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Abstract. Classic machine learning tasks, such as clustering and link prediction,
can be applied to Knowledge Graphs making used of the so-called graph embed-
dings, mathematical vector representations of the nodes present within the graph
structure. Often, the data structure of Knowledge Graphs in Digital Humanities is
at the same time versatile and complex, challenging the machine learning tasks.
In this work, we compare algorithms on two different subgraphs extracted from a
large knowledge graph developed in the cultural heritage domain: one is randomly
selected while the other is built to maximise the triple density. Using the European
Olfactory Knowledge Graph (EOKG) as use-case, we show that embedding dense
subgraph can improve the performances of state-of-art algorithms.
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1. Introduction

Methods for machine learning have gained significant attention in recent years in the
semantic web research community. In the context of Knowledge Graphs (KG), machine
learning can either be used for refining the knowledge graph itself (which involves pre-
dicting new edges and/or identifying erroneous edges) or for downstream tasks: training
models on the KG data are then used for classification, recommendation, regression, etc.
in an application domain [1]. For feeding machine learning algorithms, the data in the
graph must be encoded in a suitable vectorial format, commonly called graph embed-
ding [2]. A number of techniques have been proposed: translational models that interpret
edge labels as transformations from subject nodes to object nodes [3], tensor decomposi-
tion models [4], neural models and language models [5,6]. These techniques have shown
good performances on several machine learning tasks, involving both general knowledge
and domain-specific datasets.

1Corresponding Author: pasquale.lisena@eurecom.fr.
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When applied to fields such Digital Humanities and Cultural Heritage, multiple
challenges arise [7]. In particular, the domain intrinsically exhibits knowledge that can
be structurally complex [8,9], imprecise and uncertain [10], interpretable and subjec-
tive [11]. These qualities may lead to hypothesis that, in the Digital Humanities field, the
attention to the data should be higher. Notably, data sparsity plays a role in the generation
of graph embeddings, with several works demonstrating an high correlation between the
graph density and the embedding performances [12,13,14]. We aim to study if an opti-
mal selection of a cultural knowledge graph exists for training successful graph-based
machine learning tasks.

We will use the European Olfactory Knowledge Graph (EOKG) [15] as a use case
for this research. The EOKG has been realised in the context of the Odeuropa project2

for representing smells and olfactory experiences. Using the EOKG as source knowledge
graph, we want to use graph-based AI technologies – specifically, graph embeddings – to
infer and extract new knowledge from the existing graph. We target two specific tasks:

• We investigate strategies for grouping related odours, measuring the similarity be-
tween two intangible items. Machine learning approaches relying on graph em-
beddings are implemented to cluster items;

• We try to predict missing links in the graph. More precisely, we train the machine
to predict the smell source given the description of the smell experience and its
surrounding context, or vice-versa, to generate context-specific descriptions for a
given odour.

Our experiments demonstrate that the use of a dense graph entail an improvement of the
performances for both tasks, making it a useful strategy in real-world applications in the
Cultural Heritage domain.

The remainder of this paper is organised as follows. We outline some related work
in Section 2. We provide an overview of the EOKG we use in Section 3. We describe our
method in Section 4, which is then used in the two tasks: clustering (Section 5) and link
prediction (Section 6). Finally, we conclude and outline some future work in Section 7.

2. Related Work

2.1. Graph Embeddings

Research about graph embeddings is quite vast: several methods have been proposed,
which have been grouped into different taxonomies, with some overlap [2,16,17].

Random-walk based methods are particularly suitable for approximating properties
such as proximity, similarity, and various structural characteristics of nodes and sub-
graphs [18]. The core idea of this family of techniques consists in the simulation of the
movement of a “walker” through the graph structure. At each step, the algorithm ran-
domly chooses one of the outgoing links of the current node, and follows it to the next
node. The full path (walk) consists on a series of nodes. These walks serve as analogous
structures to sentences in a corpus. Next, word2vec) is often used on these walks yield-
ing a number of methods such as rdf2vec [5], node2vec [19], or entity2vec [6]. Entities
(or words in the word embedding scenario) that appear in the same random walks (or

2https://odeuropa.eu/

https://odeuropa.eu/
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sentences) are considered semantically close, and so have higher possibilities to appear
close also in the embedding space.

TransE [3] is the most representative method of the translation-based family. This
algorithm assigns vectors to both entities (nodes) and predicates (edges), with the idea
that for each triple (subject, predicate, object), the object vector O corresponds to the
translation of the subject vector S along the predicate vector P, that is O = S+P. In the
training phase, the algorithm tries to minimise the distance between O and the translation
T = S +P. This algorithm is widely used in heterogeneous graphs [17], in particular
when the number of different properties is important.

