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Abstract—Grid-based methods in sparse signal reconstruction (SSR)
are well-regarded for their efficacy in direction-of-arrival (DoA) esti-
mation. This paper presents the EP (Expectation Propagation)-SURE
(Stein’s Unbiased Risk Estimate)-SBL (Sparse Bayesian Learning) algo-
rithm, designed for single snapshot DoA estimation. The algorithm divides
DoA estimation into two parts: grid-on estimation and off-grid error
estimation, employing first-order and second-order Taylor expansions.
In grid-on estimation, sparse Bayesian learning is employed for sparse
modeling. To tackle hyperparameter estimation challenges within sparse
Bayesian learning, the algorithm adopts SURE estimator instead of the
commonly-used expectation-maximization (EM) approach. For off-grid
error estimation, the algorithm utilizes the EP technique to handle high-
dimensional, non-tractable integration in posterior mean calculations.
The feasibility and effectiveness of the proposed algorithm are validated
through extensive simulations.

I. INTRODUCTION

Grid-based methods, treated as sparse signal reconstruction (SSR),
have gained interest in direction-of-arrival (DoA) estimation in recent
years. Various algorithms, such as Orthogonal Matching Pursuit
(OMP) [1], basis pursuit [2], least absolute shrinkage and selection
operator (LASSO) [3], and iterative re-weighted l1 and l2 algo-
rithms [4], address the SSR problem. Compared to these algorithms,
Bayesian techniques for SSR generally achieve superior performance
while [5] provides a detailed overview of SSR algorithms based
on l1 or l2 norm minimization approaches, such as Basis Pursuit
and LASSO, and Sparse Bayesian Learning (SBL) methods, high-
lighting SBL’s superior recovery performance. The SBL algorithm,
first introduced by [6] and proposed for SSR by [7], aims to
calculate the posterior distribution of the parameter x given some
observations (data) and prior knowledge. Moreover, Wipf and Rao
[8] have theoretically shown that the SBL framework can obtain
the true (sparsest) solution, whereas assigning informative priors
may lead to unstable algorithms or incorrect. In SBL, the unknown
hyperparameters (signal variance and noise variance) need to be
estimated jointly. One approach uses the expectation maximization
(EM) algorithm [9] for this estimation. Although EM can converge
to the maximum likelihood estimator, it cannot recover exact zero
variances of signals with a finite number of iterations, meaning it
cannot recover sparse signals precisely unless manual tuning methods
are leveraged. To address this, we use Stein’s unbiased risk estimator
(SURE) [10] to recover hyperparameters, termed SURE-SBL [11].
For the SURE estimator, as data size approaches infinity, optimizing
SURE is equivalent to minimizing mean squared error (MSE). In
our previous work [12], we demonstrated that SBL achieves better
performance than LASSO from an MSE perspective.

The advantage of grid-based methods can operate effectively, even
with a single snapshot, provided that all source spatial frequencies
align exactly with the preset grid. This is in contrast to traditional
methods such as MUltiple SIgnal Classification (MUSIC) [13] esti-
mator and ESPRIT (Estimation of Signal Parameters via Rotational

Invariance Techniques) estimator [14]. However, in practice, this
condition is almost impossible to meet, as the region of interest (ROI)
contains infinite candidates, leading to grid mismatch when splitting
the ROI into a finite number of grids. This off-grid issue has attracted
significant research interest in array signal processing over the past
decade. Existing solutions to address the off-grid problem can be
categorized into three groups. The first group employs denser grids
or a coarse-to-fine strategy, as discussed by [15]. However, these
methods have two main drawbacks: denser grids significantly increase
computational complexity, and overly dense grids may result in weak
incoherence among the steering vectors. The second group includes
the so-called gridless approaches [16], which are limited to regularly
sampled measurements from a uniform linear array (ULA). The third
group, which we utilize in this paper, estimates the off-grid bias
along with the grids closest to the true spatial frequencies. We extend
the measurement matrix at the grid-on place using Taylor expansion.
Based on a Bayesian framework, we develop the posterior mean of
off-grid error, assuming a uniform distribution. Due to the intractable
nature of high-dimensional integration, we employ an expectation
propagation (EP)-based [17] method to address it. In this paper, we
propose a novel DoA estimation algorithm based on a single snapshot,
leveraging Sparse Bayesian Learning (SBL), Expectation Propagation
(EP), and Stein’s Unbiased Risk Estimate (SURE), coined as the
EP-SURE-SBL algorithm. This innovative combination of techniques
enhances the precision and robustness of DoA estimation. Numerical
simulations validate the robustness and effectiveness of our method.

