Median DNS query volumes for phishing domains
are remarkably low, signaling a shift toward low-

profile, high-impact campaigns. These domains often
evade detection due to their lack of common deceptive
markers like typosquatting.

• Non-targeted attacks increasingly leverage HTML
attachments that execute JavaScript locally to redirect
users, bypassing detection tools.

B. Non-targeted attacks

In a subsequent analysis phase, we manually reviewed
the remaining 414 (out of 1,551) active phishing messages,
excluding the ones that we previously identified as spear
phishing (i.e., 1,137 emails). During this process, we identified
130 (out of 414) unique web pages that do not replicate the
legitimate login portals of the studied companies. These pages
impersonate services commonly used by employees, such as
Microsoft Excel (20 messages), OneDrive (12), Office 365
(11), generic fake Microsoft login pages (44), DocuSign (1),
and others (42).

We observe that 29 phishing messages include an HTML
file as an attachment separate from the main body of the
email. In order to view the file’s content, the victim must
download the attachment locally and open it with their web
browser. In such cases, the browser’s address bar would
display the file’s URI (Uniform Resource Identifier). Such
HTML file may contain JavaScript designed to update the
browser’s URL and reload the page to redirect the victim to an
external website. In our analysis, we identify 19 HTML files
(associated with 19 messages) that are loaded locally without
changing the window’s URL. External resources (such as the
page’s background) are retrieved within the browser’s frames
from legitimate services commonly used for managing and
storing multimedia content (for example, gyazo.com and
freeimages.com).

Finally, we examine the URLs of the collected landing pages,
totaling 111 unique URLs. They are associated with 111 distinct
domains, with only 11 adopting some deceptive techniques
mentioned in the previous subsection.

C. Prevalence of evasion techniques

We examine the evasion techniques used by threat actors
to avoid detection. Notably, we study the prevalence of the
mechanisms discussed in Section III, and we identify new
implementations of known categories. First, we check the
message-level evasion tactics. Second, we inspect the employed
cloaking techniques.

1) Message-based evasion: All the reported messages pass
the three email authentication methods: SPF (Sender Pol-
icy Framework), DKIM (DomainKeys Identified Mail), and
DMARC (Domain-based Message Authentication Reporting
and Conformance). This means that they are either sent
from legitimate, well established email addresses or from
compromised or malicious accounts.

First, we notice in at least 270 cases a lengthy series of
line breaks and a long random text after a fraudulent request
urging the user to click on a malicious link or to open a



malicious attachment. This added noise can dilute the signals
of the malicious content. If the noise is sufficiently disruptive,
AI-models or signatures might rely on erroneous features or
patterns, thus resulting in false negatives – as in this case,
in which human intervention was found to be necessary for
proper classification.

Then, we have identified a novel approach that exploits
a bug in QR code scanners employed by email filters.
In 35 messages, we observed the presence of faulty QR
codes (whose decoding generates a syntactically incorrect
URL). The embedded string contains irrelevant characters
preceding the malicious URL. For instance, it could be con-
structed as follows: ”xxx https://evil-site.com/”
or ”[https://evil-site.com/”, where ”xxx” denotes
any arbitrary sequence of ASCII characters. We tried both the
latest iOS and Android versions and, despite the syntactical
irregularities, scanning such a QR code with the default
mobile phone camera app prompts the user to visit the
malicious webpage. This occurs because the QR code extraction
mechanism is able to successfully retrieve the embedded
URL while disregarding any faulty characters. We tested
the resilience of three leading commercial email security
tools—ranked among the top ten email security products in the
market [59]—against this attack. As of April 2024, two out of
the three tools failed to detect the malicious link, classifying the
corresponding messages as benign 3. The mismatch between
how QR codes are handled by the email security parsers and
by mobile libraries leaves users exposed to undetected phishing
attacks. It is worth emphasizing that the use of QR codes in
phishing emails is particularly advantageous for attackers, as it
encourages recipients to scan the code using their smartphones.
This approach increases the likelihood of the malicious link
being accessed through the victim’s mobile internet connection,
bypassing corporate security and monitoring tools.

2) Cloaking techniques: We rely on the same categorization
discussed in Section III to present our findings. During our
analysis, we examine the web resources loaded by phishing
websites (HTML pages, JavaScript, CSS, images, etc.). By
analyzing these resources, we identify the client-side evasion
techniques deployed by threat actors, as well as the user data
exfiltrated to C2 infrastructure for server-side filtering.

a) Client side. User interaction: By analyzing the
collected JS code obtained from crawling embedded URLs,
we have observed that, in at least 15 messages, cloaking
exists based on the association of the following objects: the
user agent string (accessed via navigator.userAgent),
the timezone (accessed via Intl.DateTimeForm-
at().resolvedOptions().timeZone) and the
browser language (retrieved from navigator.language
or navigator.userLanguage).

