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Abstract—In this work, we study uplink communication in cell-
free (CF) massive multiple-input multiple-output (MaMIMO)
systems, a promising architecture for next-generation networks.
To address the challenge of pilot contamination, we employ
semi-blind transmission structures that enable joint channel and
data symbol estimation. However, Bayesian estimation in such
semi-blind frameworks leads to intractable bilinear problems. To
tackle this, we propose a simplified, distributed method based on
Expectation Propagation (EP) for efficient semi-blind channel es-
timation. Notably, we identify that if the data constellation set can
be decomposed into multiple sub-constellation sets with identical
amplitudes, this structure can be leveraged to significantly reduce
computational complexity. This approach is particularly advanta-
geous for managing large constellation sizes, ensuring scalability
and efficiency in practical systems. Additionally, approximations
based on the Central Limit Theorem are incorporated to further
simplify computations.

I. INTRODUCTION

Unlike conventional mobile networks, Cell-Free (CF) net-
works no longer have the cellular topology. As a result, all
the user terminals (UTs) will be served by all the access
points (APs) in an area. A huge gain throughput gain can be
obtained by transforming into the new CF network topology
[1]. One of the challenges introduced by CF network is pilot
contamination, which occurs when the number of UTs exceeds
the length of pilot sequence. As a result, multiple UTs may
use the same pilot sequence.
Semi-Blind approaches [2] have been explored to mitigate the
effects of pilot contamination. In Semi-Blind approaches, the
channel and data are jointly estimated with the presence of
pilot contamination. The authors have also shown a perfor-
mance gain by transforming from deterministic estimation to
Bayesian estimation [2], [3]. However, Bayesian inference is
intractable due to the high dimensional integrals.
A variety of Message Passing based algorithms has been
proposed to simplify the high dimensional Bayesian inference
problem into local low dimensional inference problems [4]–
[8].
A. Continuous Input
Variable Level Expectation Propagation (VL-EP) [9] is a
variant of Expectation Propagation (EP) that assumes Gaussian
input from UTs and combines EP with Expectation Maximiza-
tion (EM) for joint bilinear estimation. In VL-EP, posterior
distributions (referred to as beliefs in EP terminology) are used
as extrinsic messages to reduce complexity.
In [10], the authors investigated the differences between VL-
EP and EP algorithms and proposed a block coordinate de-
scent method based on the Majorization-Minimization (MM)
algorithm. However, in more realistic scenarios, UT inputs
typically follow a discrete distribution, such as Quadrature
Amplitude Modulation (QAM). Unfortunately, the aforemen-
tioned methods do not perform well for discrete input cases.

B. Discrete Input

In [11], the authors proposed an EP-based distributed algo-
rithm for bilinear estimation with discrete UT inputs. However,
the complexity of this approach scales linearly with the
size of the constellation set. In [12], the authors exploited
the relationship between Bethe Free Energy (BFE) [4] and
message-passing algorithms. By incorporating mean-field con-
straints into the BFE, the resulting low-complexity algorithm,
proposed in [12], can be interpreted as a combination of
Variational Bayes (VB) and EP.

C. Main Contributions

In this paper, we propose an algorithm to mitigate the high
complexity associated with large constellation sets. As ob-
served in [13] and [11], differences in the amplitudes of
constellation symbols further contribute to this complexity.
Additionally, in decentralized or distributed algorithms, access
points (APs) need to share information about data symbols
through backhaul connections. This information is represented
as a list of probabilities corresponding to each element in the
constellation set, and its size grows linearly with the size of
the constellation set. While the approach in [12] ensures that
backhaul information exchanged between APs is independent
of the constellation size, it still requires traversing the entire
constellation set to determine the transmitted symbol.
To address these challenges, we exploit the hierarchical struc-
ture of the constellation set. Specifically, we assume that the
original constellation set can be decomposed into multiple sub-
constellation sets, each with identical amplitudes. A commonly
used example is 4M -QAM, which can be decomposed into M
4-QAM sub-constellation sets. By leveraging this decompo-
sition, backhaul messages become Gaussian, requiring only
the first and second-order moments to be shared between
APs. Furthermore, this approach reduces the complexity of
symbol determination from 4M to 4M possible values per
data symbol.