A. Notations

The notation CN (x;µ,Σ) denotes the complex Gaussian distri-
bution evaluated at x with mean µ and covariance matrix Σ. Here,
Hi represents the ith column of matrix H , while ai denotes the ith
element of vector a. The function diag(a) signifies a square diagonal
matrix with a as its main diagonal. Additionally, (·)H , (·)T , and (·)∗
respectively indicate the Hermitian transpose, transpose, and adjoint
of a matrix or vector. βn̄ denotes the β vector with the nth entry
set to 0. IM denote the M ×M identity matrix, and ℜ{a} represent
the real part of the complex number a. rank(A) denotes the rank of
matrix A.

II. DATA MODEL

Consider a single snapshot measurement and K narrowband far-
field sources sk, k = 1, · · · ,K, impinging on an array of M
omnidirectional sensors from direction θk, k = 1, · · · ,K. Time
delays at different sensors can be represented by simple phase shifts,
leading to the observation model:

y = Φ(θ)s+ v, (1)

where y = [y1, · · · , yM ]T represent the vector of outputs, and
v(t) = [v1, · · · , vM ]T represents the vector of measurement noise
for each sensor. Additionally, θ = [θ1, · · · , θK ]T denotes the vector



of unknown directions of arrival (DoAs), and s = [s1, · · · , sK ]T rep-
resents the source signals. The matrix Φ(θ) = [ϕ(θ1), · · · ,ϕ(θK)]
serves as the array manifold matrix, with ϕ(θk) referred to as the
steering vector corresponding to the k-th source.

Each entry ϕm(θk) = exp(−2π(m−1) sin(θk)d/λ) encapsulates
the delay information from the k-th source to the m-th sensor.
Throughout this paper, we assume the number of sources K is known.
Hence, the primary objective is to estimate the unknown DoAs θ
based on the given source number K, y, and the mapping θ → Φ(θ).

In the ensuing sections, we derive the off-grid model using linear
approximation and establish its connection with the on-grid approach.

Let θ̃ = {θ̃1, · · · , θ̃N} be a fixed sampling grid in the DoA range
[−π

2
, π

2
), where N represents the number of grid points. Typically,

K < M ≪ N . Without loss of generality, θ̃ is a uniform grid with
a grid interval l = θ̃N − θ̃N−1 = π/N . Suppose θk ̸∈ {θ̃1, · · · , θ̃N}
for some k ∈ {1, · · · ,K} and that θ̃nk , nk ∈ {1, · · · , N} is the
nearest grid point to θk. We approximate the steering vector ϕ(θk)
using second-order Taylor linearization:

ϕ(θk)≈a(θ̃nk )+b(θ̃nk )(θk − θ̃nk ) +
1
2
c(θ̃nk )(θk−θ̃nk )

2, (2)

with a(θ̃nk ) = ϕ(θ̃nk ), b(θ̃nk ) = ∂ϕ(θk)
∂θk

∣∣∣
θk=θ̃nk

and

c(θ̃nk ) = ∂2ϕ(θk)

∂θ2
k

∣∣∣
θk=θ̃nk

. Denote A = [a(θ̃1), · · · ,a(θ̃N )],

B = [b(θ̃1), · · · , b(θ̃N )], C = [c(θ̃1), · · · , c(θ̃N )] and β =
[β1, · · · , βN ]T , where for n = 1, · · · , N ,