Tensor-factorisation based models include techniques such as ComplEx [20] and
DistMult [21]. Similarly to the translation models, these methods embeds nodes and
edges in the same real dimensional space. What is different is the translating function of
the object, being the dot product of the subject and the predicate.

Finally, rotation-based models replace the translation of TransE with a rotation in
the space. RotatE is a well known example [22] of this family.

2.2. Embeddings in Cultural Heritage

There are several application of KG embedding in the specific field of Digital Humani-
ties and Cultural Heritage. In [23,24], embeddings are trained on cultural KGs, demon-
strating their suitability for link prediction and similarity computation. In [25], missing
Place nodes are inferred from the entities in the graphs in which the information was
missing, using a learning function over KG embeddings.

The quality of clusters is used as a measure of the embeddings quality in [9,26],
while the graph embedding clustering is used for other tasks in [27], where a similarity
metric is used for entity alignment in the history domain.

3. Dataset Overview

3.1. The European Olfactory Knowledge Graph (EOKG)

Odeuropa is a European project (2021-2023) which integrates expertise in sensory min-
ing, knowledge representation, computational linguistics, (art) history and heritage sci-
ence with the objectives of contributing to the topic of olfactory heritage. One of the
project goals is to develop novel methods to collect, model and publish and disseminate
information about smells from digital text and image collections, while also working
with the material presence of odours.

The European Olfactory Knowledge Graph (EOKG) that results from these efforts
is one of the main outcomes of Odeuropa. It consist of a large dataset of olfactory expe-
rience information extracted from textual and figurative resources using domain-specific
techniques [28,29] and organised according to the Odeuropa Ontology [15] which makes
use of semantic web technologies. This ontology represents a Smell as an entity that ex-
ists at a precise time and space, connected to a Smell Emission and an Olfactory Expe-
rience. These are linked respectively to objective (smell source, odor carrier, place, etc.)
and subjective characteristics (quality, emotion, gestures, etc.), as depicted in Figure 1.
These characteristics are normally represented by terms or Concepts from controlled
vocabularies.
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One of the strong points of the EOKG is the harmonisation in a single dataset of 21
data sources covering several centuries from 1600 to 1920, involving both images and
textual resources in 6 European languages, as reported in Table 1. Figure 2 shows a visual
representation of an excerpt of the EOKG. The KG can be accessed in multiple ways,
namely querying a SPARQL endpoint3, calling the grlc-based API4 [30] or accessing the
dumps on the open-source repository5.

Figure 1. The core of the Odeuropa ontology

Figure 2. A visual representation of the EOKG. In this example, Douglass Sherley is the person who experi-
ences a smell emitted by gloves and assigned characteristics such as being intense, rich and oriental in the 19th
century.

The EOKG contains over 400 million statements (or triples), referring to over 2 mil-
lion unique smells. For each of these smells, the dataset may contain a set of character-
istics which are interlinked, whenever possible, with controlled vocabularies. The data
population involved also some post-processing including parsing of time, parsing and in-
terlinking of places to GeoNames, the interlinking of several entities with the controlled
vocabularies.

3.2. The Role of Controlled Vocabularies

Together with a set of multi-language alternative labels which allow to disambiguate
terms towards the same identifier (URI), the Odeuropa controlled vocabularies are or-
ganized as a hierarchical structure formalized in SKOS [32]. In addition, some links
between vocabularies are instantiated for:

3http://data.odeuropa.eu
4https://grlc.eurecom.fr/api/Odeuropa/kg-api/
5https://github.com/Odeuropa/knowledge-graph

http://data.odeuropa.eu
https://grlc.eurecom.fr/api/Odeuropa/kg-api/
https://github.com/Odeuropa/knowledge-graph
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Table 1. Count of smell instances per data source

Graph N. of smell instances Type Language

Odeuropa Benchmark [31] 7,125 Text All

British Library 328,828 Text EN

Medical Heritage 898,458 Text EN

Gallica 811,633 Text FR

Gutenberg 36,766 Text EN, IT

Digitale Bibliotheek voor de Nederlandse Letteren 39,642 Text NL

Digitalna knjižnica Slovenije (Dlib) 22,270 Text SL

LiberLiber 30,228 Text IT

Deutsches Textarchiv (DTA) 14,776 Text DE

Wikisource 110,917 Text EN, IT

Eighteenth Century Collections Online (ECCO) 8,435 Text EN

Early English Books Online (EEBO) 81,038 Text EN

London’s Pulse: Medical Officer of Health reports 6,562 Text EN

Royal Society Corpus 3,627 Text EN

Old Bayley Corpus 1,170 Text EN

Bibliothèque Bleue de Troyes 495 Text FR

Grimm’s Correspondance littéraire 64 Text FR

ODOR dataset [29] 24,351 Image -

Rijksmuseum 46 Image -

Europeana 17,530 Image -

NUK 1,752 Image -

• connecting elements which refer to the same thing, linked using skos:exactMatch;
• connecting elements which are somehow related, linked using skos:related.