In 47 other cases, the visitor lands on a webpage where
they must enter a One-Time Password (OTP), sent to them in
a separate message, in order to access the malicious login site.

3For legal reasons, we cannot disclose the names of these security products;
however, we have engaged with them following the usual responsible disclosure
process.

It is difficult for email security filters to flag phishing URLs
involving OTP prompts since this tactic introduces multiple
layers of complexity. Because the actual malicious login page
is not immediately presented, scanning the URL may not detect
any suspicious activity.

Furthermore, we found 11 messages that rely on custom
challenge–response authentication. For example, some of them
present a simple math equation that users must solve and enter
the result in order to gain access to the landing sites. This
technique is designed to create an additional layer of interaction
that needs custom code to automate the analysis process.

b) Client side. Bot behavior: We notice the frequent usage
of proprietary challenge–response authentication. Our obser-
vations revealed that phishers employ a variety of techniques
to safeguard their activities from automated bots, which are
also commonly utilized in legitimate business operations. The
two principal free proprietary services used by these actors
are Cloudflare Turnstile [47] and Google reCAPTCHA v3
[60]. On one hand, Turnstile was announced by Cloudflare
in 2022 as an alternative to CAPTCHA. It is based on a
series of JavaScript challenges that examine network-level
data, such as IP address reputation, browser characteristics,
and device fingerprints, in order to assess the likelihood of
a user being a bot. Usually, the visitor also has to click
on a box to validate the Turnstile. It is loaded before the
landing page of the phishing site. From the perspective of the
attacker, this represents a cost-free and sophisticated solution
for preventing security crawlers from reaching and detecting
the phishing site. Based on our collected data, Cloudflare
Turnstile is employed in 943 out of the 1,267 identified phishing
messages aimed at harvesting victims’ credentials, accounting
for 74.4% of the total. This highlights the significant prevalence
of Turnstile in phishing campaigns reported by end-users. In
comparison, Google reCAPTCHA [60] is associated with 314
of the reported phishing messages, representing 24.8% of
the total. Usually, these verification checks are run after the
visitor is presented with a Cloudflare Turnstile. This approach
ensures at least two layers of protection, both leveraging
browser fingerprinting techniques. Google reCaptcha is run
in the background following Turnstile, thereby preventing
the need for victims to interact with two CAPTCHA-like
solutions consecutively. This strategy minimizes the risk of
raising suspicion among potential targets.

Moreover, in at least 295 cases, we have seen scripts
attempting to hijack the console’s logging functions. By
redefining them, the console methods are prevented from being
used normally, potentially to prevent debugging or to obfuscate
the console output. In at least 10 other cases, we have seen
instances where a recurring timer is triggered every second.
Each time it runs, it records the current time, invokes the
debugger statement (which will pause execution if a debugger
is open), and then records the time again. This could be used
to detect debugging activity.

Interestingly, some phishing pages (associated with 39
messages) prevent the visitors from using the context menu
by disabling right-clicking or prevent users from accessing



browser developer tools (Inspect Element, JavaScript Console,
or View Source) by disabling key combinations.

c) Client side. Fingerprinting: In comparison to the
fingerprinting checks presented by Zhang et al. in 2021 [9], we
measured a greater number of checks. The authors presented a
limited set of browser characteristics, including cookies, the
cache, the navigator User-Agent property, and the Referrer
field. Concurrently, the techniques employed by attackers have
become more sophisticated. Indeed, we have observed the use
of advanced fingerprinting techniques based on open-source
browser fingerprinting libraries: BotD [46] and FingerprintJS
[61]. These libraries are responsible for computing a fingerprint
associated to a page visitor and detecting bots. FingerprintJS
was discussed previously in the literature [62]–[65] in the
context of legitimate browser fingerprinting. It was considered
as one of the most prevalent fingerprinting libraries in 2023
[65]. The libraries BotD and FingerprintJS are associated to
only 5 malicious reported messages, all of which were received
from July 9th to July 18th. It is worth noting that our analysis
spans a ten-month period, from the beginning of January to
the end of October 2024. The low number and the closeness
of the messages’ reception times might indicate a punctual use
of a specific phishing kit for a targeted campaign.