βn = θk − θ̃nk , βn ∈ (− l
2
, l
2
);

xn = snk , if n = nk, for any k ∈ {1, · · · ,K};
xn = 0, otherwise,

(3)

with nk ∈ {1, · · · , N} and θ̃nk being the nearest grid to a source
θk, k ∈ {1, · · · ,K}. By absorbing the approximation error into
measurement noise, the observation model in (1) can be re-expressed
as follows:

y =
[
A+B diag(β) + 1

2
C diag(β)2

]
x+ v. (4)

It is worth noting that setting C to be a zero matrix in equation (4)
causes the second-order Taylor expansion to reduce to a first-order
approximation. To estimate the DoA θ, it is essential to determine
both the support of the sparse signal x and the off-grid difference β.
This paper adopts a Bayesian framework to formulate the problem
and introduces an iterative algorithm in the subsequent section for
the joint estimation of x and β.

III. OFF-GRID SPARSE BAYESIAN INFERENCE

A. Sparse Bayesian Formulation

1) Noise Model: Under the assumption of white (circular sym-
metric) complex Gaussian noise, we have

p(v|λ) = CN (v|0, λIM ), (5)

where λ denotes the noise variance. Then we have

p(y|x,β)=CN (y|[A+Bdiag(β)+1
2
Cdiag(β)2]x, λIM ). (6)

In this paper, we assume that the noise variance λ is unknown and
needs to be estimated later on.

2) Sparse Signal Model: In Sparse Bayesian Learning (SBL), the
unknown parameters x are represented as decorrelated zero-mean
(circular symmetric) complex Gaussian distributions:

p(x|γ) =
∏N
n=1 CN (xn|0, γn), (7)

where γ represents the unknown parameters. γn is a nonnegative
parameter that controls the sparsity of x. Specifically, when γn = 0,
xn is constrained to be 0. Throughout the learning process, many
γn tend to approach 0 due to the mechanism of automatic relevance
determination. In this framework, we treat all {γn}Nn=1 as determin-
istic parameters of unknown values, without assuming a specific prior
distribution for them, effectively treating them as random variables.
This approach assumes a non-informative prior distribution for γ.

3) Off-Grid Bias Model: We assume a uniform prior for β:

p(β) =
∏N
n=1 p(βn) = U

((
− l

2
, l
2

)N)
, (8)

where U denotes the uniform distribution, and
(
− l

2
, l
2

)N specifies
the bounds within which each component βn of β is confined.
This prior is considered non-informative because it only reflects the
bounded nature of β.

By combining the stages of our hierarchical Bayesian model, the
joint probability density function is expressed as:

p(x,y,β|γ) = p(x|γ) p(y|x,β) p(β), (9)

where the distributions on the right-hand side are defined by (6),
(7), and (8) respectively. This formulation encapsulates how the data
y, the unknown parameters x governed by γ, and the regression pa-
rameters β are interconnected under the assumptions of the Bayesian
framework.

B. Stein’s Unbiased Risk Estimator for Estimating γ

We estimate γ and β separately. Initially, assuming β has been
estimated as β̂. For the sake of convenience, let us define

H(β̂) = A+B diag(β̂) + 1
2
C diag(β̂)2, (10)

Referring to (10) in (4), we obtain:

y = H(β̂)x+ v. (11)

According to the Gaussian-Markov theorem, the posterior distribution
of x is a complex Gaussian with the probability density function
given by:

p(x|y)=CN (x|ΓH(β̂)HR−1y,Γ− ΓHH(β̂)HR−1H(β̂)Γ),
(12)

where Γ = diag(γ) is the diagonal covariance matrix of x and R =
H(β̂)diag(γ)H(β̂)H + λIM is the covariance matrix of y.

In the context of estimating the n-th entry of the signal vector
x, we adopt the Component-Wise Conditionally Unbiased (CWCU-
)LMMSE approach [18]. This approach assumes that the n-th entry
of x is deterministic, while treating the other entries as random
variables.

