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Abstract—Network slicing has garnered significant attention
within the telecommunications community since the introduction
of 5G. However, achieving dynamic and intelligent network slice
configuration to accommodate diverse service types remains a
critical challenge in advanced network orchestration. With the
advent of 6G, which is characterized by its highly dynamic and
robust nature, there is an urgent need for an intelligent and slice-
compatible assignment approach to meet the evolving demands of
next-generation networks. In this context, this work introduces an
end-to-end network slicing framework that spans from the user
to the Centralized Unit, within a system model incorporating an
Open Radio Access Network and Cell-Free massive Multiple-
Input Multiple-Output architecture. Our contribution begins
with a detailed review of the anticipated 6G Key Performance
Indicators and their implications for network slicing. We then
propose a novel approach that leverages Multi-Objective Re-
inforcement Learning (MORL) to enable a single intelligent
agent to address multiple service requirements through a unified
training phase. By replacing multiple specialized agents with a
single MORL agent, our approach significantly improves the
scalability, reduces the complexity, and enhances the practicality
of network slicing orchestration—while maintaining optimal sys-
tem performance. Numerical results validate the effectiveness of
the proposed MORL-based solution. The trained agent not only
ensures the Quality of Service for diverse user service requests
but also successfully manages the coexistence of conflicting service
types. This includes accommodating the stringent requirements of
Extremely Reliable and Low-Latency Communications alongside
Further-Enhanced Mobile Broadband services within the same
network environment.

Index Terms—6G Networks, Open RAN, Network Slicing,
Multi-objective Reinforcement Learning, Clustering.

I. INTRODUCTION

ITH the commercial deployment of 5G underway, the

focus of academia and industry has already shifted
to the next generation of mobile communications, known as
6G. 6G is envisioned to address the unresolved challenges of
5G while inheriting its novel enablers and enhancing them
[1]. Network slicing, a key innovation introduced in 5G, is
expected to evolve in 6G to accommodate multiple tenants
with diverse requirements. While network slicing supports
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various service types for a broad range of users, creating and
managing these slices remains a challenging and complex task.
This complexity arises from the conflicting nature of supported
slice types and limitations in network resources. Specifically in
the Radio Access Network (RAN) entity clusters and mobile
users [2].

Network slicing in 6G must operate across different re-
source domains, including communication and computational
resources. Similar to the concept applied in 5G, each slice must
be customized to meet the tenant’s requirements and isolated
from other slices. 6G is expected to introduce intelligence in
various performance and management areas, including RAN
slicing and resource allocation procedures [3]. In addition, 6G
must support a vast number of users with diverse service types
and applications. Meeting the demands of these use cases and
services will add significant complexity, layers, and domains
to the existing network technologies [4].

While network slicing in 5G literature often involves heuris-
tic and genetic algorithms [5]-[8], Reinforcement Learning
(RL) has emerged as a key enabler for network slicing in
beyond 5G and 6G networks. RL and Deep RL (DRL)-
based techniques enhance network management and resource
allocation in the RAN sector [9]. The highly dynamic nature
of 6G networks, particularly in the RAN domain, can sig-
nificantly benefit from RL-based intelligent decision-making
processes [3]. RL is considered a promising approach for
dynamic resource management in complex environments like
6G networks, mainly because it is a model-free and algorithm-
agnostic approach [10].

Meanwhile, Open RAN (O-RAN) enables RL techniques
to make real-time decisions and operational adjustments in
the network. O-RAN’s standardized interfaces and entities
provide flexible and intelligent control, making it a promising
paradigm for 6G networks’ RAN architecture [10]-[12].

To realize the vision of 6G as an intelligent network,
comprehensive advancements in both architecture and net-
work management are essential. Initial intelligence refers to
a network entity’s ability to adjust and reconfigure itself from
predefined options in an intelligent, semi-autonomous manner.
In contrast, Intelligent Radio (IR) represents a broader and
deeper concept. Given that 6G is envisioned as a highly com-
plex, heterogeneous network with diverse system requirements
and an exponentially growing number of connected devices,
intelligence management across all network components must
be self-adaptive [13]. Consequently, this research proposes



an IR framework where intelligent algorithms dynamically
configure themselves based on the hardware’s available capac-
ities. To achieve this, we introduce a MORL-based dynamic
slice configuration approach for the O-RAN-enabled Cell-
Free massive Multiple-Input-Multiple-Ouput (CF mMIMO)
architecture.

