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Abstract—Traditional base station siting (BSS) methods rely
heavily on drive testing and user feedback, which are laborious
and require extensive expertise in communication, networking,
and optimization. As large language models (LLMs) and their
associated technologies advance, particularly in the realms of
prompt engineering and agent engineering, network optimization
will witness a revolutionary approach. This approach entails
the strategic use of well-crafted prompts to infuse human
experience and knowledge into these sophisticated LLMs, and
the deployment of autonomous agents as a communication bridge
to seamlessly connect the machine language based LLMs with
human users using natural language. Furthermore, our pro-
posed framework incorporates retrieval-augmented generation
(RAG) to enhance the system’s ability to acquire domain-specific
knowledge and generate solutions, thereby enabling the cus-
tomization and optimization of the BSS process. This integration
represents the future paradigm of artificial intelligence (AI) as
a service and AI for more ease. This research first develops
a novel LLM-empowered BSS optimization framework, and
heuristically proposes three different potential implementations:
the strategies based on Prompt-optimized LLM (PoL), LLM-
empowered autonomous BSS agent (LaBa), and Cooperative
multiple LLM-based autonomous BSS agents (CLaBa). Through
evaluation on real-world data, the experiments demonstrate that
prompt-assisted LLMs and LLM-based agents can generate more
efficient and reliable network deployments, noticeably enhancing
the efficiency of BSS optimization and reducing trivial manual
participation.

Index Terms—Base station siting, large language model (LLM),
prompt engineering, agent engineering, retrieval-augmented gen-
eration (RAG)

I. INTRODUCTION

AS the backbone of mobile communication networks, base
stations play a pivotal role in delivering uninterrupted

connectivity to mobile users and also catering to the escalating
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appetite for high data throughput, ensuring the seamlessness
and dependability of communications [1], [2]. This capabil-
ity empowers users to relish high-speed network services,
irrespective of their mobility. The process of identifying the
most advantageous positions for base station installations
within a communication network, such as those for 4G/5G
cellular networks, is known as base station siting (BSS). The
overarching objective is to amplify network coverage, signal
excellence, and network capacity, while concurrently curbing
deployment expenses and mitigating environmental footprints.
With the proliferation of smartphones and mobile devices,
there has been a meteoric rise in the number of mobile users,
alongside a proportional increase in the demand for swift and
superior data quality [3]–[5]. Consequently, on-demand BSS
has become exceedingly critical and challenging, as it exerts
a profound influence on the expanse and intensity of network
coverage and the quality of service (QoS) experienced by users
[6]–[8].

A. Related Works of Traditional Methods

Conventional BSS techniques primarily rely on road testing
and user feedback to evaluate network performance and iden-
tify areas for improvement [9], [10]. This process requires
communications engineers to undertake several key steps to
ensure that new base stations are effectively deployed to
enhance network coverage and user experience.

First, conduct road tests by driving test vehicles through
urban areas to measure and record signal strength, coverage,
and data transmission rates. This provides engineers with a
dispassionate assessment of current network performance and
help identify weak coverage zones and blind spots. Subse-
quently, user feedback is gathered, typically through customer
service channels or mobile apps, where users report issues
such as dropped calls, weak signals, or unstable data connec-
tions. The engineer then compiles all of this user feedback into
a thorough problem report. Engineers compile this feedback
into a comprehensive report, which complements the road test
data by highlighting additional issues related to the actual user
experience. After gathering sufficient information, engineers
model potential base station locations, considering factors such
as topography, building obstructions, subscriber density, and
the configuration of existing base stations.

The next critical step is solution development, where engi-
neers determine the optimal location for the new base station
based on the collected data and also the model analysis.
To achieve this, optimization algorithms such as simulated



annealing [11], genetic algorithm (GA) [12], or particle swarm
optimization (PSO) [13] are used to balance factors like
coverage effectiveness, construction costs, and operational
efficiency. Once the optimal location is identified, the base
station is deployed, and its performance is monitored through
further road tests and user feedback. Engineers may need to
make additional adjustments to ensure the new base station is
functioning at its full potential.

While effective, this conventional approach has several lim-
itations. Road testing, though informative, is time-consuming
and logistically challenging, especially in densely populated
urban areas [14]. Moreover, the data collected during road
testing represents only a specific moment in time and location,
which may not capture the dynamic variations in network
performance over time [15]. User feedback, while valuable,
is often reactive, meaning that network improvements are
usually initiated only after issues have become severe enough
to prompt complaints. Furthermore, the feedback may not fully
represent the broader user base, potentially leading to biased
or incomplete data [16], [17]. Engineers are thus required to
engage in an ongoing, iterative process of feedback analysis,
problem modeling, solution development, base station deploy-
ment, and network performance reevaluation [18].

Given these challenges, traditional BSS methods demand
a high level of expertise in communications, networking,
optimization, and programming. Engineers must also pos-
sess strong analytical and problem-solving skills to navigate
the increasing complexity of the task. The rapid pace of
advancements in telecommunications technology [19], [20]
and shifting user behavior patterns [21] require engineers
to continuously learn and adapt. Additionally, the dynamic
nature of urban environments—characterized by fluctuating
traffic patterns [22], user mobility [23], and varying service
demands over time [24]—further complicates the process of
BSS optimization.

B. Motivations for Incorporating LLMs

The integration of AI, particularly LLMs, offers unprece-
dented potential to navigate the escalating intricacy and dy-
namism inherent in next-generation networks. Models such
as Generative Pretrained Transformers (GPT)-3.5, GPT-4, and
GPT-4o have emerged as paragons of advanced natural lan-
guage processing (NLP) prowess. These sophisticated models
are capable of producing text that closely mimics human
beings [25], [26] and are adept at resolving multifaceted
challenges spanning a spectrum of disciplines, including math-
ematics [27], programming [28], and computer vision [29].
The advent of these models empowers users to express their
specifications in natural language, thereby catalyzing a pivotal
transition from semi-automated to fully automated modeling
and coding paradigms [30]. This paradigm shift liberates
professionals to concentrate on nuanced problem-solving and
pioneering design endeavors. For instance, LLMs, combined
with the mixture of human experts, significantly optimized
the transmission strategy of the satellite network in [31].
[32] proposed to use LLMs to solve the multi-objective
optimization problem in integrated sensing and communication

(ISAC) systems. In mobile networks, LLMs automate the
course design of reinforcement learning, thereby improving
the convergence speed and performance of learning agents
[33]. In the vehicular networks, [34] used LLMs to optimize
resource allocation between vehicles and roadside units, which
greatly improves the efficiency and performance of the system.
Overall, this integration of AI into the fabric of network
optimization not only streamlines existing processes but also
paves the way for groundbreaking innovations in the field.

Regarding the BSS problem, LLMs can streamline the net-
work optimization process through prompt engineering, where
complex communication issues are translated into structured
tasks. By carefully designing prompts, LLMs can understand
and generate optimization strategies, allowing engineers to
rapidly develop effective solutions [35], [36]. This approach
not only enhances the efficiency of problem-solving but also
reduces the need for manual analysis and intervention. Ad-
ditionally, leveraging AI agent engineering enables LLMs
to function as intelligent agents within communication net-
works. These agents can continuously monitor network con-
ditions, process user feedback, automatically adjust network
parameters, and make optimization decisions in real-time,
significantly alleviating the workload of network engineers.
LLMs, with their robust reasoning and learning capabilities,
can respond to dynamic network environments and provide
optimal decisions promptly. This automation enhances oper-
ational efficiency, reduces response times, optimizes resource
allocation, and improves overall user experience.