Given that we consider the n-th entry of x to be deterministic
(with a prior variance assumed to be +∞), and treat the remaining
entries as random variables, we can estimate the n-th entry of x and
the associated error using the following equations:

x̂n(0) = xn + x̃n(0) (13)



where x̃n(0) has variance σ2
x̃n(0) and x̂n(0) represents the CWCU-

LMMSE estimated value as below:

x̂n(0) =
HH
n (β̂)

(∑N
j ̸=n γ̂jHj(β̂)H

H
j (β̂) + λIM

)−1

y

HH
n (β̂)

(∑N
j ̸=n γ̂jHj(β̂)HH

j (β̂) + λIM
)−1

Hn(β̂)
;

(14a)

σ2
x̃n(0)=

HH
n (β̂)

 N∑
j ̸=n

γ̂jHj(β̂)H
H
j (β̂) + λIM

−1

Hn(β̂)

−1

.

(14b)

Incorporating the Gaussian prior information assumed in Sparse
Bayesian Learning (SBL) into (13), the posterior mean x̂n can be
expressed as

x̂n = x̂n(γn) =
γn

γn + σ2
x̃n(0)

x̂n(0). (15)

Then we obtain the MSE:
MSExn = E∥x̂n − xn∥22 = E

{
∥xn∥22 + ∥x̂n∥22 − 2ℜ{x̂nx∗n}

}
=E
{
∥xn∥22−∥x̂n(0)∥22+∥x̂n(0)−x̂n∥+2σ2

x̃n(0)
ℜ{ ∂x̂n

∂x̂n(0)
}
}
.

(16)
where E denotes expectation with respect to x̃n(0) (assuming xn is
deterministic). By omitting the expectation, we obtain an instanta-
neous unbiased estimate of the MSE and the corresponding Stein’s
Unbiased Risk Estimate (SURE) function, which represents the part
of M̂SE dependent on x̂n:

M̂SExn = ∥xn∥22 − ∥x̂n(0)∥22 + SURExn ,
SURExn = ∥x̂n(0)− x̂n∥+ 2σ2

x̃n(0)ℜ{ ∂x̂n
∂x̂n(0)

}. (17)

In (17), after some algebraic manipulations, SURExn can be ex-
pressed as

SURExn(γn)=

(
σ2
x̃n(0)

γn + σ2
x̃n(0)

)2

∥x̂n(0)∥22 + 2
σ2
x̃n(0) γn

γn + σ2
x̃n(0)

,

(18)
where, as a function of γn, the first term is decreasing and the second
term is increasing. Thus, we obtain
∂SURExn
∂γn

= 2σ4
x̃n(0)(γn + σ2

x̃n(0) − ∥x̂n(0)∥22)/(γn + σ2
x̃n(0))

3.

(19)
SURExn(γn) has a single extremum, a local minimum, at γn =
x̂2n(0)−σ2

x̃n(0). So, the minimum of SURExn(γn) occurs at positive
γn when x̂2n(0) > σ2

x̃n(0), but at negative γn in the opposite case.
Therefore, to ensure γn ≥ 0, we find the optimum as

γ̂n = max
(
∥x̂n(0)∥22 − σ2

x̃n(0), 0
)
. (20)

Therefore, to estimate the entire vector γ̂, we initialize γ first, then
update γ̂n step by step until convergence.
C. Expectation Propagation for Estimating β

For estimating β, by applying Bayes’ formula, we have:

p(β|y, γ̂) = p(y|β,γ̂)p(β)∫
p(y|β,γ̂)p(β)dβ , (21)

where p(y|β, γ̂) = CN (y|0,R(β, γ̂)) (22)

and covariance matrix R(β, γ̂) can be expressed as
R(β, γ̂) = H(β) diag(γ̂) H(β)H + λIM . (23)

Since p(β|y, γ̂) in (21) involves a high-dimensional integral, it is in-
tractable to compute directly. Therefore, an approximation method is
necessary to address this challenge. Here, we propose an expectation-
propagation (EP)-like algorithm for solving this problem. In this
approach,

p(β|y, γ̂) ≈ q(β|β̂,y, γ̂) = p(y|β,γ̂)
∏N

n=1 f(βn|β̂n)∫
p(y|β,γ̂)