For example, tobacco is related to pipe, stable is related to cow, etc.

To better appreciate the represented hierarchy, for the olfactory objects vocabulary,
we present in Table 2 the top-level concepts with the relative number of narrower con-
cepts. The full list of olfactory objects can be extracted from the EOKG using the fol-
lowing SPARQL query:6

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT DISTINCT ?top ?top_label ?concept ?concept_label

WHERE {

?top skos:prefLabel ?top_label;

skos:topConceptOf

<http://data.odeuropa.eu/vocabulary/olfactory-objects> ;

skos:narrower* ?concept.

?concept skos:prefLabel ?concept_label .

FILTER (lang(?concept_label) = "en")

FILTER (lang(?top_label) = "en")

}

ORDER BY ?top ?top_label

6Quickly accessible at https://tinyurl.com/bdft538n

https://tinyurl.com/bdft538n
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Table 2. The top concepts of the olfactory objects vocabulary, with the number of relative narrower con-
cepts (at any depth). The sum of each individual count of narrower concepts may differ from the to-
tal dimension of the vocabulary, since some concepts belonging to two different categories are counted
twice. The namespace olfactory-objects: is equivalent to http://data.odeuropa.eu/vocabulary/

olfactory-objects/.

URI label # narrower concepts

olfactory-objects:560 Flora 178

olfactory-objects:405 Food 176

olfactory-objects:554 Artefact 148

olfactory-objects:555 Being 84

olfactory-objects:558 Fragrance / Cosmetic 56

olfactory-objects:533 Body 38

olfactory-objects:562 Element 32

olfactory-objects:559 Nature 27

olfactory-objects:563 Abstract 19

olfactory-objects:616 Matter 8

olfactory-objects:564 Religion 6

olfactory-objects:631 Product 4

olfactory-objects:615 Fumes 2

These vocabularies can be easily browsed at https://vocab.odeuropa.eu/. In
Table 3, we report on the number of terms successfully interlinked with the controlled
vocabularies. This gives an idea of the size, complexity and density of the graph.

Table 3. Statistics of the interlinking of controlled vocabularies for the most important properties in the EOKG

Graph element
Nb. of disambiguated
mentions

Relevant vocabularies Nb. of concepts

Gestures 3,066 Olfactory Gestures 36

Agents 8,868 Noses 14

Places 79,106 Fragrant Spaces 137

Evoked odorants 64,671
Olfactory Objects 682Carriers 86,707

Odor Sources 678,249

Qualities 509,886 Smell Classifications, Hedonic, Intensity 1,824

Emotions 158,005 Plutchik + Odeuropa extension 32

4. Methodology

4.1. Pre-processing steps

To generate embeddings from the EOKG, we collected a list of relevant properties, con-
sisting of all the connections between the smell objects and the vocabularies in Table 3.
We collected all pairs of instances involving these properties locally, in the edgelist for-
mat.

We decided to include only the data extracted by textual resources and exclude those
coming from the annotation of images. The reason for this choice stems from the nature

http://data.odeuropa.eu/vocabulary/olfactory-objects/
http://data.odeuropa.eu/vocabulary/olfactory-objects/
https://vocab.odeuropa.eu/
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of those images: for example, still life paintings are widely represented and depict to-
gether a series of objects – from pipes to fruits, from fishes to wine – without having a
clear meaning of their olfactory similarity or relatedness.

Given the size of the graph, any embedding strategy involving the totality of the data
would be expensive and would require a computation time of several weeks or months
to be completed. This effort may be repeated if the graph evolves over the time. For this
reason, we decided to use a subset of the graph for training our machine learning models.
However, following the research question mentioned in Section 1, we aim to investigate
for an optimal subgraph, rather than randomly sampling a number N of entities. Consid-
ering the considerable effect of data sparsity in graph-based methods [33,34], we aim to
to identify a dense subgraph for our purposes.

Given a directed graph G(V,E) consisting of the vertex set V and the edge set E, we
apply the density definition for directed graph from [35]:

dG =
|E|

|V |(|V |−1)
(1)

In addition to the density, we include a more specific completeness metric, which
is measuring how much the studied entities (in our case, the smells) are interconnected
with the rest of the properties in the graph. Getting freely inspired by the definition of
completeness from graph theory7, we consider our graph complete for the domain if all
studied entities are the subject of the object for all relevant properties. For a specific entity
type T , the relevant properties set PT consists of all properties which have that specific
entity type as property range or property domain. We define the relevant statement ST a
triple (s, p,o) in which p ∈ PT . This specific completeness is measured as:

cT =
|ST |

|V | ∗ |PT |
(2)

Please note that if the density measure is agnostic with respect to the schema, for
computing the completeness one should have the knowledge of the relation between
classes and properties present in the data model.