Additionally, LLMs offer several notable benefits: i) They
can process vast amounts of real-time data from various
sources by employing open-source algorithms tailored to spe-
cific sub-problems, resulting in a comprehensive analysis of
network performance. This capability enables more efficient
and accurate identification of weak coverage areas and ser-
vice deficiencies. ii) LLMs can reduce the delays associated
with passive feedback mechanisms by proactively suggesting
improvements based on continuous learning from network data
and user feedback. iii) Their dynamic adaptability to changes
in traffic patterns and user behavior ensures that the generated
base station solutions remain relevant and effective in rapidly
evolving urban environments.

Therefore, the introduction of LLMs not only elevates the
level of intelligence in BSS optimization but also, through
prompt engineering and AI agent engineering, empowers
engineers to tackle complex issues more efficiently and au-
tonomously, driving advancements in future network optimiza-
tion technology.

C. Contributions

In response to the burgeoning potential of LLMs in the
realm of communication networks, this research investigates
how LLMs may revolutionize BSS by enhancing both the
efficacy of the siting process and the overall quality of mobile
network services. Specifically, we propose an innovative LLM-
empowered paradigm for BSS problem, characterized by three
distinct strategies that are delineated based on the level of
human involvement and the interplay between autonomous



agents, namely, Prompt-optimized LLM-based (PoL-) strategy,
LLM-empowered autonomous BSS agent-based (LaBa-) strat-
egy, and Cooperative multiple LLM-based autonomous BSS
agents-based (CLaBa-) strategy. Additionally, our framework
integrates retrieval-augmented generation (RAG), enabling the
system to dynamically extract precise expert knowledge from
external sources and adaptively learn this information to
enhance the BSS process.

To the best of our knowledge, we are the first to explore the
use of LLM and RAG to solve the BSS problem. Our main
contributions in this work can be summarized as follows:

• Framework Formulation and Strategy Design: We for-
mulate a pioneering LLM-empowered BSS paradigm,
supported by three distinct, heuristically designed strate-
gies. Specifically, the PoL strategy facilitates autonomous
LLM execution of BSS tasks with minimal human inter-
vention; the LaBa strategy propels the vision of a fully
independent, end-to-end BSS process; and the CLaBa
strategy is meticulously crafted to further improve sys-
tem efficiency, enhance robustness, and address complex
problems. By incorporating RAG, we further enhance
these strategies by allowing LLMs to access real-time,
contextually relevant information from large knowledge
bases, thus improving the precision and adaptability of
BSS solutions.

• Experiment Simulation and Analysis: We execute an
empirical comparative analysis by leveraging a real-
world dataset [37]. This analysis thoroughly evaluates
the performance of LLM-driven approaches, focusing on
metrics such as traffic coverage and cost-effectiveness.
Moreover, given RAG’s powerful ability of retrieving
domain-specific knowledge, the experiments demonstrate
that the RAG-enhanced LLM strategies outperform base-
line models in terms of solution accuracy and robustness.
The results provide compelling evidence for the practical
viability of LLM and RAG-powered strategies in real-
world applications.

Besides propelling technological advancements in BSS, we
also introduce fresh perspectives and tools to the telecom
network design domain. Through these innovative approaches,
we are able to achieve more efficient and reliable network de-
ployment to fulfill the expanding demand for communications,
while optimizing resource allocation and reducing operational
costs. Furthermore, our research delineates several frameworks
intended to guide future investigators in their quest to refine
and innovate paradigms for harnessing LLMs and RAG to
resolve intricate engineering challenges.

The rest of this paper is structured as follows. Section II
introduces the BSS problem, providing a detailed description.
The strategies based on prompt engineering and agent engi-
neering are demonstrated in Sections III. Section IV integrates
RAG technology into the proposed strategies for enhanced
performance. Section V presents the numerical results. Section
VI deeply discusses the future research direction, and lastly,
Section VII concludes this paper.

Fig. 1. The coverage and planning of base stations within a given
region. The real-world map is shown on the bottom layer; existing
macro and micro base stations are displayed on the middle layer;
both planned and existing macro and micro base stations are marked
in the top layer, along with proposed upgrades to address areas with
poor coverage.

II. PROBLEM DESCRIPTION

A. Network Model

In this work, we consider a BBS problem in a real-world
communication network, as shown in Fig. 1. Specifically, the
bottom layer represents the communication coverage of the
existing network across a specified urban landscape, with red
zones highlighting areas where communication coverage is
sub-optimal. Identifying such areas can be achieved through
costly and laborious road tests or by analyzing user feedback
regarding signal quality.

By dividing complex geographical areas into smaller grids,
the BBS selection problem can be significantly simplified,
making it more manageable for mathematical modeling and
algorithmic approaches. This method reduces the total number
of potential site candidates by focusing solely on grid centers,
which not only minimizes computational demands but also
improves the overall efficiency of the site selection process.
Furthermore, a grid-based approach ensures a more uniform
coverage of the region, preventing the risks of either leaving
certain areas underserved or oversaturating others with base
stations. Therefore, in this work, we divide the target area
into multiple grids and consider only the central points of
each grid as candidate sites for new base stations, as shown
in the middle layer of Fig. 1.

In the segmentation of the grid, we posit that the coverage
radius of both macro and micro base stations is an integer
multiple of the grid radius. This assumption ensures that
a base station, once deployed at the centroid of one small
grid, can offer communication coverage across the entire grid.
Such partitioning guarantees that irrespective of the region’s
expanse, the candidate locations for new base stations can be
represented as a finite set of points. The BSS decision-making



process is thus anchored on the specific characteristics of each
point, encompassing factors such as coordinates, the quality of
communication coverage, and traffic volume.

B. Problem Formulation

1) Objective: The main goal of BSS is to pinpoint re-
gions within the current network that suffer from inadequate
coverage and to strategically situate new base stations to
augment connectivity in these zones [38]. In the realm of
pragmatic network planning, it is often impractical to address
all coverage deficiencies at once, given the substantial financial
outlay required for constructing base stations. Consequently,
there is a pressing need to prioritize areas with weak coverage
but high traffic density for targeted enhancement.

2) Constraints: When embarking on the deployment of a
novel base station, the primary goal is to ensure the most
extensive seamless coverage feasible, particularly in areas with
significant traffic flow. In addition, to mitigate interference and
to consider deployment expenses, a minimum threshold dis-
tance must be maintained between any two stations. Telecom-
munication operators are tasked with achieving a balance
between reduced costs and fulfilling signal coverage mandates
through a judicious deployment strategy that encompasses both
macro and micro base stations. Macro base stations, known
for their expansive coverage radius and higher construction
costs, are ideal for broad area coverage. In contrast, micro
base stations, with their lower costs and focused coverage,
are optimally suited for augmenting network capacity and
providing supplementary coverage in specific locations, such
as traffic hotspots.