d) Additional client-side evasion techniques: We observed
that in 167 pages (corresponding to 103 distinct messages
since we can extract multiple URLs from one message), a
subtle visual effect is created on the rendered webpage. A
JavaScript code (encoded in base64) is appended to each HTML
document’s <head> section. It runs before the rest of the
document is fully parsed and loaded. It applies a color rotation
of 4 degrees to the entire document using the CSS filter hue-
rotate(4deg). This technique could be used to evade the
detection of tools relying on visual similarity checks to identify
phishing pages. This trick is not efficient against CrawlerBox
for two reasons. The first one is because we employ fuzzy
hashes (pHash and dHash), which primarily work on grayscale
information. The color rotation should not affect the generated
hashes as long as the grayscale conversion results in a similar
image. The second reason is that we chose a particular threshold
under which we consider two images similar. This threshold is
tailored to our needs and for detecting only pages impersonating
the legitimate login pages of the companies under study.

e) Server side: We notice that phishing websites send
AJAX requests including user data, before loading the malicious
landing page. The requests are sent to a server controlled by the
attacker (either the same hosting the phishing site, or a separate
C2 server). The data includes the client’s IP address, country,
and user agent. We believe that some server-side filtering is
deployed based on the collected information. For example,
the phishing page might only be accessible to visitors from a
targeted country or region, or for clients using mobile devices.

More particularly, we observe the usage of legitimate third-
party services to get the client’s IP and enrich it with additional
data before sending them to a C2 server. Namely, the IP is
retrieved by visiting httpbin.org [66] and is enriched with the
results obtained from ipapi.co [67]. The collected information

includes the city, the country, the ASN, and the network
provider associated to the client’s IP. Httpbin and ipapi were
associated with 145 and 83 malicious messages, respectively.

Finally, looking at the loaded Javascript code, we find an
obfuscated script shared between 38 distinct domains and
associated to 151 reported messages. It implements a sleep
function and hijacks the console’s methods. Additionally, it
extracts the victim’s email address from the tokenized URL,
checks if it is valid (using a regular expression), and performs
a synchronous AJAX request to the attacker’s server. The
goal is to check if the victim’s email address exists in the
attacker’s database. This highlights that attackers keep track
of their potential victims and only load the phishing website
if the corresponding URL targets a specific message recipient.
Another similar obfuscated code is shared between 57 other
distinct malicious domains, corresponding to 143 other reported
messages.

Key Findings

• Some advanced techniques are employed today by
threat actors to evade detection. Some of them rely
on relatively new services or open-source libraries.

• QR codes are leveraged to embed phishing content.
We even discovered a bug in email security filters
which is actively exploited to hide malicious links.

• Phishing websites deploy advanced client-side tech-
niques such as browser fingerprinting, OTP prompts,
and challenge-response mechanisms, making detec-
tion by security tools increasingly difficult.

• A staggering three quarters of credential-harvesting
phishing campaigns leverage Cloudflare Turnstile to
block bots while appearing legitimate.

• Many phishing campaigns incorporate obfuscated
JavaScript to track victims and personalize attacks.

VI. FINAL DISCUSSION

Our research indicates a shift toward low-profile, high-impact
campaigns that are carefully prepared for a significant period of
time before the attacks are launched. This observation contrasts
with previous findings by Moore et al. [16], which indicated
that phishing emails were typically distributed around the time
that phishing websites were launched. This shift highlights
an evolution in attackers’ strategies, likely in response to
modern defenses. Among the evasion techniques observed,
we note the emergence of relatively new trends, such as the
carefully altered use of QR codes to evade email filters and to
bypass corporate security by leveraging employees’ personal
devices. In addition, attackers are extensively using stealth
techniques – such as browser fingerprinting and advanced bot
detection methods – to protect their phishing infrastructure.
Previous studies [9], [26], [30], [68], [69] present cloaking
as an evasion technique. However, our research uncovers new
implementations of known cloaking categories (such as the
abuse of modern browser fingerprinting libraries and victim
tracking). Determining the specific technique solely responsible



for evading detection remains challenging, as we lack access
to the backend of proprietary automated anti-phishing tools.
However, our findings suggest that the combined use of the
identified evasion techniques makes the analyzed phishing
messages particularly stealthy and difficult to detect.

These observations highlight the urgent need for more
adaptive defenses. For instance, we suggest building web
security scanners that exhibit a fingerprint consistent with that
of browsers operated by humans. It is also important to render
the messages’ contents in order to detect QR codes and possible
hidden texts. However, we acknowledge that conventional
scanning and sandboxing techniques may remain insufficient
in the face of advanced adversarial methods, particularly
those leveraging meticulous filtering and dynamically tailored
payloads. Scalability and cost constraints may also pose
significant obstacles to implementing defenses. Nonetheless,
email filters can be enhanced through the integration of
behavior-based and context-aware analysis to improve the
detection of subtle, evasive threats – for instance, by identifying
abnormal message contents or links that alter behavior based
on the visitor’s IP address or browser fingerprint.