II. SYSTEM MODEL

We consider a semi-blind signal model containing L APs and
K UTs. At the l-th AP, it is represented by[

Yp,l Yl

]
= Hl

[
Xp X

]
+
[
Vp,l Vl

]
. (1)

The received signals are composed of pilot part Yp,l ∈ CM×P
and data part Yl ∈ CN×T . The channels between different
users are considered independent Gaussian i.e. vec(Hl) ∼
CN (0,Ξl) where Ξl ∈ CNK×NK is a block diagonal matrix
of K blocks Ξhlk ∈ CN×N . The transmitted symbols can be
decomposed as pilot symbols Xp ∈ SK×P and data symbols



X ∈ SK×T , where S is the constellation set. The signal power
is denoted as σ2

x. The noise is considered as i.i.d. Gaussian
distribution, and thus, vec(

[
Vp,l Vl

]
) ∼ CN (0,Cv) with

Cv = σ2
vI.

A. Orthogonal Pilot sequences

If orthogonal pilot sequences are used, we can first preprocess
the pilot observation by right multiplying it with x̃∗p,g which
is the conjugated g-th pilot sequence. This results in an
equivalent observation ỹp,lg

ỹp,lg =
1

Pσ2
x

Yp,lx̃
∗
p,g =

∑
k∈Gg

hlk + ṽp,lg (2)

where ṽp,lg = 1
Pσ2

x
Vp,lx̃

∗
p,g ∼ N (vp,lg|0,Cṽ), Cṽ =

σ2
vI

Pσ2
x

,
and Gg denotes the set of users using the g-th pilot sequence.
We observe that every hlk occurs only in one group Gg , and
the cross-correlation E[ṽp,lgṽ

H
p,lg′ ] is an all-zero matrix for

all g 6= g′. Therefore, the observations ỹp,lg and ỹp,lg′ are
independent.

B. Hierarchical Data Symbol

In this paper, we assume that the data symbols can be
decomposed into

xkt =
M∑
m=1

xm,kt, (3)

where |xm,kt|2 = σ2
xm. A common example of this constel-

lation scheme is 4M -QAM. If we assume the transmission
power of 4M -QAM to be σ2

x, then we have

σ2
xm =

3σ2
x

1
4

m−1

4
(

1− 1
4

M
) . (4)

We define an auxiliary variable

zm,lt =
∑
k

hlkxm,kt. (5)

The joint pdf can be factored as

p({yp,lg}, {Yl}, {zm,lt}, {Hl},X, {Vl}) (6)

=
∏
l

∏
t

fylt(z{m},lt)
∏
m

∏
l

∏
t

δm,lt(zm,lt,hl{k},xm,{k}t)

·
∏
l

∏
g

fHlGg
(HlGg )

∏
m

∏
k

∏
t

fxm,kt(xm,kt)

where

fylt(z{m},lt) = p

(
ylt|

∑
m

zm,lt

)
;

δm,lt(zm,lt,hl{k},xm,{k}t) = p

(
zm,lt|

∑
k

hlkxm,kt

)
;

fHlGg
(HlGg ) = p(yp,lg,HlGg );

fxm,kt(xm,kt) = p(xm,kt)

(7)

where the curly bracket in the subscript θ{n} denotes all
θ1, . . . , θN , and HlGg denotes a matrix collecting all k ∈
Gg,hlk as its column vectors. We will base our EP (BP)
algorithm based on this factorization scheme.