C. Objective Function

Taking into account the attributes of base stations, desired
network coverage, and the financial implications of deploy-
ment, the optimization problem in BSS can be articulated as
follows:

(P1) argmin{(pi,qi)}N
i=1

N∑
i=1

(piCh + qiCd) ,

s.t.(C1)
∑
t∈Gi

wt(Pi,h,t + Pi,d,t) ≥ θcp
∑
t∈Gi

wt,∀i ∈ N ,

(C2) pi ∈ {0, 1}, qi ∈ {0, 1}, ∀i ∈ N ,

(C3) pi + qi ≤ 1, ∀i ∈ N ,

(C4)
√
(xi − xe

j)
2 + (yi − yej )

2 ≥ Dmin,

if pi + qi = 1 , ∀i ∈ N ,∀j ∈ T , i ̸= j,

(C5)
√

(xi − xn)2 + (yi − yn)2 ≥ Dmin,

if pi + qi = 1 and pn + qn = 1, ∀i, n ∈ N , i ̸= n,
(1)

with

Pi,h,t = P{pi
√
(xi − xt)2 + (yi − yt)2 ≤ dh},

Pi,d,t = P{qi
√
(xi − xt)2 + (yi − yt)2 ≤ dd},

(2)

where Pi,h,t and Pi,d,t represent the probabilities that a device
located at t ∈ Gi, with coordinates (xt, yt), falls within the

coverage of a macro base station or a micro base station
situated at (xi, yi), respectively; Gi signifies the entire area
encompassed by grid i; wt corresponds to the traffic volume
at the location defined by (xt, yt); θcp denotes a predefined
threshold of data traffic coverage probability; the set N
comprises the coordinates of all potential locations for new
base stations, and N is the aggregate number of grid points
under consideration; the set T represents the coordinates of all
current base stations in operation; the parameters dh and dd
denote the coverage radii for macro and micro base stations,
respectively, while Ch and Cd represent the respective setup
costs for these stations; Dmin defines the minimum allowable
distance between any two base stations to ensure effective
interference mitigation and cost management; the Boolean
variables pi and qi indicate the presence of a macro base
station and a micro base station at the centroid of grid i,
respectively; (xi, yi) is the coordinates of the central point
of grid i; and (xe

j , y
e
j ) is the coordinates of an existing base

station j. Notably, (xt, yt), where t ∈ Gi, can represent any
arbitrary location within grid i, whereas (xn, yn) for n ∈ N
and (xi, yi) for i ∈ N specifically denote the coordinates of
the central point of grid n and grid i, respectively.

In the optimization model P1, C1 stipulates that the proba-
bility of data traffic coverage must exceed the threshold θcp,
C2 dictates the binary choice of whether to deploy a base
station at a candidate location; C3 prohibits the construction
of more than one new base station at a single site, C4
mandates that the distance between any two new base stations
be greater than Dmin, C5 requires that new base stations be
situated at least Dmin away from any existing stations. These
constraints are designed to optimize the placement of base
stations for maximum coverage while minimizing interference
and deployment costs.

III. LLM-EMPOWERED BSS PARADIGM

A. Strategy based on Prompt Engineering

The LLM-aided BSS paradigm based on prompt engi-
neering centers on the use of carefully crafted prompts to
guide LLMs in generating desired outputs. Users or engineers
provide specific inputs, and the model’s response depends on
the clarity and design of these prompts. The effectiveness
of this method hinges on optimizing the prompt structure to
elicit precise and relevant responses from the model. Human
involvement is crucial throughout, as engineers must con-
tinuously adjust the prompts, interpret the generated results,
and fine-tune based on feedback to achieve optimal outcomes.
This workflow is inherently iterative, with frequent trial-and-
error to improve performance, driven by user input. When
done effectively, prompt engineering can produce high-quality,
tailored solutions. Once an engineer successfully designs
effective prompts, they can be easily adapted for different
tasks without requiring deep technical knowledge, allowing
for broader applicability across domains.

The major challenge lies in creating prompts that are clear
and precise, as this directly influences the model’s accuracy
and relevance. In this regard, we design a LLM-based strat-
egy for BBS optimization based on prompt engineering: the
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Fig. 2. Diagram of the prompt-optimized LLM-based (PoL) strategy, showcasing the iterative workflow involving information gathering,
automatic modeling & optimization, as well as automatic code generation & correction (including auto-coding, auto-debugging, and also
auto-correction). This workflow is guided by human-initialized prompts, enabling efficient solutions to the BSS problem.

Prompt-Optimized LLM-based (PoL-) strategy. Moving for-
ward, we will delve into a detailed exposition of its workflow.

1) Workflow of PoL Strategy: The core of the PoL strategy
is to guide the LLM to complete the BSS task automatically
through well-designed prompts. By designing the right prompt,
the LLM can understand the key requirements of the BSS
problem and generate the appropriate optimization solution.
However, this approach involves more than a simple “Q & A”
model; it is a complex iterative process. Each prompt must
be carefully designed to meet the specific needs of the BSS,
ensuring that the LLM can accurately identify critical issues
and propose effective solutions.

As shown in Fig. 2, the workflow of the PoL strategy can be
divided into the following steps: i) Information Gathering:
LLM, based on the initial prompt, extracts relevant information
from data. This includes the locations of existing base stations,
areas with weak coverage, and data traffic. The prompt here
serves not just as a question but as a complex instruction that
enables the LLM to understand the context of the problem.
ii) Automatic Modeling & Optimization: By inputting well-
designed prompts, the LLM will generate preliminary mathe-
matical models for base station siting. These models include an
objective function—such as minimizing deployment costs—as
well as constraints, like minimum coverage requirements and
minimum distance requirements between base stations. At this
stage, the prompt must contain a detailed task description to
ensure that the optimization objectives are correctly applied
within the model. iii) Automatic Code Generation & Cor-
rection: The LLM will generate code (e.g., Python code) to
solve the model based on the input prompts. We then execute
the code provided by the LLM to identify any errors. If there
are bugs, error messages from the language environment (e.g.,
Python interpreter) are directly input as prompts into the LLM
for correction. If the program runs successfully, we ultimately
verify whether the BSS solution meets the constraints. If any
discrepancies arise, this information is provided as a prompt
to the LLM for further refinement.

Fig. 3 presents a detailed example of the initial prompt
and the generated preliminary response by the proposed PoL
strategy.

Example Input for the PoL Strategy:
In the field of communication, there is a common problem called base

station siting, which is to minimize the overall cost of deploying new base

stations while meeting coverage and distance constraints. More specifically,

there are two datasets: dataset1, which contains the coordinates ('x', 'y') and

traffic for each weak coverage point, and dataset2, which contains the

coordinates of existing base stations. The x and y coordinates of a given

region range from 0 to 99. There are two types of base stations: macro base

stations (coverage radius 30, cost 10) and micro base stations (coverage

radius 10, cost 1). The constraints include: the distance between any two

new sites, or between new sites and existing sites must be at least 10, and

the coverage must meet at least 90% of the total traffic demand for all

weak coverage points.

Please give the mathematical model of base station siting.

Response:

1. Variables:

• = 1 if a new base station is placed at location i, 0 otherwise (binary

decision variable).

……

• =10 = cost of macro base station.

• =1 = cost of micro base station.

2. Objective Function:

Minimize ( + (1 ))

……

Fig. 3. An example prompt for mathematical modeling of PoL
strategy.

2) Analysis of PoL Strategy: The PoL strategy exemplifies
a Human-in-the-Loop workflow, characterized by the dynamic
interaction between human users and the LLM to iteratively
refine outputs for solving the BSS task. The primary roles of
human involvement include: i) Initial Prompt Design: Users
craft an initial prompt to direct the LLM toward generating
the desired output. If the generated results fall short of
expectations, users revise and fine-tune the prompt based
on the output to guide further iterations. ii) Feedback and
Refinement: LLM outputs are evaluated and validated by
users, who provide feedback and make adjustments to the
prompt as needed. This iterative cycle enables progressive
optimization, gradually leading to improved results through
repeated trials. Moreover, when handling multi-faceted tasks or
complex problems, human users are tasked with decomposing
the overall objective into well-defined sub-tasks to facilitate
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effective problem-solving. In summary, the PoL strategy is
not fully automated. It heavily depends on human expertise
for prompt design and optimization, making user oversight
and intervention integral to its operation.

