
Lightweight Resource Exposure Framework for
Efficient Service and Resource Orchestration in the

Cloud-Edge Continuum
Abd Elghani Meliani
communication systems

Eurecom
Biot, France

abd-elghani.meliani@eurecom.fr

Adlen Ksentini
communication systems

Eurecom
Biot, France

adlen.ksentini@eurecom.fr

Abstract—The Cloud Edge Continuum (CEC) opens up new
opportunities for deploying applications across a wide array
of resources, ranging from centralized cloud infrastructures to
edge and far-edge nodes. However, orchestrating resources in
this heterogeneous and dynamic environment requires innovative
approaches beyond traditional cloud or network function vir-
tualization (NFV) systems. In this paper, we introduce a novel
orchestration framework for the CEC that separates service
orchestration from resource orchestration. This separation is
crucial for managing the ever-changing and diverse nature of CEC
resources, particularly at the edge and far-edge levels. To facilitate
this, it is essential for the orchestration and management plane
of the CEC to incorporate a Resource Exposer (RE) component,
which is the primary contribution of this work. Additionally, a
Central Resource Discovery (RD) Module aggregates data from
multiple REs, providing a comprehensive global view of the
registered infrastructures and available resources. All components
of the framework run in containers, ensuring compatibility
with containerized environments and seamless integration across
Kubernetes, openshift, KubeEdge, and K3S platforms. The exper-
imentation results demonstrate that the proposed system is highly
efficient, with minimal CPU and memory consumption, even when
deployed on low-resource devices like edge nodes. The results show
that the RE achieves low-latency responses and scales well under
high-frequency data collection, making it a viable solution for
orchestrating resources in the cloud-edge continuum.

Index Terms—Cloud Edge Continuum, Resource Orchestration,
Resource Exposer

I. INTRODUCTION

CEC is the next trend in cloud computing. It involves
the strategic deployment of applications and services across
a continuum of resources, which includes centralized cloud,
edge cloud, and far-edge (or extreme edge) nodes. By enabling
CEC, we can unlock the potential of applications requiring
low latency (which operate at far-edge or edge nodes) or
those that need to process data locally (such as Federated
Learning, video analysis, etc.). CEC is also a key enabler
for running cloud-native applications that typically rely on
microservice architectures. Some microservices run as close
as possible to the end-user or the data source, while others,

such as the front-end interfaces, may run in the centralized
cloud. Meanwhile, the management and orchestration functions
of CEC resources differ from the classical approaches used
in Cloud Computing or NFV [1]. The latter relies on a
centralized orchestrator, whereas in CEC, orchestration must
handle a distributed system composed of various computing
nodes, each with different characteristics. The centralized cloud
has abundant resources but high round-trip time (RTT) access
(around 200 ms round trip), edge computing offers fewer
resources but lower RTT access (around 50 ms), and far-
edge nodes have minimal computing resources but practically
zero latency. Additionally, far-edge resources are volatile in
terms of availability, as they can be mobile (e.g., Unmanned
Aerial Vehicles - UAVs or drones) or have battery constraints
(e.g., IoT devices). To overcome the challenges posed by the
orchestration of CEC resources, we propose a new framework
that adopts the approach introduced in [2], which involves
separating service orchestration from resource orchestration.
At the service (or application) level, the orchestration system
ensures the application’s lifecycle management (LCM) and ad-
herence to the service level agreement (SLA); it interacts with
the resources not directly, but through a Resource Orchestrator
(RO) that handles and manages the resources. This separation
of concerns allows for an abstraction that enables the service
orchestrator (SO) to manage services without directly handling
resources. The resources can be dynamically discovered and
managed by the RO. Thus, volatile resources can appear and
disappear transparently to the SO, which only sees the available
resources exposed by the RO. A key feature ensuring the
separation of service and resource orchestration is the resource
exposure mechanism. This allows the RO to track the resource
pools it can use. Resource exposure involves a continual flow
of information provided by the local resource manager (such
as Kubernetes or an SDN controller) indicating the amount,
type, and availability of resources. In the case of volatile far-
edge nodes, whenever they are available, the local resource



manager pushes this information to the RO. Resource exposure
is critical for achieving efficient CEC resource orchestration,
given the heterogeneity of computing resources that form the
computing continuum. Based on resource exposure, the RO
abstracts resource usage for the SO, which views resources as a
pool sorted by geographical location, type, latency capabilities,
etc. In this paper, we propose a lightweight resource exposure
framework for CEC that can be integrated with various Local
Management Systems (LMS) (such as Kubernetes, K3S, and
Kubedge). This framework is highly relevant for CEC and
ensures the separation of resource and service orchestration
paradigms. The contributions of this paper are:

1) A novel CEC orchestration paradigm: The new frame-
work separates between service and resource orchestra-
tion to deal with the volatility of computing nodes (like
far-edge nodes) and the heterogeneous resources of the
CEC.

2) Resource Exposer: Built on a plugin-based architecture
to ensure technological agnosticism, this component is
deployed within each infrastructure to expose local re-
source utilization data.

3) Central Resource Discovery Module: This module aggre-
gates data from multiple REs, offering various entities a
comprehensive global view of the current state of all the
registered infrastructures.

The rest of this paper is structured as follows: Section II
reviews related work, while Section III outlines our key contri-
butions. Section IV presents the performance evaluation and the
results of our proposed solution. Finally, Section V concludes
the paper and discusses future directions.

II. RELATED WORK

Numerous approaches have been proposed for systems mon-
itoring in distributed environments. One prominent example is
the DECOR system [3], which utilizes a distributed method for
resource monitoring, particularly in network-based applications
like redundancy elimination and traffic sampling. By distribut-
ing monitoring tasks across various network nodes, DECOR
avoids the bottlenecks typically associated with centralized
controllers. Similarly, Dprof [4] presents a lightweight, dis-
tributed profiling system designed to trace Remote Procedural
Calls (RPC) operations and identify performance bottlenecks
in complex distributed systems. Dprof gathers and analyzes
RPC traces from heterogeneous components, storing them in a
distributed data store for further analysis. While effective for
debugging performance issues at the RPC level in systems,
Dprof focuses on system-level event profiling and lacks com-
prehensive infrastructure monitoring capabilities. A scalable
monitoring framework introduced in [5] specifically tackles the
challenges of monitoring 5G network slices, with emphasis
on resource isolation, multi-tenancy, and the integration of
different technological domains such as RAN and cloud. This
framework employs slice-specific collectors that follow the life-

cycle of each network slice, ensuring efficient data collection
across diverse domains.

Recently, both industry and academia have been advocating
for standardized RE solutions to improve infrastructure-aware
service deployment, as emphasized by a recent proposal from
the Internet Engineering Task Force (IETF) [6]. While we
share the broader goal of improving resource management,
service discovery, and system bottleneck detection with existing
solutions, we believe we are the first to introduce a unified RE
tailored for heterogeneous systems.

III. SERVICE AND RESOURCE ORCHESTRATION
SEPARATION IN CEC: RESOURCE EXPOSER APPROACH

A. CEC orchestration

As mentioned earlier, this work presents a novel resource
exposure approach to simplify the orchestration and manage-
ment of CEC’s heterogeneous resources. A high-level view of
the proposed CEC orchestration and management framework,
which distinguishes service management from resource man-
agement, is illustrated in Figure 1.

In the figure, we illustrate three key components of the CEC
orchestration and management system. The first component
is the service (or application) orchestrator, which manages
the lifecycle of applications and their microservices. This
includes deployment (placement), runtime (ensuring that the
Service Level Agreement (SLA) is maintained by executing the
decision-making algorithms [7], such as migration or scalable
requests), and deletion. The SO interacts with the RO to get
a global view on the infrastructure, and this is to implement
LCM decisions through a unified API provided by the latter.
In the proposed CEC orchestration system, a key innovation is
the abstraction of CEC resources for the SO to accommodate
the flexibility and heterogeneity of the CEC infrastructure. This
is especially critical given the volatility of far-edge resources
and the ability to add computing resources dynamically. This
abstraction is achieved by the second key element depicted in
the figure, the RO. The RO connects to the computing resources
through the LMSs , which manage local resources (deployment
of containers, pods, and handling of node resources) and
provide an API for Create, Read, Update and Delete (CRUD)
operations. The LMSs are discovered by the RO dynamically.
Whenever an LMS appears in the CEC, it registers itself
with the RO via the exposer, indicating its northbound API.
The abstraction achieved by the RO primarily involves: (1)
translating the SO Life Cycle Management (LCM) requests,
which can be articulated using intents, into an LMS-specific
API; and (2) exposing the available computing resources at the
CEC so that the SO can make informed LCM decisions.