III. EXPECTATION PROPAGATION OVERVIEW

EP approximates the factors in a factorization scheme to
simpler ones [14]. With a given factorization, the update
algorithm in EP can be interpreted as message passing of two
types of messages, i.e., the message µΨ;θi(θi) from factor node
Ψ to variable node θi and the message µθi;Ψ(θi) from variable
θi to factor Ψ: [15]

µθi;Ψ(θi) ∝
∏

Φ6=Ψ

µΦ;θi(θi); µΨ;θi(θi) ∝
proj(bΨ(θi))

µθi;Ψ(θi)
, (8)

where bΨ(θi) is the belief of θi at node Ψ:

bΨ(θi) ∝ µθi;Ψ(θi)

∫
Ψ(θ)

∏
j 6=i

µθj ;Ψ(θj)dθi. (9)

The notation θi denotes all elements in θ except the i-th one.
The operation proj(p) project a given distribution p into a
target family Q [15], i.e.,

proj(p) = arg min
q∈Q

KLD(p‖q), (10)

where KLD(p‖q) =
∫
p(θ) ln p(θ)

q(θ)dθ is the Kullback–Leibler
divergence.
BP, on the other hand, can be considered a special form of EP
following (8). The only difference between BP and EP lies
in the projection step: in BP, the argument is projected onto
itself, i.e., in BP, we have bΨ ∈ Q. The projection step can
be viewed as an approximation. To maintain high precision
while ensuring low complexity, we use BP for estimating data
symbol xm,kt and EP for estimating the Channel hlk. We ex-
ploit the Central Limit Theorem (CLT) when estimating zm,lt,
resulting in BP being equivalent to EP for this estimation.
A. Notations
Due to the relationship described in (8), the variable-to-
factor messages are fully determined by the factor-to-variable
messages. Therefore, in the following discussion, we will
focus on deriving the factor-to-variable messages. In the EP
procedure, we denote the mean and covariance of the variable-
to-factor message µΨ;θi as mΨ;θi and CΨ;θi , and those of the
factor-to-variable message µθi;Ψ as mθi;Ψ and Cθi;Ψ.

IV. MESSAGE PASSING DERIVATIONS

We first look at the factor node δm,lt. The (partially) marginal-
ized belief at δm,lt is

bδm,lt(zm,lt,hlk, xm,kt)

=

∫
δ(zm,lt −

∑
k

hlkxm,kt)µzm,lt;δm,lt(zm,lt)

·
∏
k

µhlk;δm,lt(hlk)
∏
k

µxm,kt;δm,lt(xm,kt)dhlkdxm,lkt

= µzm,lt;δm,lt(zm,lt)µhlk;δm,lt(hlk)µxm,kt;δm,lt(xm,kt)

·
∫
dwm,lktδ(zm,lt−wm,lkt − hlkxm,kt)

·
∫
dhlkdxm,lktδ(wm,lkt−

∑
k′ 6=k

hlk′xm,k′t)

·
∏
k′ 6=k

µhlk′ ;δm,lt(hlk′)
∏
k′ 6=k

µxm,k′t;δm,lt(xm,k′t),

(11)



Fig. 1. Factor Graph with Neighborhoods of both Factor (above) and Variable
(below) Nodes. For simplicity, ∀ symbol is used to indicate that there are
multiple nodes.

where we define wm,lkt =
∑
k′ 6=k hlk′xm,k′t as the inter-

ference in (11). If we look at the second integral after the
second equal sign in (11), this interference wm,lkt can be
approximated as Gaussian by Central Limit Theory, with mean
and covariance matrix

mwm,lkt =
∑
k′ 6=k

mhlk′ ;δm,ltmxm,k′t;δm,lt

Cwm,lkt =
∑
k′ 6=k

Chlk′;δm,lt
σ2
xm

+ mhlk′ ;δm,ltm
H
hlk′ ;δm,lt

τxm,k′t;δm,lt .