B. Strategies based on Agent Engineering

Prompt engineering offers a relatively simple and flexible
approach but requires continuous human involvement. In con-
trast, agent engineering allows for automated task execution,
offering scalability and self-learning capabilities that reduce
the need for human intervention. However, it comes with
higher development complexity and greater initial investment
costs. The key challenge of designing and deploying au-
tonomous agent systems for the BSS problem lies in inte-
grating task-oriented AI knowledge. This includes leveraging
reinforcement learning, fostering collaboration within multi-
agent systems, and tailoring optimization algorithms to the
specific environment. To accomplish BSS tasks with a high
degree of autonomy and minimal human intervention, we
further propose two sophisticated, fully intelligent LLM-driven
frameworks: the LLM-empowered autonomous BSS agent
(LaBa) and Cooperative multiple LLM-based autonomous
BSS agents (CLaBa) strategies. We will now delve into the
intricacies and merits of each approach.

1) Workflow of LaBa Strategy: As illustrated in Fig. 4,
the workflow of the LaBa strategy comprises the following
key steps, each representing a concrete application of LLM
capabilities to BSS tasks: i) Problem Representation &
Modeling: The user initially inputs details regarding the BSS
task, which is typically articulated in natural language. Instead
of directly passing all the information to the LLM, the relevant
data is extracted from the task description and structured in a
JSON file. This formatted file is then supplied to the LLM.
Based on these inputs, the LLM formulates the optimization
objectives (e.g., minimizing deployment costs) and constraints
(e.g., minimum distance between base stations, minimum
coverage requirements). The mathematical modeling step can
be expressed as:

argminP, s.t.{C} ← LLM(x0), (3)

where P and {C} denote the objective function and the sets
of constraint generated by by LLM, respectively, x0 is the
initial input of BSS problem description in JSON format. ii)
Code Generation & Execution: Once the task objectives
and constraints are analyzed, the LLM selects an appropriate
optimization algorithm, such as Particle Swarm Optimization
(PSO) [39] or Genetic Algorithm (GA) [40], and automatically
generates the corresponding code. Alternatively, it may utilize
existing optimization algorithm libraries like SciPy, Pyomo,
or PuLP to address the BSS problem. The generated code,
typically in Python or MATLAB, is executed within the
simulation platform. There are two potential outcomes: either
an execution error occurs, or the code runs successfully. In
the event of an error, the error message is fed back to the
LLM, which then revises the code to resolve the issue. This
iterative debugging and modification process continues until
the code executes without errors. iii) Test & Feedback-Driven
Correction: The LaBa strategy features real-time feedback
and multi-round iterative optimization capabilities. Simulation
results are fed back to the LLM, and this feedback informs
modifications to both the optimization model and the code.
If the system identifies that the solution fails to meet the
requirements (e.g., insufficient coverage), the LLM adjusts
the optimization model and regenerates the code based on
the feedback, iterating the process. This multi-round iterative
feedback mechanism ensures that the resulting base station
deployment scheme is well-suited to complex and dynamic
real-world environments. The feedback adjustment process can
be mathematically expressed as:

Snew = LLM(S, E). (4)

where Snew and S denote the new and current solution,
respectively, E represents the feedback detailing the issue,
and the LLM uses this information to refine the deployment
scheme.

2) Workflow of CLaBa Strategy: The CLaBa strategy dis-
tinguishes itself from the LaBa strategy by employing a
collaborative multi-agent system. Rather than relying on a
single agent to autonomously handle the entire BSS task,
CLaBa distributes the task across multiple specialized agents.
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Fig. 5. Diagram of the cooperative multiple LLM-based autonomous BSS agents (CLaBa) framework, illustrating the workflow of task
division and collaboration among agents: Agent1 for problem formulation, Agent2 for code generation, Agent3 for code execution and
feedback, and Agent4 for testing and feedback, with iterative collaboration to refine and solve BSS task.

Each agent is responsible for a specific phase or subtask of
the BSS optimization process, such as mathematical modeling,
code generation, execution, and feedback-driven correction. As
shown in Fig. 5, the workflow of CLaBa strategy consists of
the following kep steps:

• Problem Formulation & Modeling (handled by
Agent1): The CLaBa strategy begins with a dedicated
agent, Agent1, formulating and modeling the problem.
Similar to the LaBa strategy, the user articulates the
problem in natural language, and relevant data (such as
base station locations and traffic flow) are extracted and
stored in a structured JSON format. This organization en-
sures that the input is systematically managed and easily
processed by subsequent agents. The input data and task
description are passed to Agent1, which generates the
mathematical model defining the BSS optimization prob-
lem. The model includes objectives such as minimizing
deployment costs, along with constraints like coverage
requirements. This representation can be formalized as:

argminP, s.t.{C} ← Agent1(x0), (5)

where P and {C} denote the objective function and the
sets of constraint generated by Agent1, respectively, x0 is
the initial input of problem description in JSON format.

• Specialized Code Generation (handled by Agent2):
Once the mathematical model is established by Agent1,
Agent2 is responsible for translating the model into
executable code. The generated code accesses the nec-
essary data directly from the JSON files created in the
previous step. Agent2 focuses specifically on ensuring
the efficiency and correctness of the code, making sure
that the chosen optimization algorithm is correctly imple-
mented. This clear division of responsibilities allows for
a more streamlined development process, as each agent
is optimized for its specific task.

• Execution of the Optimization Task (handled by
Agent3): After the code has been generated by Agent2,
it is passed to Agent3, which is responsible for executing
the code. Agent3 runs the optimization process using
the provided data and code, and attempts to generate

a solution for the BSS task. If any execution errors
occur—such as issues with the optimization algorithm or
data incompatibilities—Agent3 passes the error message
back to Agent2, which revises the code and attempts to
resolve the issue. This feedback loop between Agent2 and
Agent3 ensures that the code runs smoothly and produces
valid outputs.

• Collaborative Testing & Feedback-Driven Optimiza-
tion (handled by Agent4): Once the optimization has
been executed and a preliminary solution is generated,
Agent4 takes charge of testing the solution. This agent
uses test cases that are generated based on the initial task
constraints (e.g., ensuring minimum coverage). Unlike the
LaBa strategy, where a single agent handles all feedback
and correction, CLaBa allows Agent4 to specialize in
testing and validation. Users can also modify the test
criteria at this stage to introduce domain-specific knowl-
edge. If the solution fails to meet the test criteria (e.g.,
insufficient coverage), Agent4 sends feedback to Agent2,
which modifies the code based on the identified issues.

• Iterative Feedback Loop & Multi-Agent Collabora-
tion: The key distinction of CLaBa lies in its iterative
feedback loop across multiple agents. While LaBa relies
on a single agent to handle all aspects of feedback
and correction, CLaBa leverages the collaboration be-
tween Agent2, Agent3, and Agent4. This ensures that
the generated solution undergoes continuous refinement,
with each agent contributing its expertise to improve
the solution. The feedback mechanism ensures that the
process does not stop until an optimized, valid solution
is found. The mathematical representation of this multi-
agent feedback process is:

Snew = Agent3Agent2(Agent4(S, E)), (6)

where Agent4 identifies the errors, Agent2 corrects the
code, and Agent3 re-executes the code to further refine
the solution.

Fig. 6 illustrates an example of the input for the CLaBa
strategy, demonstrating the initialization of multiple agents for
distinct sub-tasks and the corresponding generated solutions.