In this paper, our focus is on the second function. As
shown in the figure, the RO periodically gathers the resources
available at each LMS using the resource exposure mechanism
(detailed in the next section). This information is then sorted
and presented to the SO by location and type. The detailed



Fig. 1. The higher level architecture of the proposed monitoring framework

information about the available resources of infrastructure
nodes is accessible at the resource exposer and orchestrator
levels. However, this information is abstracted from the service
orchestrator componen. For example,the RO collects resource
availability from three LMSs in Region 3 and conveys this
information to the SO without detailing individual nodes. It
also aggregates resources by type, such as in Region 1. The
SO may request to deploy a workload in a specific region
by selecting the type of resources (cloud, edge, or far edge)
and specifying the required SLA. In the next section, we will
present our contribution to developing the resource exposure
mechanisms that are essential to ensure the separation of
service and resource orchestration in the CEC.

B. Resource exposure

Figure 2 shows the concept of the proposed resource ex-
posure framework. It highlights the main component, the RE,
which is deployed on each cluster of computing nodes. The
RE is responsible for collecting and providing data on local
resource usage and availability. It exposes an API to share the
required data with the higher control levels. A gRPC plugin-
based system was chosen for the exposer to handle the diversity
of source metrics and monitoring solutions, making the system
agnostic and compatible with various infrastructures. The plu-
gins serve as intermediaries between the data collector and the
existing monitoring solutions. The collected data is temporarily
stored in a message broker. This design addresses two main
challenges: (1) the RE may need to handle requests from
multiple entities simultaneously, especially when the associated
computing node is a part of multiple local systems, so quick
access to data under peak conditions is essential, and (2) the
data only reflects current or near-past resource consumption,

Fig. 2. The lower level architecture of the proposed monitoring framework

eliminating the need for long-term storage. This short-term
storage ensures that the Discovery Module can access up-to-
date metrics. The system supports multiple brokers, such as
RabbitMQ, Kafka, or Redis, allowing the RE to integrate with
any existing infrastructure.

To ensure consistency and ease of integration across different
computing nodes, we propose a unified data format to represent
the metrics. This format ensures that the RE presents metrics in
a structured manner, regardless of the infrastructure specifics,
providing a consistent view across multiple sources and sim-
plifying data processing and analysis. The exposer collects two
main types of metrics: compute and network. For each type, an
overview is first provided, detailing the overall availability and
consumption of resources across the cluster. This is followed by
a more granular breakdown of resource usage in different parts
of the system. Figures 3 and 4 illustrate the metrics formats
for compute and network resources, respectively.

The exposer tracks key compute metrics, including memory,
CPU, and storage. Memory metrics cover total, available, and
used memory at cluster and machine levels. CPU metrics
include core count, per-core usage, average machine usage, and
free capacity. Storage metrics detail used, available, and total
storage, I/O operations, and read/write bandwidth over time.



Fig. 3. Example of JSON format for compute resource metrics, including
memory, CPU, and storage utilization.

Fig. 4. Example of JSON format for network resource metrics, including
throughput, packet loss, latency, and jitter.

For network metrics, the exposer monitors device throughput
(received and transmitted) and packet loss over specified inter-
vals. Additionally, by default, the exposers report latency and
jitter between the infrastructure and the RD Module, helping
assess network stability. The exposer can also be configured to
measure latency between its infrastructure and others, allowing
for cross-infrastructure network performance analysis.