Finally, we emphasize that the findings presented in this
study are generalizable and transferable to other institutions.
Given the high degree of source code reuse among phishing
kits, as highlighted by Merlo et al. [22], and the prolifera-
tion of Phishing-as-a-Service platforms, it is likely that the
strategies and evasion techniques identified in our study are
also employed to target other organizations. In this context, we
provide CrawlerBox as an open-source analysis infrastructure to
facilitate the reproducibility of this measurement study by other
organizations. It represents a comprehensive analysis pipeline
for parsing phishing messages, crawling web resources, and
logging the corresponding artifacts. For future work, we would
like to enrich CrawlerBox with additional crawler components.

VII. LIMITATIONS.

Dataset. We acknowledge that our dataset might be subject
to biases. First, the dataset consists solely of user-reported
messages, meaning it excludes malicious emails that users
fail to report. In reality, employees might be more likely to
report certain types of threats while ignoring others, potentially
leading to an unbalanced dataset. Additionally, observer bias
may arise during the expert validation process, as security
analysts may unconsciously apply subjective criteria when
curating the dataset. Despite these limitations and as stated
above, our objective is not to develop a phishing detection
system. Instead, our primary aim is to uncover and characterize
some evasion techniques employed by attackers in real-world
scenarios. By leveraging this dataset, we identify and study
such techniques.

Crawlerbox. It was tested within a consistent environment,
including identical hardware and network conditions. However,
the findings should be interpreted with caution, as factors
beyond the crawler’s implementation may affect bot detection
outcomes. For example, a visitor’s historical behavior and

the reputation of the associated IP address are critical factors
that can significantly influence detection verdicts. In order
to reproduce these results, it is essential to have a neutral
testing environment. Finally, our crawler NotABot is not able
to solve traditional CAPTCHAs (such as Google reCaptcha v2).
Nevertheless, prior research [68] has addressed this challenge
by proposing an AI-powered system designed to emulate human
behavior for CAPTCHA solving. Integrating such a system
with modern security crawlers could enhance their capabilities,
enabling them to access and analyze uncloaked phishing content
more effectively.

VIII. CONCLUSION

This paper presents a comprehensive analysis of evasion
techniques used by threat actors to bypass anti-phishing
detection mechanisms. Drawing on user-reported phishing
messages provided by a multinational technology organization
responsible for email security across four additional companies,
the study uncovers active strategies employed by attackers in
real-world scenarios. Our findings emphasize the increasing
sophistication and adaptability of phishing tactics, reflecting
the persistent evolution of threats in response to advancing
detection technologies. By detailing these evasion techniques,
this research contributes to a deeper understanding of the
contemporary phishing landscape, highlighting the urgent need
for continuous innovation in detection and mitigation strategies.
Responsible Disclosure and Ethical Considerations. In
accordance with responsible disclosure practices, all flaws
identified during the course of our research were promptly
reported to the affected parties prior to the submission of this
paper. Our findings were acknowledged by the affected vendors.
Specifically, the two email security products tested are now able
to extract links from faulty QR codes built as presented in our
study. Additionally, our crawler’s implementation (NotABot)
was awarded a bug bounty by Cloudflare for bypassing its
Turnstile. Finally, due to legal agreements between the company
that provided us with the data and the company that developed
“AnonWAF”, we cannot disclose its real name, but they have
acknowledged the problem and are currently integrating a fix
into the product. Finally, it is worth noting that the methods
adopted in this research are consistent with our institution’s
ethical guidelines and the data collection and storage are
compliant with the law in which our institution and the
companies reside.
Dataset sharing. Unfortunately, we cannot share our dataset
due to the inclusion of sensitive information, such as employee
email addresses and message contents. Personally identifiable
information may be present in obfuscated or encrypted formats
and can be located in various fields, such as in the phishing
URLs’ fragments, in the loaded web resources, and in other
related data. Ensuring the thorough anonymization of this
information without compromising its integrity would require
substantial effort and cannot be guaranteed to meet the
necessary standards for privacy and security.
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[25] S. Maroofi, M. Korczyński, and A. Duda, “Are you human? resilience
of phishing detection to evasion techniques based on human verification,”
in Proceedings of the ACM Internet Measurement Conference, 2020, pp.
78–86.

[26] L. Invernizzi, K. Thomas, A. Kapravelos, O. Comanescu, J.-M. Picod,
and E. Bursztein, “Cloak of visibility: Detecting when machines browse
a different web,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 743–758.