Example Input for the CLaBa Strategy:
Formulator: You are a mathematical formulator working with a team of

optimization experts. The objective is to tackle a complex base station

siting optimization problem. The base station siting problem aims to build

a limited number of base stations within a designated area to achieve the

lowest-cost coverage solution while meeting coverage demands and site

distance constraints. {problem_information} contains detailed data and

constraints. Please give the mathematical model of the optimization

problem.

Programmer: You're an expert programmer in a team of optimization

experts…...Your responsibility is to write the python code for of the

problem. Here is the mathematical model for the optimization problem:

{generated_formulas}. Write PSO code without any comments or

explanations. Importantly, ensure that the selected site coordinates and

base station types ('Micro', 'Macro') are stored in a list named

'selected_sites', where each entry is a tuple (x, y, type).

Executor: You’re a code executor on a team of optimization

experts ……If the code executes successfully, the solution {selected_sites}

is returned, otherwise an {error_message} is returned

Evaluator: You’re a solution evaluator in a team of optimization experts,

Dataset1 contains the coordinates ('x', 'y') and traffic for each weak

coverage point, and Dataset2 contains the coordinates of existing base

stations……Please determine whether the sites in {selected_sites} satisfy

all constraints.

Response:

Solution is valid and meets all constraints.

Selected Sites (Coordinates and Types): [(2019, 2079, 'Macro'), (2048,

2034, 'Micro'), (2041, 2063, 'Micro'), (2064, 2090, 'Micro'), (2088, 2000,

'Macro')]

Fig. 6. Example prompts for mathematical modeling, programming,
execution, and evaluation of CLaBa strategy.

For the sake of brevity, we do not present the prompts and
generated response of the LaBa strategy here, as it is quite
similar to the CLaBa approach. The main difference is that a
single agent completes tasks such as modeling, programming,
execution, and evaluation sequentially within the LaBa strat-
egy, whereas the CLaBa strategy leverages multiple LLMs to
perform different sub-tasks.

3) Analysis of LaBa and CLaBa Strategies: The LaBa
strategy is straightforward to implement, with an intuitive
architecture design and deployment process. One single agent
employs a unified model for inference, producing clear, easily
traceable results, which makes it efficient for solving one
single well-defined problem. However, when tasks become
more complex and require parallel processing, a single agent
may become a bottleneck. Additionally, a single agent is
vulnerable to single points of failure, as an error in any
component in the workflow could lead to the overall task
failing. In cases where tasks require knowledge or skills from
multiple domains, a single agent may not offer sufficient
coverage.

In contrast, the CLaBa strategy leverages multiple agents
to simultaneously tackle different sub-tasks, significantly re-
ducing overall task completion time. Each agent focuses on
optimizing specific sub-tasks, enhancing both the accuracy and
efficiency of the solution. Furthermore, when certain agents
encounter errors, the remaining agents can continue working,
thereby improving the system’s fault tolerance. Multi-agent
collaboration is particularly effective for addressing cross-
domain or cross-module problems, especially when tasks
involve multi-step reasoning or expertise in various fields.
This adaptability makes CLaBa suitable for evolving and

dynamic network environments, where new constraints or
objectives may arise. The cost of these performance gains
is an increase in development complexity, as it requires the
design of interaction protocols, collaboration strategies, and
fault handling mechanisms between agents.
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Fig. 7. Flowchart of RAG system. The system integrates private data,
transforms it into semantic vectors using an embedding model, and
stores these vectors in a vector database. User queries are converted
into query vectors to retrieve relevant knowledge, which is then
combined with an LLM to generate accurate responses.

IV. RAG-ENHANCED STRATEGY

While LLMs equipped with prompt engineering and agent
engineering have proven effective in NLP tasks, their reliance
on pre-trained knowledge bases can limit their performance
in domain-specific applications. The dynamic and complex
nature of BSS demands up-to-date, contextually relevant in-
formation, which may not be readily available through pre-
trained models. Therefore, there is a critical need for an
approach that enhances LLMs with real-time, domain-specific
knowledge to improve their decision-making capabilities in
BSS optimization.

A. Preliminary of RAG

RAG offers a promising solution to these challenges by
combining external knowledge retrieval with LLMs, effec-
tively expanding the scope and depth of the model’s knowl-
edge base. By integrating information retrieval into the process
of prompt generation and response creation, RAG enables
LLMs to dynamically incorporate relevant external informa-
tion, thereby enhancing the accuracy and relevance of the
output. For instance, [41] points out that RAG is particu-
larly beneficial for tasks that require extensive background
knowledge (e.g., open-domain question answering), as it al-
lows for the real-time retrieval of latest information. In [31],
RAG was leveraged to support mathematical modeling and
problem formulation in satellite communication networks.



Similarly, in the context of BSS problems, RAG is well-suited
to supplement real-time network data and domain-specific
knowledge, improving the LLM’s ability to generate optimized
BSS solutions.

B. The Workflow of RAG-enhanced strategies for BSS task

The implementation of RAG involves several key steps, as
shown in Fig. 7. First, a domain-specific knowledge base,
referred to as external data, is created for the BSS application.
This knowledge base may include real-time network perfor-
mance data, optimization modeling methods, solution codes,
and more, typically stored in various formats such as files,
databases, or extended text. Next, an embedding model (e.g.,
text-embedding-ada-002 released by OpenAI1) is employed
to transform this data into vector representations, which are
then stored in a vector database. This process results in a
dynamic knowledge base that can be accessed by the LLM,
enriching its ability to generate accurate and contextually
relevant solutions.

Following this, the system performs relevance matching
between the user query and the data in the knowledge base.
The user query q is first transformed into a vector represen-
tation q using the embedding model. Then, cosine similarity
is calculated between q and each vector vi in the database to
obtain the correlation score:

sim(q,vi) =
q · vi

||q||||vi||
. (7)

Based on these scores, the system selects the top k most
relevant data items, denoted as di1 , di2 , . . . , dik , to serve as
supplementary information for the LLM. For example, in a
BSS task where the prompt is ”How to deploy base stations
in weak coverage areas to improve signal quality,” the system
will retrieve relevant content related to optimization modeling
and solution code, assisting the LLM in generating accurate
optimization recommendations.

In the final step, RAG enhances the LLM’s response by
incorporating the retrieved relevant data into the prompt. The
updated prompt includes both the user’s original query and the
retrieved knowledge base information {q, di1 , di2 , . . . , dik},
enabling the LLM to better understand the task requirements
and generate a deployment plan that meets the BSS criteria.
In generating the final response, the LLM integrates the latest
BSS-related information with its original training data.

V. EXPERIMENTAL RESULTS

In this work, we propose three innovative strategies that
leverage the capabilities of LLMs, marking a significant
paradigm shift in addressing the BSS problem. The first strat-
egy centers on prompt engineering, emphasizing the dynamic
interaction between human operators and LLMs to foster a
collaborative problem-solving approach. In contrast, the latter
two strategies focus on autonomy, advocating for end-to-end
automated solutions driven by LLM-empowered AI agents.
These strategies not only expand the problem-solving land-
scape for BSS but also provide a comprehensive framework

1https://zilliz.com/ai-models/text-embedding-ada-002

to evaluate the merits of both human-LLM collaboration and
AI-driven automation.

It is worth noting that LLM-based methods complement,
rather than compete with, traditional approaches. When in-
tegrated with conventional methods, LLMs can serve as an
augmentative tool, enhancing their effectiveness. Specifically,
LLMs can address particular challenges by utilizing open-
source algorithm toolkits or expert knowledge libraries curated
by engineers. The prompt engineering-based strategy allows
engineers to guide LLMs in selecting specific algorithms,
such as genetic algorithms or deep reinforcement learning,
based on the performance of generated solutions. This ap-
proach offers greater flexibility and adaptability compared to
traditional methods. On the other hand, strategies based on
agent engineering rely entirely on the autonomous learning
processes of agents to determine which algorithms to invoke.
This level of autonomy presents a novel solution to the
BSS problem, potentially outperforming traditional methods in
specific scenarios. The following subsections provide detailed
experimental results to validate the effectiveness and reliability
of the proposed strategies.