Given the particular structure of the schema, the relevant information is not directly
linked to the Smell entity, but to its Smell Emission and Olfactory Experience. This en-
sures high flexibility in representation, allowing to have multiple Olfactory Experiences
for the same Smell. However, looking at the real data of the EOKG, each Smell is linked
to a single Experience, creating an unnecessary hop in the connection between the entity
and the relevant informative values. Because of this, we made a series of selection of
the graph, with the progression of changes tracked in Table 4, together with the main
metrics. We created a new version of the KG called Cleaned Graph in which the core
composed of Smell, Smell Emission, and Olfactory Experience is represented as a single
atomic entity, which we will call Smell for simplicity. In addition, all edges not linked to a
smell are removed from the graph, with the exception of the vocabulary hierarchy which
is always kept in all subgraphs. As a consequence, the number of involved predicates
slightly decrease.

Starting from this Cleaned Graph, we realise the Dense Graph by selecting only the
smell entities having at least 4 links (ingoing or outgoing). Respect to the original graph,

7“A simple graph in which every pair of two vertices is adjacent is called a complete graph” [36]
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this operation multiplied the density of the graph by over 17 times, and increased the
specific completeness of 0.14.

From both the Original Graph and the Dense Graph, we extract a selection of 10,000
smells to reduce the computational complexity of the link prediction task. These two se-
lections have density metrics quite similar and very different completeness, as it is pos-
sible to see in Table 4. The distribution of smells with different numbers of connections
changes between graph, with the dense graph having the 47% of smells with 4 connec-
tions. The distribution is reported in Figure 3.

Table 4. The composition of each version of the dataset following the different preprocessing steps

Graph Version Nb entities Nb predicates Nb edges Density Completeness
Original Graph 5,182,119 23 8,434,414 0.31e−6 0.24
Original Graph 10k 9,071 22 10,795 131.21e−6 0.048

Cleaned Graph 2,232,870 15 8,179,561 1.64e−6 0.27
Dense Graph 823,265 15 3,752,435 5.54e−6 0.37
Dense Graph 10k 18,208 13 61,343 185.04e−6 0.50

Figure 3. Distribution of connections (incoming or outgoing) for the cleaned (blue) and the dense (red) graphs,
relatively to the total number of smells. The reduced version of 10k smells follows similar distributions.
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4.2. Embedding Strategies

We experiment with three embedding algorithms:

• RDF2vec [5], that applies Random Walks [18] and Word2Vec [37] to the graph;
• TransE [3], as a representative of a geometric embedding strategy [38];
• DistMult [21], as a representative of a semantic embedding strategy (it quanti-

fies the likelihood of a triple to belong to the KG through a multiplicative score
function).
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For RDF2vec, we use the PyRDF2vec implementation [39], while for TransE and
DistMult, we use the PyKEEN library [40]. The resulting embeddings include in the
same embedding space both the concepts coming from the vocabularies and the smell
entities, even if the experiments reported later in this paper will focus on particular subset
of them. The generated embeddings have been tested in two different tasks, clustering
and link prediction, that we detail in the next sections.

5. Clustering

In this section, we investigate strategies for clustering related odours. The clustering
targets two kinds of entities, namely, either the over 600 olfactory object concepts, or
the smell instances. These targets have been studied separately, isolating the relevant
embeddings from the rest.

We assess the clustering performances using three common metrics in the litera-
ture [41]:

• Homogeneity: a clustering output is considered homogeneous if all elements as-
signed to each cluster belong to the same ground-truth label;

• Completeness: a clustering output is considered complete if all elements from one
ground-truth label fall into the same cluster;

• V-Measure: the harmonic mean of Homogeneity and Completeness. The V-
Measure of 1.0 corresponds to a perfect alignment between clusters and ground
truth labels.

For both targets, we compared the performances of the 3 embedding algorithms
(Section 4.2) using the same K-means clustering algorithm, which is an iterative algo-
rithm that tries to partition the dataset into K pre-defined distinct non-overlapping sub-
groups (clusters) where each data point belongs to only one group. Table 5 provides our
evaluation for the 3 algorithms, with respectively 10, 20 and 100 clusters of olfactory
objects. Each algorithm has been trained on both the original graph and the dense graph.8

For each concept, we consider as ground truth class the skos:broader term which is
also skos:topConceptOf the SKOS schema. In other words, we use as classes the 13
top categories of the vocabulary which are reported in Table 2. Given that an olfactory
object may belong to multiple top categories – e.g. a herb belongs to both Flora (be-
ing a plant) and Food (being a seasoning) – we consider in the computation of the met-
rics the most popular class in the clustering itself, in order to not penalise meaningful
aggregations.