(12)

With the above CLT approximation, the term zm,lt−wm,lkt in
(11) can be verified to be a Gaussian with mean and covariance
matrix:

mum,lkt = mzm,lt;δm,lt −mwm,lkt

Cum,lkt = Czm,lt;δm,lt + Cwm,lkt

(13)

A. Message from δm,lt to xm,kt
From the derivation in [13] and the above CLT approxima-
tions, the message µδm,lt;xm,kt according to (8) is Gaussian
with mean and variance

τδm,lt;xm,kt =
[
mH

hlk;δm,lt

(
Cum,lkt + σ2

xmChlk;δm,lt

)−1

·mhlk;δm,lt

]−1

mδm,lt;xm,kt = τδm,lt;xm,ktm
H
hlk;δm,lt

·
(
Cum,lkt + σ2

xmChlk;δm,lt

)−1
mum,lkt .

(14)

The belief of xm,kt at δm,lt factor node is

bδm,lt;xm,kt(xm,kt) = µxm,kt;δm,lt(xm,kt)µδm,lt;xm,kt(xm,kt)

Since BP is used for xm,kt, we have

bxm,kt(xm,kt) = bδm,lt;xm,kt(xm,kt) (15)

In most cases, 4M -QAM is used. To obtain the belief, we first
look at the message δm,lt → xm,kt,

τxm,kt|y =

(∑
l

τ−1
δm,lt;xm,kt

)−1

mxm,kt|y = τxm,kt|y

(∑
l

τ−1
δm,lt;xm,kt

mδm,lt;xm,kt

)
.

(16)

Therefore,

bxm,kt(xm,kt) =
p(xm,kt)CN (xm,kt|mxm,kt|y, τxm,kt|y)

Zxm,kt
,

(17)
where

Zxm,kt =
∑

xm,kt∈Sm

p(xm,kt)CN (xm,kt|mxm,kt|y, τxm,kt|y).

(18)
In the following, we denote the mean and variance of bxm,kt
as mbxm,kt

and τbxm,kt .

B. Message from δm,lt to hlk

With the CLT approximation, the joint belief pdf (11) can be
written as
bδm,lt(hlk, xm,kt)

= CN (hlk|mhlk|xm,kt ,Chlk|σ2
xm

)bδm,lt;xm,kt(xm,kt),
(19)

where
Chlk|σ2

xm
= (σ2

xmC−1
um,lkt

+ C−1
hlk;δm,lt

)−1

mhlk|xm,kt = Chlk|σ2
xm

(
x∗m,ktC

−1
um,lkt

mum,lkt

+C−1
hlk;δm,lt

mhlk;δm,lt

) (20)

The mean and covariance matrix of belief bδm,lt;hlk for hlk at
δm,lt can be obtained as [13]:

mbδm,lt;hlk
= Chlk|σ2

xm

(
m∗bxm,kt

C−1
um,lkt

mum,lkt

+C−1
hlk;δm,lt

mhlk;δm,lt

)
C−1
bδm,lt;hlk

= C−1
hlk|σ2

xm
− τbxm,ktC

−1
um,lkt

mum,lkt

·
(
1+τbxm,ktm

H
um,lkt

C−1
um,lkt

Chlk|σ2
xm

C−1
um,lkt

mum,lkt

)−1

·mH
um,lkt

C−1
um,lkt

.

(21)

The feedback message can be obtained by
proj[bδm,lt;hlk ]

µhlk;δm,lt

:

Cδm,lt;hlk =
Cum,lkt

σ2
xm

− τbxm,ktmum,lkt

·
[
τbxm,ktγauxm,lkt − σ

4
xm

]−1

mH
um,lkt

mδm,lt;hlk = Cδm,lt;hlkC
−1
bδm,lt;hlk

mbδm,lt;hlk

−C−1
hlk;δm,lt

mhlk;δm,lt ,

(22)

where

γauxm,lkt = mH
um,lkt

(
Cum,lkt

σ2
xm

+ Chlk;δm,lt

)−1

mum,lkt

(23)



C. Message from δm,lt to zm,lt

Similar to the computation of wm,lkt in (12), we approximate
the marginalization over ∀k, hlk and xm,lkt by CLT. There-
fore, from (11), we have

bδm,lt(zm,lt) = µzm,lt;δm,lt(zm,lt)