Our approach integrates into the network slice manage-
ment block as a lower layer of the service management
and orchestration block, which oversees the entire network.
This implies that while higher-level processes manage user-
to-network service type mapping and ensure synchronization,
the proposed work focuses on optimal, dynamic slice config-
uration and reconfiguration—an open challenge in the field.
Current state-of-the-art methods [11] deploy single agents to
assign resource blocks for each service type, requiring twice
the number of agents as service types. This is because, in
addition to decision-making agents, separate agents are trained
for each service type to allocate resource blocks, resulting
in multiple neural networks [11]. In contrast, our approach
leverages MORL to handle multiple service types with a single
agent, improving consistency while reducing the number of
agents, neural networks, and training processes. By effectively
managing trade-offs between service types, the MORL agent
offers a scalable and efficient solution compared to multiple
single agents.

Additionally, some service types, such as URLLC, cannot
rely solely on resource block allocation due to the impact
of link-related parameters like distance. Hence, our approach
also considers communication links in the assignment scheme.
Specifically, it assigns an end-to-end path comprising Open
Radio Units (O-RUs), Open Distributed Units (O-DUs), and
interfaces between them, from the user to the Open Centralized
Unit (O-CU) while decreasing the complexity. Treating service
types as multiple contradictory objectives to optimize simul-
taneously, the MORL agent is trained to address all objectives
and adapt to any specific service type.

In a nutshell, this research work develops a novel end-
to-end intelligent network slicing approach from the user
to the O-CU realized through the integration of resource
block allocation, O-RU clustering, and O-DU assignment. Our
proposed approach surpasses the state-of-the-art by uniquely
integrating all of the following features:

o slices are configured and reconfigured dynamically for

users’ requests,

« this approach is capable of providing diverse service
types, including coexisting FeMMB and URLLC,

o itis consistent and synchronized as the result of deploying
one single multi-objective policy,

e our approach is computationally efficient, as only one
single agent and one training phase are applied,

« it improves Energy Efficiency (EE) by activating only the
required network nodes for each user,

« and finally, it is robust, sample efficient, scalable, and
practical for real-world scenarios, as demonstrated by our
extensive evaluation process.

The rest of the article is organized as follows: Section

IT reviews the related work. Section III provides a detailed
overview of the system model and service types. Section IV

presents the proposed MORL-based scheme, while Section V
evaluates the numerical results. Finally, Section VI concludes
the paper.

II. RELATED WORKS

In our previous research work [11], we proposed a
network-slicing-based resource-management and orchestration
approach designed explicitly for O-RAN-enabled 6G net-
works. This approach employs a centralized decision-making
level that utilizes Multi-Agent RL (MARL) to map service
types to user requests. The agents at this level maintain
network consistency and aim to maximize capacity through
optimal assignments, enabling the network to serve more
users. The second level consists of single RL agents trained
to allocate bandwidth resource blocks to users and realize
the required service types. However, allocating bandwidth
resource blocks is insufficient for the realization of all types of
services. This is because factors such as RAN communication
links and entities, grouping and clustering strategies, and
other RAN topology specifications significantly affect the QoS
required for services.

In a similar effort, the authors of [14] propose a dual-
level approach for slicing communication and computation
resources for Ultra-Reliable and Low-Latency Communica-
tions (URLLC) users in an O-RAN-based system model. The
proposed approach is also applied in two levels of decision-
making and deploys a Double Deep Q-Network (DDQN)
algorithm; however, only one service type is considered. In
[15], a combination of Convolutional Neural Networks (CNN)
and Bidirectional Long Short-Term Memory (BiLSTM) is
applied to the Unicauca IP Flow Version 2 dataset. This
approach is trained to classify five service types: super en-
hanced Mobile BroadBand (super-eMBB),massive Machine-
Type Communications (massive-MTC), super URLLC, super-
precision, and super-immersive. However, training on a static
dataset lacks the flexibility required for the dynamic nature
of 6G. In [16], the authors integrate Joint Communication
and Sensing (JCAS) with network slicing by formulating
a Nonlinear Integer Programming (NLIP) problem for joint
transmission and resource allocation in sensing and commu-
nication applications. Using a DQN algorithm, they minimize
latency but focus exclusively on a specific application group.

The network-management approach presented in [10] con-
siders that the mobile network operator can change the weights
of the RL reward function so that the agent adopts each
service type and fulfills the agreed QoS for that slice type.
This work uses Transfer Learning (TL) to address the agent’s
convergence challenges after the modifications. However, host-
ing multiple conflicting services that share resources in an
isolated manner introduces multiple conflicting objectives for
the agent. Motivated by this, in this work, we adopt Multi-
Objective RL (MORL) algorithms to train the agent across
all considered service types, enhancing the likelihood of suc-
cessful resource assignment. This approach minimizes training
complexity while enabling the learned policy to adapt to
diverse preferences, allowing the agent to handle multiple
service types dynamically.