∏N
n=1 f(βn|β̂n)dβ

, (24)

where f(βn|β̂n) = δ(βn − β̂n) and δ(·) is delta function which can
also be treated as a Gaussian distribution with zero variance. It is
obvious that updating β̂ is quite important. Employing the principles
of EP, we outline the algorithm as follows:

• Initialize β̂
• Until all β̂ converged

– Choose a f(βn|β̂n) to refine
– Remove f(βn|β̂n) from the posterior and integral out β

except βn to get a pdf ψ(y|βn, β̂n̄, γ̂) of extrinsic βn:

ψ(y|βn, β̂n̄, γ̂)=
∫
p(y|β, γ̂)

∏N
i̸=nf(βi|β̂i)dβn̄. (25)

– Combine ψ(βn|β̂n̄,y, γ̂) with real prior p(βn) to update
β̂n:

β̂n =
∫
βnψ(y|βn,β̂n̄,γ̂)p(βn)dβn∫
ψ(y|βn,β̂n̄,γ̂)p(βn)dβn

. (26)

In (25), ψ(y|βn, β̂n̄, γ̂) can be represented as:

ψ(y|βn, β̂n̄, γ̂) = 1
πM det(Ξn̄)

e−yHΞ−1
n̄ y, (27)

where

Ξn̄ = (H(β̂n̄) + βnBn +
β2
n
2
Cn)diag(γ̂)

(H(β̂n̄) + βnBn +
β2
n
2
Cn)

H + λIM .
(28)

After some straightforward algebraic manipulations, the calculation
for (26) yields:

β̂n =

∫ l
2

− l
2

βn
det(Ξn̄)

e−yHΞ
−1
n̄ ydβn

∫ l
2

− l
2

1
det(Ξn̄)

e−yHΞ
−1
n̄ ydβn

. (29)

Even though (29) lacks an analytic form, it can be computed
numerically as a one dimension integration using appropriate tools.

D. Noise variance λ Estimation
Once β̂ and γ̂ have been estimated, we construct the matrix H(β̂)

by selecting its non-zero columns to form a new sensing matrix Φ̂.
We then estimate s using the least squares estimator (LSE) as follows:

x̂ = (Φ̂T Φ̂)−1Φ̂Ty. (30)
Then, the hyperparameter noise variance λ can be estimated as:

λ̂ =
∥y − Φ̂x̂∥22
M − rank(Φ̂)

. (31)

As previously mentioned, we lack prior information about x (deter-
ministic) except for its sparsity. Therefore estimating λ with respect
to γ may introduce unknown biases, necessitating further analytical
investigation. This consideration underscores the need for additional
rigorous analysis to understand the implications and potential biases
introduced by estimating λ in relation to γ. Such exploration is
crucial for ensuring the robustness and reliability of the inference
process in the context of sparse Bayesian learning.

E. SURE-SBL-EP DoA Estimation Algorithm

The whole algorithm are given in Alg. 1. The initialization of
hyperparameters in the numerical simulations of this paper are
denoted in IV-A.

IV. NUMERICAL SIMULATION

In this section, the performance of EP-SURE-SBL is evaluated by
performing numerical simulations.



Algorithm 1 DoA Estimation based on SURE-SBL-EP

Input: y, N , K, ϵ1, ϵ2 and ϵ3
1: Initialization:γ1 ← 1N ,β

1 ← 0N , τ ← 1, θ̃, λ̂1 = 0.1
2: Calculate A B and C based on θ̃
3: repeat
4: repeat
5: τ ← τ + 1
6: repeat
7: Update x̂n(0) and σ2

x̃n(0) based on (14)
8: Update γτn based on (20)
9: until All {γτn}Nn=1 updated

10: until ∥γτ − γτ−1∥2/∥γτ∥2 < ϵ1
11: Keep K large γτ and set others to be 0
12: repeat
13: repeat
14: if γτn ̸= 0, then Update β̂τn based on (29)
15: else β̂τn = 0 end if
16: until All {γτn}Nn=1 updated
17: until ∥βτ − βτ−1∥2/∥βτ∥2 < ϵ2
18: Update λ̂τ based on (31)
19: until ∥λ̂τ − λ̂τ−1∥/∥λ̂τ∥2 < ϵ3
Output: Estimate DoAs {θ̂k}Kk=1 based on βτ and θ̃