·
∫
δ(zm,lt −

∑
k

hlkxm,kt)
∏
k

µhlk;δm,lt(hlk)

·
∏
k

µxm,kt;δm,lt(xm,kt)dhlkdxm,kt

(24)

According to CLT, the integral in (24) can be approximated as
Gaussian. Following (8), we can verify that the integral part
is the feedback message, and thus,

mδm,lt;zm,lt =
1

K − 1

∑
k

mwm,l,k,t

Cδm,lt;zm,lt =
1

K − 1

∑
k

Cwm,l,k,t .
(25)

D. Message from fHlGg
to hlk

Since fHlGg
is already Gaussian, the belief at fHlGg

must be
Gaussian,

bfHlGg
= fHlGg

(HlGg )
∏
k∈Gg

µhlk;fHlGg
(hlk). (26)

Following [13], we get
µfHlGg ;hlk(hlk)

= CN

hlk|ỹp,lg −
∑

k′∈Gg/{k}

mhlk′|y ,Cṽ +
∑

k′∈Gg/{k}

Chlk′|y


· CN (hlk|0,Ξhlk),

(27)
where

Chlk|y =

(
C−1

hlk;fHlGg
+ Ξ−1

hlk

)−1

mhlk|y = Chlk|yC−1
hlk;fHlGg

mhlk;fHlGg
.

(28)

E. Message from fylt to zm,lt

Since belief at fylt is
bfylt = p(ylt|

∑
m

zm,lt)
∏
m

µzm,lt;fylt
(zm,lt), (29)

which is already a Gaussian, we can immediately derive the
feedback message by Gaussian Reproduction Lemma [15]:

Cfylt ;zm,lt
= Cv +

∑
m′ 6=m

Czm,lt;fylt

mfylt ;zm,lt
= ylt −

∑
m′ 6=m

mzm,lt;fylt

(30)

V. SIMULATION RESULTS

We simulate an environment within a 400 × 400 square
meter area, equipped with 16 APs and 8 User Terminals.
Each AP features N = 2 antennas and is positioned at
coordinates ( 400

3 i, 400
3 j), i, j ∈ {0, 1, 2, 3}. The UTs are uni-

formly distributed throughout the area. We denote the distance
between each UT k and AP l as dlk. Channel covariances
for each user k at AP l are modeled using N × N diagonal

Algorithm 1 One Iteration of Hierachical EP
Require: Ξhlk , ỹp,lg , ylt, σ2

x, σ2
v , Gg , S

1: Initialize µδm,lt;hlk , µδm,lt;zm,lt , µδm,lt;xm,kt ,
2: CfHlGg

;hlk and mfHlGg
;hlk via (28) → (27)

3: Cfylt ;zm,lt
and mfylt ;zm,lt

via (30)
4: Cum,lkt and mum,lkt via (13)
5: τδm,lt;xm,kt and mδm,lt;xm,kt via (14)
6: bxm,kt(xm,kt) via (16) → (18) → (17)
7: Chlk|σ2

xm
via (20)

8: C−1
bδm,lt;hlk

and mbδm,lt;hlk
via (21)

9: γauxm,lkt via (23)
10: C−1

δm,lt;hlk
mδm,lt;hlk and Pδm,lt;hlk via (22)

11: Cδm,lt;zm,lt and mδm,lt;zm,lt via (25)
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Fig. 2. NMSE vs SNR

matrices, represented as σ2
hlk

I, where 10 log10(σ2
hlk

) = −30−
36.7 log10(dlk).
The length of the orthogonal pilot sequences is set to P = 6
to introduce pilot contamination.
We employ 4M QAM constellation of length T = 16 for signal
transmission where M ∈ {1, 2}. Following [1], we employed
power control to ensure the total received power at the APs
is the same. We base our results on 50 different realizations,
which are illustrated in Figure 2. In the Genie-Aided scenario,
we implement the proposed algorithm as if the data symbols
are known. In the MMSE Genie-Aided scenario, all the APs
estimate the channel coefficients using the MMSE estimator
with known channel coefficients which is the theoretical lower
bound for all channel estimation methods.