MORL-based approaches have been previously used in
telecommunications for various applications. For instance,
research work [17] employs MORL to address the challenge
of offloading an application consisting of dependent tasks
in Multi-access Edge Computing (MEC). In [18], a MORL
framework for load balancing, and benefits from meta-RL to
learn a general policy that can adapt to new trade-offs between
objectives. Finally, [19] applies MORL with two objectives for
resource allocation and energy efficiency in Cloud-RANs (C-
RAN:S).

In this work, we use a MORL agent to assign communica-
tion links, resource blocks, and network entities to each user
requesting a specific service type. This service-type realization
creates slices and clusters of network entities for each request.
The next section introduces the considered system model and
service types.

ITII. SYSTEM MODEL AND SERVICE TYPES

This section begins by presenting the system model, il-
lustrated in Fig. 1. The proposed model leverages O-RAN
and CF mMIMO to enable the intelligent approach. The Near
Real-Time Intelligent Controller (Near-RT RIC) in the O-RAN
architecture provides an appropriate control loop (ranging from
10ms to 1s) for the agent to deliver a selected service type
[20]. The MORL agent is integrated into Near-RT RIC within
the xApp framework to enhance its functionality. Deploying
CF mMIMO allows for potential communication links between
all the O-RAN entities (i.e., O-CU, O-DU, and O-RU).

This work focuses on configuring slices for pre-selected
service types. Below, we present the considered service types
and the key performance metrics associated with each:

1) FeMBB: Further-Enhanced Mobile BroadBand.
FeMBB supports use cases such as video streaming,
virtual/augmented reality, and holographic verticals. Key
Performance Indicators (KPIs) for this service include a
high data rate (exceeding 1 Tb/s at the system level) and
Spectral Efficiency (SE).

2) umMTC: ultra-massive Machine-Type Communications.
umMTC underpins the Internet of Things (IoT), the
Internet of Everything (IoE), and smart cities. Key KPIs
include ultra-low latency (10 — 100 ps) and high Energy
Efficiency (EE).

3) ERLLC: Extremely Reliable and Low-Latency Commu-

nications.
ERLLC is critical for applications such as fully au-
tomated driving and industrial Internet. In addition to
ultra-low latency, high mobility support (greater than
1,000 km/h) is a crucial KPI for this service.

4) LDHMC: Long-Distance and High-Mobility Communi-
cations.

LDHMC enables 6G’s deep-sea and space connectivity
ambitions. Mobility plays a key role in this service type.

5) ELPC: Extremely Low-Power Communications.

ELPC supports applications in e-health by connecting
nanodevices, nanosensors, and nanorobots. KPIs for this
service include EE and connectivity density.
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Fig. 1.

To enable these service types, we first analyze the network
KPIs that are critical for their realization. This analysis pro-
vides valuable insights into the envisioned KPI values and their
implications for 6G. The following section reviews the KPIs
considered in this work and their characteristics in 6G.

A. Mobility

Mobility refers to the continuous network coverage for
users in motion while maintaining predefined QoS. In 5G,
the maximum user speed was considered to be 500 km/h
[21], whereas in 6G, it is envisioned to reach 1000 km/h
[11]. Although physical layer technologies primarily influence
mobility performance, certain architectural considerations can
also contribute to its improvement. One such consideration is
the decoupling of the User Plane (U-plane) and Control Plane
(C-plane). This separation enhances coverage for mobile users
by reducing the overhead of handover signaling and ensuring
a more stable connection with base stations [21]. Additionally,
balancing high system capacity and transmission reliability
is crucial for mobile users. While higher frequency bands
and larger bandwidth increase system transmission capacity,
they also suffer from greater path loss, necessitating more
handovers. By utilizing both C-plane and U-plane, network re-
sources can be split between low-frequency bands for reliable
C-plane signaling and high-frequency bands for high-capacity
U-plane data transmission.



Another architectural enhancement involves connecting
multiple remote RUs to each baseband unit, which reduces the
handover time and minimizes the number of failed handovers
[21]. Furthermore, fast-moving users need access to more than
two cells. In this regard, CF mMIMO provides significant
advantages by eliminating cell boundaries. As a result, the
serving access point remains unchanged, effectively resolving
handover-related issues [22].

B. Area Traffic Capacity and Connectivity Density

Area traffic capacity and connectivity density reflect the
varying population of users served by the network across
different covered areas. In real scenarios, user distribution and
traffic demand are often non-uniform. Consequently, focusing
solely on the network’s overall performance may lead to sub-
optimal resource utilization. For instance, some areas with low
connectivity density may have surplus transmission capacity,
while areas with high connectivity density may experience
insufficient resources [23]. To achieve optimal performance for
these two metrics, the network must provide services tailored
to the specific demand of each area. This demand-aware
approach also enhances the network’s EE. While area traffic
capacity and connectivity density are closely related, they
represent distinct concepts. Area traffic capacity measures the
total traffic throughput served per geographic area (bps/m?),
while connectivity density represents the total number of con-
nected and/or accessible devices per unit area (Device/km?)
[24]. The envisioned values for each KPI are 1 Gps/ m? and
107 d/km?, respectively, in 6G [11].