[27] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a haystack:
Tracking down elite phishing domains in the wild,” in Proceedings of
the Internet Measurement Conference 2018, 2018, pp. 429–442.

[28] B. Acharya and P. Vadrevu, “{PhishPrint}: Evading phishing detection
crawlers by prior profiling,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3775–3792.

[29] “Smtp smuggling,” https://smtpsmuggling.com/, 2024, [Accessed 13-09-
2024].

[30] W. Li, S. Manickam, S. U. A. Laghari, and Y.-W. Chong, “Uncovering
the cloak: A systematic review of techniques used to conceal phishing
websites,” IEEE Access, 2023.

[31] N. Potti, J. B. Wendt, Q. Zhao, S. Tata, and M. Najork, “Hidden in plain
sight: Classifying emails using embedded image contents,” in Proceedings
of the 2018 World Wide Web Conference, 2018, pp. 1865–1874.

[32] Checkpoint, “What is quishing (qr phishing)?” https://www.checkpoint
.com/cyber-hub/threat-prevention/what-is-phishing/what-is-quishing-q
r-phishing/, 2024, [Accessed 03-03-2024].

[33] C. Wang, D. Zhang, S. Huang, X. Li, and L. Ding, “Crafting adversarial
email content against machine learning based spam email detection,” in
Proceedings of the 2021 International Symposium on Advanced Security
on Software and Systems, 2021, pp. 23–28.

[34] L. Ke, B. Li, and Y. Vorobeychik, “Behavioral experiments in email
filter evasion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[35] “Content-type header field,” https://datatracker.ietf.org/doc/html/rfc2045#
section-5.

[36] “Shodan: Search engine for the internet of everything,” https://www.sh
odan.io/, 2024.

[37] “Cisco umbrella,” https://umbrella.cisco.com/blog/new-passive-dns-enh
ancements-for-cisco-umbrella-investigate, 2024.

[38] “Puppeteer,” https://pptr.dev/, 2024, [Accessed 19-08-2024].
[39] C. Han, Q. Niyaz, and A. Javaid, “Browser security comparison using

cookie analysis,” in 2024 IEEE International Conference on Electro
Information Technology (eIT). IEEE, 2024, pp. 256–261.

[40] G. Ho, D. Boneh, L. Ballard, and N. Provos, “Tick tock: building
browser red pills from timing side channels,” in 8th USENIX Workshop
on Offensive Technologies (WOOT 14), 2014.

[41] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “Fp-crawlers:
studying the resilience of browser fingerprinting to block crawlers,” in
MADWeb’20-NDSS Workshop on Measurements, Attacks, and Defenses
for the Web, 2020.

[42] H. Jonker, B. Krumnow, and G. Vlot, “Fingerprint surface-based detection
of web bot detectors,” in Computer Security–ESORICS 2019: 24th
European Symposium on Research in Computer Security, Luxembourg,
September 23–27, 2019, Proceedings, Part II 24. Springer, 2019, pp.
586–605.

[43] J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser monitoring
of javascript in the wild,” in Proceedings of the Internet Measurement
Conference, 2019, pp. 393–405.

[44] “Navigator: webdriver property,” https://developer.mozilla.org/en-US/do
cs/Web/API/Navigator/webdriver, 2024.

[45] “Puppeteer: Page.setrequestinterception() method,” https://pptr.dev/api/p
uppeteer.page.setrequestinterception, 2024.

[46] “Botd,” https://github.com/fingerprintjs/BotD, 2024.



[47] “Cloudflare turnstile,” https://developers.cloudflare.com/turnstile/, 2024.
[48] “Kangooroo,” https://github.com/CybercentreCanada/kangooroo.
[49] “Assembyline,” https://github.com/CybercentreCanada/assemblyline,

2024.
[50] “Lacus,” https://github.com/ail-project/lacus, 2024.
[51] “Ail framework,” https://github.com/ail-project/ail-framework, 2024.
[52] “puppeteer-extra-plugin-stealth,” https://github.com/berstend/puppeteer-e

xtra/tree/master/packages/puppeteer-extra-plugin-stealth, 2024.
[53] “Selenium-stealth,” https://github.com/diprajpatra/selenium-stealth, 2020.
[54] “undetected-chromedriver,” https://github.com/ultrafunkamsterdam/unde

tected-chromedriver, 2024.
[55] “Nodriver,” https://github.com/ultrafunkamsterdam/nodriver, 2024.
[56] “Selenium-driverless,” https://github.com/kaliiiiiiiiii/Selenium-Driverless,

2024.
[57] H. L. Liu, K. Levchenko, M. Félegyházi, C. Kreibich, G. Maier, and
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