VI. CONCLUSIONS

This paper introduces a simplified, distributed EP-BP-based
algorithm for bilinear joint estimation. By leveraging the
structure of the data symbols, we reduce the complexity
associated with the constellation size. The proposed algorithm
is compatible with 4M -QAM data symbols. At each AP,
the computational complexity is O(MKT · N3) , while the
CPU handles the computation of data symbol beliefs with a
complexity of O(MLKT ) .
This approach can be extended to other message-passing
algorithms to further reduce complexity. For example, the
hybrid VB-EP algorithm in [12] treats the entire data sequence
as an atomic variable. In contrast, our method considers each
individual data symbol as an atomic variable.
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ported by its industrial members: ORANGE, BMW, SAP,
iABG, Norton LifeLock, and the Franco-German project Cell-
Free6G.



REFERENCES

[1] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive mimo: Uniformly great service for everyone,” in 2015
IEEE 16th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2015, pp. 201–205.

[2] R. Gholami, L. Cottatellucci, and D. Slock, “Tackling Pilot Contamina-
tion in Cell-Free Massive MIMO by Joint Channel Estimation and Linear
Multi-User Detection,” in IEEE International Symposium on Information
Theory (ISIT), 2021.

[3] Z. Zhao and D. Slock, “Semi-blind sparse channel learning in cell-free
massive mimo - a crb analysis,” in ICC, IEEE International Conference
on Communications, 2023.

[4] ——, “Bethe free energy and extrinsics in approximate message pass-
ing,” ASILOMAR, Asilomar Conference on Signals, Systems, and
Computers, 2023.

[5] Z. Zhao, F. Xiao, and D. Slock, “Vector approximate message passing
for not so large n.i.i.d. generalized i/o linear models,” in ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing,
2024.

[6] ——, “Approximate message passing for not so large niid generalized
linear models,” in SPAWC, IEEE International Workshop on Signal
Processing Advances in Wireless Communications, 2023.

[7] Z. Zhao and D. Slock, “Variance predictions in vamp/uamp with
right rotationally invariant measurement matrices for niid generalized
linear models,” in EUSIPCO 2023, 31st European Signal Processing
Conference, 2023.

[8] ——, “Improved variance predictions in approximate message passing,”
in MLSP 2023, IEEE 33rd International Workshop on Machine Learning
for Signal Processing, 2023.

[9] R. Gholami, L. Cottatellucci, and D. Slock, “Message Passing for
a Bayesian Semi-Blind Approach to Cell-Free Massive MIMO,” in
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021.

[10] Z. Zhao and D. Slock, “Bilinear hybrid expectation maximization
and expectation propagation for semi-blind channel estimation,” in
EUSIPCO, European Signal Processing Conference, 2024.

[11] A. Karataev, C. Forsch, and L. Cottatellucci, “Bilinear Expectation
Propagation for Distributed Semi-Blind Joint Channel Estimation and
Data Detection in Cell-Free Massive MIMO,” IEEE Open Journal of
Signal Processing, 2024.

[12] Z. Zhao and D. Slock, “Decentralized message-passing for semi-blind
channel estimation in cell-free systems based on bethe free energy
optimization,” in ASILOMAR, Asilomar Conference on Signals, Systems,
and Computers, 2024.

[13] ——, “Decentralized expectation propagation for semi-blind channel
estimation in cell-free networks,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.01303

[14] K.-H. Ngo, M. Guillaud, A. Decurninge, S. Yang, and P. Schniter,
“Multi-User Detection Based on Expectation Propagation for the Non-
Coherent SIMO Multiple Access Channel,” IEEE Transactions on
Wireless Communications, 2020.

[15] Q. Zou, H. Zhang, C.-K. Wen, S. Jin, and R. Yu, “Concise Deriva-
tion for Generalized Approximate Message Passing Using Expectation
Propagation,” IEEE Signal Processing Letters, 2018.