A. Experimental Setup

1) Dataset: In this study, we utilize a dataset that reflects
real-world conditions for mobile communication network site
planning in urban scenario2. This dataset provides a com-
prehensive view of the coverage delivered by existing base
stations in urban settings, as well as identifies regions experi-
encing suboptimal signal strength. Meticulously divided into
a grid of 2500× 2500 units on an authentic map, the dataset
furnishes granular network and traffic data for the centroid
of each grid cell. This encompasses accurate geographic
coordinates, traffic volume, and flags indicating weak coverage
areas. Additionally, the dataset encompasses the geographical
coordinates of existing base stations, an essential element for
strategic planning and optimization tasks.

2) System Parameters: In alignment with the settings of
the adopted dataset, we define the coverage radii for macro
and micro base stations as dh = 30 grids and dd = 10 grids,
respectively. The corresponding deployment costs are set to
Ch = 10 for macro base stations and Cd = 1 for micro base
stations. To maintain network integrity and mitigate interfer-
ence, a minimum separation distance of Dmin = 10 grids is
enforced between any two base stations. The primary objective
of this study is to enhance network coverage in underserved
areas while minimizing deployment costs. Specifically, the
thresholds of the total traffic volume for the optimization
problem is set as θcp = 90%. The selection of the 90%
threshold represents a balanced trade-off between practical
feasibility and ambitious optimization goals. This target not
only reflects real-world challenges but also ensures that the
proposed methods can effectively support high-traffic areas
while maintaining cost efficiency.

3) Baselines: To validate the effectiveness of our proposed
LLM-based methods, we compare them against two widely-
used traditional approaches in BSS task:

2http://www.mathorcup.org
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• Particle Swarm Optimization (PSO) Method [39]:
A well-established metaheuristic optimization algorithm,
PSO has been extensively applied in various network
planning problems. It optimizes solutions through itera-
tive improvement based on a predefined quality measure,
making it an ideal benchmark for comparison in this
study.

• Simulated Annealing (SA) Method [40]: SA is a prob-
abilistic optimization technique inspired by the physical
process of annealing. By allowing the acceptance of
worse solutions with a certain probability, SA explores
the solution space more comprehensively, enabling it to
escape local optima and approach the global optimum. Its
capacity to navigate complex solution landscapes makes
it a valuable comparison method for this study.

For a fair comparison, both baseline methods are implemented
under identical experimental conditions, including the same
dataset and defined constraints.

4) Metrics: In this work, we utilize four key metrics:
traffic coverage, deployment cost, success rate, and execution
time. These metrics offer a comprehensive evaluation of each
strategy’s performance across different dimensions.

• Traffic Coverage: This is a crucial factor in BSS, as
it directly impacts both network performance and user
satisfaction. It is defined as the proportion of total traffic
within a given area that is covered by base stations.
Achieving high traffic coverage is essential for maintain-
ing service quality and avoiding network congestion. In
this study, we aim for at least θcp = 90% traffic coverage,
ensuring that the network operates efficiently even under
high traffic volumes.

• Deployment Cost: This metric represents the total cost
of deploying the necessary base stations to achieve the

target traffic coverage. It is vital for telecommunications
operators to ensure the economic feasibility of network
expansion by optimizing performance within budget con-
straints.

• Success Rate: The success rate refers to the proportion
of effective solutions generated by each strategy that meet
all predefined constraints, such as coverage, minimum
distance, and traffic demand. This metric evaluates the
reliability and robustness of each strategy. A higher suc-
cess rate indicates that the strategy consistently produces
feasible solutions, which is critical for the long-term
success of network deployments.

• Execution Time: This metric measures the total time
required for each strategy to generate the final solution,
including data processing, model generation, execution,
and feedback adjustments. It assesses the computational
efficiency of each strategy, especially for the more au-
tomated LaBa and CLaBa approaches. Shorter execution
times suggest that a strategy can quickly adapt to the
dynamic needs of network planning.

B. Experiment Results

In this subsection, we present a detailed analysis of the ex-
perimental results, which substantiate the effectiveness of the
proposed LLM-based BSS optimization strategies. To balance
computational efficiency with experimental representativeness,
we randomly selected 25 distinct 100 × 100 regions from
the dataset, instead of using the entire 2500 × 2500 grid. By
averaging the results across these 25 regions, we ensure that
the performance of the proposed strategies is assessed under
diverse network conditions.

1) Performance Comparison: As depicted in Fig. 8, the
average traffic coverage across 25 randomly selected regions
achieved by the proposed LLM-based strategies is compared
against that of the baseline methods. The PSO method achieves
the highest coverage rate of 98.49%, while the PoL, LaBa, and
CLaBa strategies also fulfill the 90% coverage requirement
with strong performances of 93.85%, 94.63%, and 93.75%, re-
spectively. The SA method attains a coverage rate of 96.93%.
These results indicate that, despite not surpassing the PSO
method’s high coverage, the proposed LLM-based strategies
still successfully meet the 90% coverage target and exhibit
significant advantages in cost-effectiveness and computational
efficiency, as further demonstrated in Fig. 9.

Fig. 9 compares the average deployment costs across 25
randomly selected regions of these methods. The PoL strategy
achieves 93.85% traffic coverage at a cost of 46, while the
LaBa strategy provides 94.63% coverage at a lower cost of
25. The CLaBa strategy offers 93.75% coverage at a cost of
26. In contrast, the PSO method incurs the highest deployment
cost of 105, while the SA method also has a relatively high
cost of 49. Together with the results in Fig. 8, these findings
underscore the clear cost advantage of the proposed LLM-
based strategies, highlighting their ability to effectively control
costs while still meeting the 90% traffic coverage requirement.

To provide a more intuitive understanding of the effec-
tiveness of the proposed strategies, Fig. 10 visualizes the
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Fig. 10. Visualized results of the BSS solutions generated by different methods, including weak coverage areas, existing base stations, new
macro base stations, and new micro base stations.

Fig. 11. Computational efficiency of different methods in solving BSS
tasks.

outcomes of different approaches to solving the BSS problem
within one randomly selected region. The figures show weak
coverage areas, existing base stations, and the newly selected
macro and micro base stations. The proposed LLM-based
strategies feature a well-balanced layout of macro and micro
base stations, ensuring effective coverage of weak areas while
efficiently managing costs.

To demonstrate the computational efficiency of our pro-
posed method, Fig. 11 presents the running time of differ-
ent methods in solving the BSS task. Notably, the running
time for the PoL strategy is not provided, as it involves
human interaction, which introduces variability and makes
accurate time measurement challenging. As shown in the
figure, traditional methods, specifically SA and PSO, exhibit
higher computational efficiency, requiring less execution time
compared to the LLM-based strategies. In contrast, the pro-
posed LLM-based strategies, namely LaBa and CLaBa, take
longer to complete due to their iterative feedback mechanisms
and complex decision-making processes. Furthermore, it is
worth mentioning that the execution times for PSO and SA
here only reflect the algorithm’s running time, excluding
the time spent by human engineers on tasks such as data
collection, data analysis, model development, and algorithm
selection. Although these methods have higher computational
times compared to traditional approaches, they offer more
nuanced optimization solutions, as indicated by the results in

TABLE I: Comparison of LLM-based and Traditional Methods

LLM-based Methods Traditional Methods
Efficiency Automated Labor-dependent

Deployment High initial investment Low initial cost

Maintenance Low long-term cost High long-term cost

Flexibility
Strong, easily updatable
and adjustable

Weak, high cost to
update and adjust

Scalability
Scalable for other tasks
and networks

Fixed paradigms with
limited scalability

Human
Intervention

Minimal manual
intervention

Highly dependent on
manual decision-making
and feedback

Real-time
Real-time data processing
with quick response

Limited real-time
capability, long update
cycles

Technical
Dependency

Rely on data and
computing devices

Rely on data and
experts’ experience
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Fig. 12. Success rate comparison between the proposed methods with
and without RAG.