From the results, the benefit of the dense graph is quite obvious: the embeddings
trained on the dense graph have better scores regardless of the considered metric, incre-
menting in some cases of over 0.10 points.

Table 6 presents the same scores computed on smells clustering. In this case, we
used the smell sources as the ground truth classes. Again, when a smell has multiple
sources, we select the most popular source in the cluster. In addition, when computing
the metrics, we also use the top categories of these smells as classes, e.g. food for meat,
seafood or fruit.

8Please note that for DistMult and TransE, which have a longer training time, the 10k version of the graphs
has been employed for training.
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Table 5. Homogeneity, Completeness and V-measure computed on 10, 20 and 100 clusters of olfactory ob-
jects. In bold, the best results for each number of cluster, while underlined the best values in absolute

# clusters → 10 20 100
trained on ↓ H C V H C V H C V

RDF2vec original 0.80 0.69 0.74 0.87 0.59 0.70 0.95 0.44 0.59
dense 0.89 0.78 0.83 0.94 0.61 0.74 0.98 0.44 0.61

DistMult original 0.70 0.62 0.66 0.80 0.55 0.65 0.89 0.42 0.57
dense 0.88 0.76 0.81 0.96 0.66 0.78 0.97 0.44 0.61

TransE original 0.10 0.09 0.10 0.18 0.12 0.14 0.36 0.17 0.23
dense 0.83 0.73 0.77 0.87 0.58 0.70 0.95 0.42 0.58

Table 6. Homogeneity, Completeness and V-measure computed on 10, 20 and 100 clusters of smells. In bold,
the best results for each number of cluster, while underlined the best values in absolute

# clusters → 10 20 100
H C V H C V H C V

trained on ↓ Smell Source
RDF2vec original 0.04 0.12 0.06 0.05 0.12 0.07 0.08 0.15 0.10

dense 0.24 0.51 0.33 0.57 0.59 0.58 0.55 0.57 0.56

DistMult original 0.06 0.14 0.08 0.08 0.14 0.10 0.14 0.15 0.14
dense 0.25 0.51 0.34 0.59 0.60 0.60 0.59 0.59 0.59

TransE original 0.05 0.13 0.07 0.06 0.11 0.08 0.22 0.11 0.11
dense 0.24 0.48 0.32 0.58 0.58 0.58 0.58 0.58 0.58

trained on ↓ Top Category
RDF2vec original 0.03 0.03 0.03 0.04 0.03 0.03 0.06 0.04 0.04

dense 0.62 0.52 0.57 0.83 0.33 0.47 0.84 0.33 0.48
DistMult original 0.04 0.03 0.04 0.06 0.03 0.04 0.08 0.03 0.05

dense 0.34 0.27 0.30 0.59 0.23 0.33 0.57 0.23 0.32

TransE original 0.04 0.03 0.03 0.05 0.03 0.04 0.06 0.02 0.03
dense 0.22 0.16 0.19 0.43 0.17 0.24 0.45 0.17 0.24

In this scenario, the embeddings trained on the original graph gave low scores, never
surpassing 0.22. Moreover, the values are unexpectedly lower for the top category be-
cause the metrics are also taking into account the ground truth entropy. Hence, even
if the clusters may result more homogeneous in absolute terms, their scores are lower
when comparing with the original ground truth homogeneity. These factors make even
more evident the increment of scores for the embeddings trained on the dense graph, for
which we obtained scores almost always above 0.50, with the scores for top categories
definitely better than those referring to fine-grained smell sources.

To provide a qualitative assessment, we computed the most similar entities to the
centroid using the cosine similarity, for each cluster obtained by K-means using one of
our embedding strategy (RDF2vec, TransE, DistMult), in the 20 clusters scenario. We
present the results in Tables 9 to 14, to which we manually added – where possible –
a meaningful label for each cluster. Apart from some miscellaneous clusters, the top
concepts are quite homogeneous, making easy to manually assign a label to the cluster.
Please note that there are some repeated entries (e.g. sachet in clusters 2 and 9) because
it can happen that two centroids are quite close. Even if DistMult has better scores, qual-
itatively, the clusters generated on RDF2vec embeddings are easier to manually classify.
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It is possible that the two algorithms capture different kind of knowledge. We observe
that the clusters are relatively coherent also in the embeddings computed on the original
graph.

Overall, we observe that both RDF2Vec and DistMult provide good embeddings
of the EOKG for the clustering task, both according the quantitative and qualitative as-
sessment. TransE embeddings yield, in contrast, hard to understand clusters, with lower
performance scores.