In addition, the exposer provides information on the type
of energy used and other general infrastructure details, such
as whether it is cloud-based, edge, or on-premises. To gain a
deeper understanding of how our solution operates, Figure 5
illustrates the interaction workflow between its various compo-
nents. The figure highlights four key steps:

1) Exposer Registration: When a new RE is deployed at
LMS, it registers itself with the discovery API, allowing
it to easily locate and communicate with it. This self-
registration process improves scalability by eliminating
the need for the Discovery Module (located at the RO)
to actively search for new infrastructures. Instead, each
RE automatically handles its own registration, simplify-
ing the process of adding or removing infrastructures.
This decentralized method reduces the workload on the
Discovery Module and allows the system to adapt flexibly
to changes, enabling new computing nodes or clusters
to join or leave the network without requiring complex
reconfiguration. A Local DNS system is used to manage
communication between the discovery module and the



Fig. 5. Interaction Workflow Between The Different Framework Components

exposers by storing the IP addresses and domain names
of all RE instances.

2) Data Collection: As described earlier, the Collector pe-
riodically accesses source metrics via plugins, gathering
the necessary data and storing it in the message broker.
This process runs in parallel with the RE registration.

3) Data Exposure: The Discovery module requests specific
information from all available Exposer instances about
the infrastructures. The Exposers retrieve the latest data
from the brokers and expose it to the Discovery module.

4) Broker purge: If an Exposer API goes unused for a
certain period, it purges the broker to prevent unneces-
sary data accumulation. This ensures efficient resource
usage and improves overall framework performance by
preventing excessive memory consumption.

IV. EVALUATION & RESULTS

To assess the performance of our solution, we chose to test
it on low-resource devices. This is motivated by the necessity
for the RE to operate on every computing node within the
continuum. Therefore, testing on low-resource devices, which
can represent edge and far-edge nodes, is crucial to ensure
that the exposer can function on every node within the con-
tinuum. Specifically, we used a Raspberry Pi 4 model, which
is equipped with a Broadcom BCM2711 quad-core Cortex-
A72 (ARM v8) 64-bit processor running at 1.5 GHz, along
with 8 GB of DDR4 RAM. We utilized the 64-bit desktop
version of Ubuntu 22.04 as operating system. For the software
components, we employed Redis Stack as the broker for the
exposer. Additionally, we tested the solution using both K3s
v1.31.0 and KubeEdge v1.18.1 as they are generally used for
edge devices and both were running on top of containerd
v1.7.22. Regarding the tests, we concentrated primarily on the
exposer component, as it is the most performance-sensitive part
of the system. This component requires minimal resource usage
and low latency for serving requests. Over a one-week period,
we measured the computing resources utilized by the exposer

while varying the data collection interval from 20 seconds to
1 second, which represents a highly computational scenario.
Figure 6 (left), which illustrates CPU consumption, shows that
as the data collection interval decreases to 1 second, both the
exposer and the broker consume less than 0.04 CPU. This indi-
cates that even in high-frequency data collection scenarios, both
components maintain relatively low CPU usage, making them
compatible with low-resource devices like edge devices. Figure
6 (right), which reflects memory usage (in bytes), reveals
that the exposer experiences minimal fluctuation regardless of
the data collection interval. This suggests that the exposer’s
memory consumption is not heavily impacted by the frequency
of data collection, maintaining a stable footprint across different
intervals. In contrast, the broker shows a noticeable increase in
memory usage as the interval approaches 1 second; however,
it still consumes only 8.51 MB of memory, which is relatively
small for such high-frequency data collection, this is due to the
purge mechanism that we presented in the previous section.
We were also interested in understanding the impact of the
exposer and the message broker on overall computing resources
in the computing node. To analyze this, we measured the
total amount of computing resources consumed while varying
the data collection time intervals in both K3S and KubeEdge
container management platforms.