Fig. 8 and Fig. 9. The LLM-based strategies provide a better
balance between coverage and cost. Additionally, the LLM-
based strategies eliminate the need for human intervention,
achieving full automation in the decision-making process.

In summary, the advantages and disadvantages are listed in
Table. I to compare the proposed LLM-based methods and
traditional methods.

2) Ablation Study: To verify the effectiveness and reliabil-
ity of the proposed LLM-based strategies, we evaluate their
performance based on the success rate. In the PoL strategy,
we assume a maximum of 10 interactions between LLM and
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Fig. 15. Computational efficiency comparison between the proposed
methods with and without RAG.

humans. Similarly, for the LaBa and CLaBa strategies, the
maximum number of iterative optimizations is set to 10. If the
number of interactions or iterations exceeds these limits, the
strategy is considered a failure. This approach reflects the need
for decision-makers to make timely and effective decisions
within a limited timeframe, which is typical in real-world net-
work deployment scenarios. We conduct BSS optimization by
randomly selecting 25 areas, and the proportion of successful
deployments in these areas represents the success rate.

Fig. 12 presents the success rates of different strategies,
with particular emphasis on the use of the RAG technique.
When the proposed strategies are not integrated with RAG,
their success rates are relatively low. However, among these,
the CLaBa strategy achieves the highest success rate. This is
because each agent in CLaBa specializes in a specific task,

such as mathematical modeling, code generation, and solution
validation, thereby improving performance in those areas.
After incorporating RAG, the success rates of the proposed
strategies increase significantly, reaching over 80%, nearly
doubling compared to when RAG is not used. This highlights
that RAG, by providing domain-specific knowledge, greatly
enhances the accuracy and robustness of the strategies.

To comprehensively assess the impact of the RAG technique
on the proposed strategies, Figures 13, 14 and 15 present a
comparative analysis of traffic coverage, deployment cost, and
execution time for the LaBa and CLaBa strategies before and
after enabling RAG. As illustrated in the figures, the traffic
coverage of the LaBa and CLaBa methods remains largely
unchanged regardless of whether RAG is applied. However,
in terms of deployment cost, the methods incorporating RAG
exhibit a significant reduction compared to those without RAG.
This improvement stems from RAG’s ability to facilitate a
broader exploration of potential solutions, thereby mitigating
the risk of overfitting to suboptimal or redundant outcomes.
Regarding execution time, while the retrieval of external
knowledge introduces additional computational overhead per
iteration, the overall time consumption of LaBa and CLaBa
is reduced. This efficiency gain is attributed to the precise
domain-specific knowledge provided by RAG, which mini-
mizes the number of ineffective attempts.

Exploring the impact of iteration limits on the success rate is
essential for evaluating the efficiency of the strategies. In real-
world applications, solutions are often constrained by time and
computational resources. Therefore, examining how different
iteration limits affect the success rate helps decision-makers
strike a balance between efficiency and resource consumption,
optimizing performance and robustness under limited condi-
tions.

Fig. 16 illustrates how the success rates of the LaBa
and CLaBa strategies change with different iteration limits.
he results indicate that when the iteration limit is 1, both
strategies have relatively low success rates. As the iteration
limit increases, the success rates of both strategies improve sig-
nificantly, suggesting that the agents can learn and adapt more
effectively through additional attempts, thereby enhancing
their success rates. Furthermore, the success rate of the LaBa
strategy is consistently lower than that of the CLaBa strategy,
demonstrating the superiority of the multi-agent framework
in solving complex tasks by dividing and collaborating on
different subtasks.

VI. DISCUSSIONS

In this section, we explore several open issues and also
promising directions for future research and development in
the integration of LLMs with next-generation networks and
communications.

A. Solution for Addressing Potential Limitations of LLMs

To effectively implement LLMs in practical applications, it
is crucial to address their limitations, such as dependency on
data quality and the need for regular updates. LLMs, like all
data-driven models, are significantly influenced by the quality
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and relevance of the data used for training. This challenge
can be mitigated by incorporating techniques like real-time
data retrieval (e.g., via RAG-based approaches), which allows
the model to access up-to-date, domain-specific information
as required. This enables the LLM to adapt dynamically to
changes in data, thereby improving both its robustness and
accuracy. Additionally, the model’s performance may degrade
if the data it was originally trained on becomes outdated.
To ensure flexibility and scalability, techniques such as Fine-
tuning, In-context learning, Chain-of-thought reasoning, Tool-
calling, RAG, and Multi-agent (FICTRAM) techniques can be
employed to seamlessly integrate the latest updates without the
need for full model re-training. This approach further enhances
the model’s capability to reason through evolving and dynamic
information.

B. Enhancing Framework Applicability through Open-Source
and Localized LLM Deployment

In our studies, the use of closed-source LLMs, such as
GPT, has provided strong support for the validation of our
framework. However, this cloud service-dependent model may
face applicability challenges in scenarios without network
connectivity. Open-source LLMs, such as LLaMA, OPT, or
Bloom, offer a practical solution to this problem. Open-
source models can not only operate in environments without
network connectivity through localized deployment but can
also be fine-tuned for specific scenarios, thereby enhancing
their adaptability. Furthermore, the integration of model op-
timization techniques, such as quantization and pruning, can
further reduce the model’s dependence on hardware resources,
enabling it to run efficiently on devices with limited computa-
tional and storage capabilities. This direction of improvement
will significantly enhance the flexibility and universality of the
framework.

C. LLM-empowered AI Native Next-Generation Networks

The native intelligence of the next generation communica-
tion network can be rapidly established and boosted by fully
utilizing LLM’s potent natural language processing capability,
the native intelligence of the upcoming generation of com-
munication networks. For example, in future communication
and networks, resource management is a core task to ensure

efficient network operation. LLMs and other AI technologies
play a significant role in resource management by improv-
ing the utilization efficiency of network resources through
intelligent scheduling and optimization. Specifically, LLMs
can analyze historical data and current network status, predict
future network needs, optimize resource allocation in advance,
and reduce network congestion and latency. The integration of
LLMs does, however, come with certain difficulties, including
designing flexible interfaces to adapt to different network
environments, developing efficient algorithms to meet real-
time requirements, and optimizing models to accommodate
the resource constraints of network devices. By adopting a
modular design, different components of the LLMs can be
integrated into the network system as needed. Algorithm
optimization can reduce computing resource consumption to
ensure fast responses. Additionally, flexible interface design
ensures that LLMs can operate efficiently in various network
environments.