6. Link Prediction

In this section, we investigate which method among our embedding strategies enables
to best enrich the European Olfactory Knowledge Graph. We cast this problem as a link
prediction task. More precisely, we aim to predict a possible smell source given a descrip-
tion of a smell experience. For example, looking at the example depicted in Figure 2, the
task amounts to predict that the gloves are the olfactory object responsible for this smell
experience, given the other attributes that describe it such as its characteristics (subtle,
rich, oriental) and other circumstances (19th century, Douglas Sherley, etc.).

We employ two different ground truths: the 565 precise smell sources (a very fine-
grained classification task), and their 13 top categories (a coarse-grained classification
task) as shown in Table 2. The precise smell source represents the specific class respon-
sible to a particular smell, while its top category represents the broader class to which the
smell source class belongs. In the example depicted in Figure 2, the precise smell source
is gloves while the broader class is body.

We take the two subgraph of 10,000 smells and randomly split them into 8,000
training samples and 2,000 test samples. We train TransE and DistMult on the training
set. Table 7 provides the uneven distribution of the smell sources in the training dataset
while the test dataset follows a similar distribution since the split was stratified.

Table 7. Distribution of the smell sources with their number of occurrences in the datasets. We present only
the top 10 smell sources, to which a long tail distribution follows with more than 200 sources having less than
5 occurrences.

Original Graph 10k Dense Graph 10k
URI label count URI label count
olfactory-objects:72 Flower 1,449 olfactory-objects:72 Flower 1,839
olfactory-objects:138 Rose 387 olfactory-objects:138 Rose 453
olfactory-objects:269 Incense 330 olfactory-objects:78 Plant 288
olfactory-objects:227 Tobacco 199 olfactory-objects:75 Fruit 246
olfactory-objects:270 Musk 187 olfactory-objects:193 Sheep 223
olfactory-objects:258 Jasmine 142 olfactory-objects:126 Water 218
olfactory-objects:223 Violet 111 olfactory-objects:531 Leaf 175
olfactory-objects:108 Odor of sanctity 101 olfactory-objects:460 Carcass 156
olfactory-objects:23 Cadaver 99 olfactory-objects:109 Oil 148
olfactory-objects:17 Blood 99 olfactory-objects:169 Grape 146

The model was trained for 200 epochs, with a batch size of 32. For each triple
in the dataset, we attempted to predict the correct smell source by applying the
predict triples function from PyKEEN, which calculates a score for each given
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triple. We computed the accuracy by extracting the top-scoring entity from the predicted
scores and comparing it to the actual smell source from the ground truth.

The results reported in Table 8 demonstrate that even if the task is complex, choos-
ing the right sub-graph can have beneficial results: under any configuration, the accuracy
of the prediction is almost doubled for the fine-grained smell source and more than dou-
bled for the top category. Among the two studied methods, DistMult exhibited signifi-
cantly better performances, achieving an average accuracy of 73% on the top category.
However, the accuracy of 42% suggests that the current approach is not yet sufficient to
precisely infer the fine-grained smell sources.

Table 8. Accuracy of link prediction for guessing the smell source using graph embeddings

Dataset → Original Graph 10k Dense Graph 10k
Ground Truth Smell source Top Category Smell source Top Category
TransE 0.18 0.25 0.38 0.69
DistMult 0.28 0.31 0.42 0.73

7. Conclusions

In this paper, we applied state-of-art graph embedding techniques to the cultural heritage
domain, namely on the EOKG, which represents olfactory heritage information. We used
them on two different tasks: clustering and link prediction. Given the complexity of the
involved Knowledge Graph, we applied a strategy for selecting smaller but curated sub-
sets that are more homogeneous to train our embedding models. This effectively im-
proved the performance of the predictions. In particular, we discovered that a more dense
subset improved the accuracy of the models in all metrics. The obtained results can be
directly used into the EOKG and support the research on it in the Cultural Heritage do-
main. The code for computing the embeddings, clustering and link predicting is available
at https://github.com/Odeuropa/kg-embeddings.