(a) 30 grids and SNR
= 10dB

(b) 60 grids and SNR
= 10dB

(c) 90 grids and SNR
= 10dB

(d) 30 grids and SNR
= 20dB

(e) 60 grids and SNR
= 20dB

(f) 90 grids and SNR
= 20dB

Fig. 1: Signal reconstruction performance

A. Simulation Setup
The performance of EP-SURE-SBL is evaluated through nu-

merical simulations. A simple simulation demonstrates the recov-
ery capability of EP-SURE-SBL with parameters set as follows:
M = 10, K = 4, wavelength λ = 10−2 meter, distance
d = 5 × 10−3 meter and true Directions-of-Arrival (DoAs) given
by θ = [−57.6,−27.4, 18.5, 44.9]T (units: degrees). The complex
coefficients {sk}Kk=1 are generated with magnitudes drawn from
U(1, 2) and phases from U(−π, π), not adhering to a complex
Gaussian distribution. Parameters ϵ1, ϵ2, and ϵ3 are set to 0.001.
B. Performance versus SNR and grid numbers

The performance of EP-SURE-SBL is analyzed across various
Signal-to-Noise Ratios (SNRs). Results are presented in Figs. 1a-1f.
The reconstruction of signals and the estimation error of DoAs exhibit
higher variability when using second-order Taylor expansion with 30
and 60 grid points. Conversely, with 90 grid points, the performance
of first and second-order Taylor expansions becomes comparable. The
Mean Squared Error (MSE) of DoA is defined as:

MSE =
1

K
∥θ̂i − θ∥22. (32)

Fig. 2 illustrates 100 trial runs with the conditional Cramér-Rao
Bound (CRB) serving as a lower bound. It is evident that with
90 grid points, performance consistently outperforms that of 30
and 60 grid points. It is clear that higher-order Taylor expansions
yield improved performance with identical grid points theoretically.
Notably, with the same grid points, Fig. 2 also shows second-order
Taylor expansion achieves superior performance compared to first-
order expansion. In addition, we compared Determinisic Maximum
Likelihood (DML) based DoA estimation [19], and our algorithm
achieves better performance when the grid is set to 60 or more.

The computational complexity of EP-SURE-SBL is dominated
by the matrix inversion, which scales as O(MN2), where M is
the length of the received data and N is the grid size. The total
complexity is O(TMN2), with T being the sum of iteration number
of EP and SBL. Another factor that affects the computational speed is
the use of numerical integration, which could potentially be improved.
Empirical results show the following averaged single-operation times:

• First-order Taylor Expansion: 30 grids: 0.1830s, 60 grids:
0.6021s, 90 grids: 1.2532s.

• Second-order Taylor Expansion: 30 grids: 0.2321s, 60 grids:
0.6951s, 90 grids: 1.3834s.

Fig. 2: MSE varying w.r.t. SNR

V. CONCLUSION

In this paper, we propose the EP-SURE-SBL algorithm for single
snapshot Direction-of-Arrival (DoA) estimation. We categorize DoA
estimation using both first order and second order Taylor expansion
into grid-on estimation and off-grid error estimation. Grid-on esti-
mation employs sparse Bayesian learning for sparse modeling, while
the variance hyperparameter in sparse Bayesian learning is estimated
using Stein’s Unbiased Risk Estimate (SURE) instead of Expectation-
Maximization (EM). For off-grid error, we approximate the Minimum
Mean Square Error (MMSE) bias using Expectation Propagation
(EP) for estimation. We validate the algorithm’s feasibility through
simulations. Future research will focus on improving recovery in
scenarios with an unknown number of signal sources and conducting
comparative experiments with other state-of-the-art methods.
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