D. Task-oriented Selection in Human-LLM Interaction or Au-
tonomous Agents

For the future generation of networking and communication
systems, it is essential to make the task-oriented decision
between a human-LLM interaction framework or a fully
automated LLM framework. On the one hand, the purely
autonomous LLM-based framework can significantly improves
efficiency by reducing human involvement. However, LLMs
are known to suffer from the hallucination problem, where
models can produce inaccurate or misleading information.
This issue is particularly severe in automated network man-
agement and communication systems, where it can result in
hazards and faults in the system. On the other hand, human-
LLM interaction can mitigate the impact of hallucinations,
improving system reliability. Human involvement can serve
as a verification and correction mechanism to detect and cor-
rect erroneous information generated by LLMs promptly. For
example, in an automated customer service system, customer
service personnel can review and adjust the model’s responses
to ensure users receive accurate and reliable service. Although
this approach may reduce overall efficiency, it enhances the
accuracy and reliability of information, increasing user trust
and reducing potential risks.

VII. CONCLUSION

This study explored the potential of LLMs in optimizing
BSS problem and proposed three innovative strategies: PoL,
LaBa, and CLaBa. Each strategy demonstrated distinct advan-
tages, ranging from reducing human intervention to enabling
highly automated and adaptive solutions. Experimental evalu-
ations showed that the proposed methods effectively balanced
traffic coverage, and deployment cost, thus meeting the re-
quirements of real-world scenarios. Moreover, the integration
of LLMs with RAG significantly improved the accuracy and
robustness of the solutions, providing a solid foundation for
solving complex optimization problems.

Future research is expected to build upon this framework
and explore broader applications of LLMs in communication



systems, such as dynamic resource management and intelligent
decision-making. By combining human expertise with AI
capabilities, the proposed framework paves the way for fully
autonomous and scalable solutions, advancing the evolution of
AI-driven engineering practices.
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augmented generation for knowledge-intensive NLP tasks,” in Proc.
NeurIPS, Vancouver, Canada, 2020, pp. 9459–9474.

http://www.mathorcup.org


Yanhu Wang (Student Member, IEEE) received
the B.E. degree in measurement and control tech-
nology and instrument from the China University
of Petroleum, QingDao, China, in 2018, and the
M.S. degree in control engineering from the China
University of Mining and Technology, XuZhou,
China, in 2021. He is currently pursuing the Ph.D.
degree with the School of Control Science and
Engineering, Shandong University, Jinan, China. His
research interests include semantic communications
and machine learning.

Muhammad Muzammil Afzal (Student Member,
IEEE) received his BS degree in Electrical Power
from the Institute of Southern Punjab, Multan, Pak-
istan, in 2016. Currently, he is pursuing a master
degree in Control Science and Engineering at Shan-
dong University, Jinan, China. His main research
interests include Artificial Intellegence in commu-
nications and UAV system.

Zhengyang Li (Student Member, IEEE) received
the B.E. degree from the School of Control Science
and Engineering, North China Electric Power Uni-
versity, Beijing, China, in 2023. Now, he is currently
pursuing the M.S. degree at Shandong University.
His main research interests include communication
security and privacy protection.

JieZhou (Student Member, IEEE) received the B.E.
degree from the School of Control Science and
Engineering, Shandong University, Jinan, China, in
2023. Now, he is currently pursuing the M.S. degree
at Shandong University. His main research inter-
ests include semantic communications and machine
learning.

Chenyuan Feng (S’16-M’21) received the B.E.
degree in electrical and electronics engineering from
the University of Electronic Science and Technology
of China (UESTC), Chengdu, China, in 2016, and
the Ph.D. degree in information system technology
and design from Singapore University of Technology
and Design (SUTD), Singapore, in 2021, respec-
tively. Currently she is a research fellow at Eure-
com, France. Her research interests include edge
intelligence, multimedia intelligence, as well as AI
for network and communication. Dr. Feng is also

a receipt the 2021 IEEE ComComAp Best Paper Award and 2024 IEEE
ICCT Best Paper Award. She was invited to deliver several tutorials and
invited talk at International conferences in the area of machine learning for
communication, such as IEEE PIMRC’24, VCC’24, ICCT’22 and ICCT’24.
She also serves as an Editor for the IEEE INTERNET OF THINGS JOURNAL
and the IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY. Dr.
Feng is a Marie Skłodowska-Curie Scholar.

Shuaishuai Guo (Senior Member, IEEE) received
the B.E and Ph.D. degrees in communication and
information systems from the School of Informa-
tion Science and Engineering, Shandong Univer-
sity, Jinan, China, in 2011 and 2017, respectively.
He visited University of Tennessee at Chattanooga
(UTC), USA, from 2016 to 2017. He worked as
a postdoctoral research fellow at King Abdullah
University of Science and Technology (KAUST),
Saudi Arabia from 2017 to 2019. Now, he is working
as a full professor of Shandong University. His

research interests include 6G communications and machine learning.

Tony Q. S. Quek (S’98-M’08-SM’12-F’18) re-
ceived the B.E. and M.E. degrees in electrical and
electronics engineering from the Tokyo Institute of
Technology in 1998 and 2000, respectively, and the
Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Technol-
ogy in 2008. Currently, he is the Cheng Tsang Man
Chair Professor with Singapore University of Tech-
nology and Design (SUTD) and ST Engineering Dis-
tinguished Professor. He also serves as the Director
of the Future Communications R & D Programme,

the Head of ISTD Pillar, and the Deputy Director of the SUTD-ZJU IDEA.
His current research topics include wireless communications and networking,
network intelligence, non-terrestrial networks, open radio access network, and
6G. Dr. Quek has been actively involved in organizing and chairing sessions,
and has served as a member of the Technical Program Committee as well as
symposium chairs in a number of international conferences. He is currently
serving as an Area Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS.

Dr. Quek was honored with the 2008 Philip Yeo Prize for Outstanding
Achievement in Research, the 2012 IEEE William R. Bennett Prize, the 2015
SUTD Outstanding Education Awards – Excellence in Research, the 2016
IEEE Signal Processing Society Young Author Best Paper Award, the 2017
CTTC Early Achievement Award, the 2017 IEEE ComSoc AP Outstanding
Paper Award, the 2020 IEEE Communications Society Young Author Best
Paper Award, the 2020 IEEE Stephen O. Rice Prize, the 2020 Nokia Visiting
Professor, and the 2022 IEEE Signal Processing Society Best Paper Award. He
is the AI on RAN Working Group Chair in AI-RAN Alliance. He is a Fellow
of IEEE, a Fellow of WWRF, and a Fellow of the Academy of Engineering
Singapore.


	Introduction
	Related Works of Traditional Methods
	Motivations for Incorporating LLMs
	 Contributions 

	Problem Description
	Network Model
	Problem Formulation
	Objective
	Constraints

	Objective Function

	LLM-empowered BSS Paradigm
	Strategy based on Prompt Engineering
	Workflow of PoL Strategy
	Analysis of PoL Strategy

	Strategies based on Agent Engineering
	Workflow of LaBa Strategy
	Workflow of CLaBa Strategy
	Analysis of LaBa and CLaBa Strategies


	RAG-enhanced Strategy
	Preliminary of RAG
	The Workflow of RAG-enhanced strategies for BSS task

	Experimental Results
	Experimental Setup
	Dataset
	System Parameters
	Baselines
	Metrics

	Experiment Results
	Performance Comparison
	Ablation Study


	Discussions
	Solution for Addressing Potential Limitations of LLMs
	Enhancing Framework Applicability through Open-Source and Localized LLM Deployment
	LLM-empowered AI Native Next-Generation Networks
	Task-oriented Selection in Human-LLM Interaction or Autonomous Agents

	Conclusion
	References
	Biographies
	Yanhu Wang
	Muhammad Muzammil Afzal
	Zhengyang Li
	JieZhou
	Chenyuan Feng
	Shuaishuai Guo
	Tony Q. S. Quek