Our future work will focus on using the clustering algorithm to select part of the
graph which are more homogeneous in content, in order to refine the link prediction
step to a specific graph area. In other words, we would create link prediction models
that are specialised alternatively in floral smells, malodors, etc. As alternative, we may
substitute the clustering with community detection approaches [42,43]. In addition, we
aim to experiment with other graph embeddings methods such as RotatE [22] or GCN
to better understand their capabilities in these scenarios where graphs can be sparse but
where nodes and properties have well-defined semantics.
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Table 9. The most similar concept for each cluster centroid using the RDF2vec embeddings (20 clusters),
clustered on the original graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5

Fruit
Cosmetics and
artefacts

Fruit Flowers Bodily fluids

Melon Talc Lemon Petunia Semen
Mandarin Scent box Pineapple Raflessia Slurry
Durian Earring Raspberry Delphinium Breath
Lemongrass Pomander ship Currant Chamomile Liquid manure
Watermelon Sachet Coconut Passion flower Sweat

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Malodours Spices Fuel Artefacts Balms

Air pollution Saffron Kerosene Powder Box Opoponax
Filth Allspice Petroleum Scent box Tolu balm
Pollution Vanilla Sea Pomander ship Peru balm
Malodor Anise Peat Feather Spikenard
Fumigation Cinnamon cassia Diesel fuel Sachet Balm

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15
Beings Tobacco Vegetables Carriers Animals

Being Cigar-box Cucumber Incense ship Monkey
Woman Snuff Box Corn Tobacco grater Tiger
Person Match Cress Beaver hat Rabbit
Man Tobacco packag. Asparagus Beer stein Guinea pig
Bird Plague mask Aubergine Jan Steen jug Camel

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20
Interior Plants Perfumes Miscellaneous Food

Bath Furze Floral water Bonfire Curry
Head cone Stapelia Geosmin Pigeon manure Yeast
Fireplace Sassafras Lemon balm Candle Chili
Ciborium Organic waste Eau de Luce Alchemy Equip. Cream
Distillation eq. Rapeseed Chypre Chimney Liquorice
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Table 10. The most similar concept for each cluster centroid using the RDF2vec embeddings (20 clusters),
clustered on the dense graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5
Vessels Spices Artefacts Mammals Flowers

Barrel Cinnamon cassia Hand Lion Daffodil
Milk Jug Allspice Posy Wolf Jasmine
Beer stein Pepper Scent Guinea pig Violet
Chatelaine flask Fennel Perfume Donkey Raflessia
Betrothal Ring Anise Rosary Camel Acacia

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Resins Malodors Fruits Breakfast Secretions

Styrax Air pollution Apple Butter Breath
Opoponax Filth Rhubarb Sausage Semen
Benzoin Halitosis Pineapple Yoghurt Cat urine
Labdanum Fumigation Mandarin Pie Sweat
Tolu balm Malodor Blackcurrant Ham Vomit

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15
Vegetable Flowers Liquids Fresh flowers Holders

Horse radish Garland Mildew Bouquet Scent box
Celery Violet Lake Heliotropium Pomander ship
Cabbage Neroli Diesel fuel Furze Pomander Watch
Bellpepper Hyacinth Sea Acacia farnesiana Tobacco packaging
Pea Lily-of-the-valley Wet earth Water mint Medicine Jar

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20

Tobacco
Animal-based

perfumery
Equipments Oils Invertebrates

Cigarette Musk Rat Distillation eq. Geosmin Butterfly
Cigar-holder Musk Deer Candle Essential oil Ant
Cigar-box Civet (mammal) Cassolette Eau de Luce Prawn
Cigar-case Skunk Alchemy equip. Eau de Hungary Onycha
Pipe Beaver Apothecary eq. Ointment Dragonfly
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Table 11. The most similar concept for each cluster centroid using the DistMult embeddings (20 clusters),
clustered on the original graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5
Perfumes Trees Malodour Carriers Miscellaneous

Eau de Lice Flora Abstract Artefact Nature
Boldoot Tree Malodor Pomander watch Miasma
Perfume Pine needle Halitosis Pomander ship Iso-butyl-quinoline
Acqua della Regina Conifer Theriaca Cashmere Artefact
Peau d’Espagne Raflessia Pollution Posy holder Cashmere

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Vegetable/Fruits Bodily Fluids Jewelry Flowers Seasonings

Strawberry Body Flacon ring Neroli Food
Salad Grangreen Bracelet vinaigrette Columbine Lemongrass
Cauliflower Cat urine Artefact Heliotropium Sage
Vegetable Liquid manure Jewelry Carnation Besamin
Fruit Slurry Berothal Ring Cornflower Coriander leaf

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15
Flora Mammals Balms Flowers Vessels

Flora Pig Styrax Flower Glass without stem
Pine needle Tiger Resin Matthiola Vessel
Coriander leaf Mammal Animal raw material Orchid Cup
Raflessia Deer Tolu balm Raflessia Ashtray
Beetroot Guinea pig Galbanum Rosehip Glass with stem

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20
Chemical Tobacco Animal Artefact Animal

Chemical Element Match Mammal Jewelry Invertebrate
Iso-butyl-quinoline Musical snuff box Being Artefact Reptile
Element Smoking equipment Deer Posy holder Vertebrate
Vinegar Blueberry Sperm whale Dairy Being
Ozone Snuff box Wolf Earring Butterfly
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Table 12. The most similar concept for each cluster centroid using the DistMult embeddings (20 clusters),
clustered on the dense graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5
Flowers Vegetables Fossils Mammals