Figure 6 7 (left) shows the maximum CPU usage percentage
for different time intervals. As observed, the CPU consumption
increases as the collection interval shortens, with K3S con-
sistently using more CPU than KubeEdge across all intervals,
particularly at the 1-second interval where it reaches the highest
value. However, even with the 1-second collection interval,
CPU usage remains below 15% in the worst case, which is an
acceptable level. Figure 6 (right) illustrates the percentage of
memory used. Similarly, memory usage rises as the collection
interval decreases. K3S shows higher memory usage compared
to KubeEdge, especially at the 1-second interval, where mem-
ory usage peaks. Despite this, memory consumption remains
within acceptable limits, with KubeEdge using less than 30%
and K3S staying below 50%. This indicates that both platforms
are capable of handling high-frequency data collection without
significantly overloading the system’s computing resources.

Lastly, we aimed to evaluate the response time of the RE. To
achieve this, we compared the response time of the RE with to
that of Prometheus [8], an open-source system monitoring and
alerting toolkit, under different loads of simultaneous requests.
The experiment was conducted over 50 trials, and the average
results are presented in Figure 8. The latter shows that the
response time for both the exposer API and the Prometheus
API increases as the number of concurrent requests grows.
Additionally, the results indicate that the Prometheus API
takes approximately twice as long to respond compared to the
exposer API. This demonstrates the efficiency of temporarily
caching metric results in the broker which allows our exposer
to fetch them more rapidly compared to solutions that relies



Fig. 6. CPU consumption (left) and memory usage (right) of the exposer and broker across varying data collection intervals.

Fig. 7. Impact of the RE on overall resource footprint for KubeEdge and k3s: CPU usage (left) and memory usage (right).

Fig. 8. Comparison of response times (in seconds) for the exposer API and
Prometheus API under varying loads of simultaneous requests, demonstrating
the efficiency of the exposer API and the impact of caching.

on a complete time series database.

V. CONCLUSION

In this paper, we introduced a novel resource exposure
framework that enables a novel approach to orchestrate and
manage the CEC by separating service orchestration from
resource orchestration. The objective is to address the unique
challenges posed by the heterogeneous and dynamic nature of
edge and far-edge computing nodes. The proposed framework
efficiently handles the volatility of resources in CEC using
a self registration mechanism. Additionally, the Central Re-
source Discovery Module aggregates data from multiple REs,
providing the RO with a global view of available resources
and facilitating resource management across the continuum.
Our performance evaluation demonstrated that the RE operates
with minimal CPU and memory consumption, even in high-
frequency data collection scenarios, making it highly suitable
for low-resource environments such as edge nodes. Further-
more, the system’s ability to maintain low-latency responses
under multiple simultaneous requests highlights its potential
for real-time applications.



In future work, we will leverage the exposure framework by
integrating it with advanced decision-making algorithms for
workload placement and resource allocation.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon Research and Innovation program under AC3 project
and grant agreement No 101093129.

REFERENCES

[1] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture
for on-demand service deployment over a telco cdn,” in 2016 IEEE
International Conference on Communications (ICC), 2016, pp. 1–6.

[2] S. Arora, A. Ksentini, and C. Bonnet, “Cloud native lightweight slice
orchestration (cliso) framework,” Comput. Commun., vol. 213, pp. 1–12,
2024.

[3] S.-H. Shen and A. Akella, “Decor: A distributed coordinated resource
monitoring system,” in 2012 IEEE 20th International Workshop on Quality
of Service, 2012, pp. 1–9.

[4] T. Nguyen and M. Pandey, “Dprof-distributed system profiling and trac-
ing.”

[5] M. Mekki, S. Arora, and A. Ksentini, “A scalable monitoring framework
for network slicing in 5g and beyond mobile networks,” IEEE Transactions
on Network and Service Management, vol. 19, no. 1, pp. 413–423, 2022.

[6] J. R.-G. R. S. Sabine Randriamasy, Luis M. Con-
treras. (2024-07-07) Operational compute metrics. [Online].
Available: https://datatracker.ietf.org/doc/draft-rcr-opsawg-operational-
compute-metrics/

[7] N. Toumi, M. Bagaa, and A. Ksentini, “Machine learning for service
migration: A survey,” IEEE Commun. Surv. Tutorials, vol. 25, no. 3, pp.
1991–2020, 2023.

[8] Prometheus. (n.d.) Prometheus: Monitoring system and time series
database. [Online]. Available: https://prometheus.io/