Fireplace Dahlia Avocado Peat Civet (mammal)
Amulet Woodruff Parsnip Mould Guinea pig
Ink Dandelion Passion fruit Petrichor Bear
Flacon Garland Chives Mildew Donkey
Cigar Mimosa Radish Diesel fuel Beaver

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Resins Herbs Chemicals

Myrrh Anatomical Lessons Avocado Thyme Aceltene
Wax Burnt offering Curry Rosemary Carbolic acid
Rubber Blossom Cress Musk mallow Ozone
Resin Soot Passion fruit Mint Coumarin
Balm various Schalg Basilic Acetic acid

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15

Fruits Fishy
House

products

Animal

categories
Holders

Peach Slurry Cashmere Vertebrate Cashmere
Plum Cod liver oil Bouquet Holder Being Posy holder
Mandarin Liquid manure Ammonia soap Reptile/Amphibia Chatelaine flask
Grape Whale oil Smelling Box Amphibia Cigar-case
Pear Spermaceti Cigar-case Insect Rope tobacco

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20
Trees Scented waters Artefacts Flowers Malodors

Tagetes Boldoot Jewelry Petunia Halitosis
Fir needle Aqua mirabilis Ring Dandelion Filth
Cedar (Lebanon) Florida Water Bracelet vinaigrette Tulip Sillage
Rapeseed Reukwerk Wine Bottle Dahlia Malodor
Oud Peau d’Espagne Oil lamp Carnation Fumigation
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Table 13. The most similar concept for each cluster centroid using the TransE embeddings (20 clusters),
clustered on the original graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5

Lether Sulphur Fumigation Allspice Worm
Perfume Asa foetida Pidgeon manure Geranium Geranium
Vegetable Man Powdered wig Turmeric Ambergris
Lily of the valley Lime blossom tree Asa foetida Currant Turpentine
Fruit Geranium Geranium Tulip Wet earth

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Artefacts

Watermelon Fish Drinking Glass Lavender Ointment
Pineapple Pipe Bracelet Geranium Pipe
Physalis Oil Ashtray Hyacinth Smoking equipment
Sausage Fruit Smelling Bottle Water Bread
Geranium Geranium Wine bottle Saffron Tobacco packaging

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15

Geranium Acacia Fur Vial Smoke
Jonquil Geranium Man Butterfly Religion
Passion flower Hazelnut Iris Asa Foetida Vegetable
Frog Asa foetida Herb Geranium Wine
Butterfly Mustard Geranium Calamus Garlic

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20

Matthiola Egg Ink Being Patchouli
Musk Deer Lignum aquilae Raspberry Food Gunpowder
Inro Tallow Vinegar Flora Geranium
Dairy Geranium Geranium Element Egg
Pineapple Smelling box Myrtle Animal raw material Sulphuric acid
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Table 14. The most similar concept for each cluster centroid using the TransE embeddings (20 clusters),
clustered on the dense graph

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5
Fruits Artefacts Food Malodors

Pineapple Head cone Oil Malodor Lodereindoos
Watermelon Pomander Coffee Odor of sanctity Leather Tapestry
Halitosis Chamber pot Blueberry Fumigation Cigar-box
Peanut Perfume flacon Spice Abstract Diaper
Apricot Lodereindoos Vegetable Pollution Perfume box

CLUSTER 6 CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10
Trees Plants Plants

Snuff Sassafras Rosehip Elderflower Spirit (alcohol)
Myrrh Cedar (Lebanon) Elm tree Rapeseed Carrot
Sulphur Cedar (Virginia) Passion flower Quince Grapefruit
Grass Stapelia Heliotropium Acacia farnesiana Broth
Blackcurrant leaf Acacia farnesiana Quince Dahlia Schalg

CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15

Mammals Vegetables
Animal

products
Scented waters Flowers

Wolf Pea Body Florida Water Dahlia
Beaver Radish Tallow Eau de cologne Geranium
Lion Carrot Liquid manure Floral water Furze
Bull Cress Whale oil Fougère Columbine
Man Spring onion Ambergris Boldoot Anemone

CLUSTER 16 CLUSTER 17 CLUSTER 18 CLUSTER 19 CLUSTER 20
Vessels Nature Summer Fruits Artefacts Chemicals

Vessel Nature Fig Powdered Wig Carbolic acid
Drinking glass Peat Spring onion Necklace Aceltene
Teapot Wet earth Plum Vial Chemical Element
Bottle Wind Peach Smelling Bottle Element
Pot Lake Coconut Lodereindoos Iso-butyl-quinoline