C. Spectral and Energy Efficiency

Peak SE is the maximum data-rate under ideal conditions
normalized by channel bandwidth (in bit/s/H z), where the
maximum data-rate is the received data bits assuming error-
free conditions, assuming that all available radio resources
in the corresponding link direction are fully utilized by a
single mobile station [24]. This KPI is commonly used to
evaluate the performance of mobile broadband service types,
alongside the data-rate. Network EE measures the network’s
ability to minimize energy consumption in relation to the
provided traffic capacity. This KPI can be measured in both
cases of transmitting data and in idle periods (sleep mode).
In the case of data transmission, EE is linked to SE, while in
sleep mode, it is evaluated by the sleeping duration or ratio.
According to [25], network SE increases monotonically with
traffic load, but EE depends on the power consumption of the
Base Station (BS) in both sleep and active mode.

D. Latency and Reliability

Latency, the key KPI for ERLLC, has been envisioned to
range between 10 and 100 s [11]. A deeper examination
of this KPI reveals that latency must be broken down into
smaller components, including delays within various entities
and processes involved in data transmission. U-plane la-
tency is an application-layer KPI, whereas computation-related
latency—comprising execution latency, service latency, and

processing latency—lacks a standardized calculation method
[24]. In addition to minimizing latency, ERLLC applications
require reliable and available network access, as reducing
latency directly contributes to enhanced reliability. While radio
link quality metrics and low-level multiplexing techniques
significantly influence network reliability, efficient high-level
resource allocation algorithms can further improve it consid-
erably [26].

E. Data-Rate (system level and user level)

Tightly related to SE and throughput, data-rate is another
important KPI for mobile broadband services. While peak
data-rate refers to the maximum achievable data-rate under
ideal conditions, data-rate is also measured with another metric
called user-experienced data-rate. This KPI is calculated as a 5
percent point of the Cumulative Distribution Function (CDF)
of the user throughput; the latter is defined as the number of
correctly received bits during active time [24]. Meeting the
required system- and user-level data rates for FeMBB users is
challenging, as a user’s channel condition significantly impacts
this KPI. This challenge becomes even more complex when
the network simultaneously supports both FeMBB and ERLLC
services. In such cases, the system must maximize the data rate
for some users while ensuring that latency constraints are met
for others.

F. KPIs in the System Model

While improving network KPIs often relies on physical
layer techniques, architectural choices and high-level manage-
ment play a critical role in establishing the foundation for
these enhancements. In this work, we combine O-RAN and
CF mMIMO as our system model, inspired by their comple-
mentary benefits. The CF aspect of the RAN eliminates cell
boundaries, resolving handover issues, while O-RAN enhances
the architecture through its open and programmable C-plane
and U-plane at the O-CU. This makes the system inherently
mobility-friendly. Additionally, splitting CPU responsibilities
across multiple layers—including Non-RT RIC, Near-RT RIC,
0-CU, O-DU, and O-RU—coupled with interconnections at
every level, ensures scalability and practicality [12].

Our user-centered approach in the CF part [12] initiates
slice assignment based on a user request, ensuring services
are tailored to user demands. This approach provides a slice
of the resource blocks, communication links, and a cluster
of O-RUs and O-DUs to a user, customized to the service
type requested. By integrating insights from our previous work
[11], a user request triggers high-level centralized decision-
making, slice selection, and subsequent slice configuration
and realization. This ensures an optimal ratio of users to
provided services, maximizing network capacity utilization.
Essentially, on-demand service capability is achieved through
user-based network capacity assignment, inherently consider-
ing area traffic capacity and connectivity density in system
capability calculations [23].

While deploying a request-oriented approach for slice real-
ization selects the best path and links for each user through the
RAN, which results in an optimal assignment; it also improves



the EE of the system enormously. This is because the O-
DUs, O-RUs, and generally all the entities not engaged in the
ongoing transmissions can stay in sleep mode. As explained
in [12], in our considered system model, the physical links
exist between all the O-RUs and O-DUs (since we deploy CF
RAN), but only the selected ones activate for each request.

To address latency, defined in computing as the time be-
tween a request and the algorithm’s response [24], our slice
realization approach is embedded in the Near-RT RIC. This
provides a faster control loop compared to the Non-RT RIC,
enabling end-to-end RAN orchestration from Non-RT RIC
to the user. By replacing the current MORL-based approach
in the lower layer described in [11], we achieve a more
responsive system.

Reliability, traditionally measured at the packet transmission
level, is defined in this work as the percentage of user
requests successfully fulfilled by the network [24]. While
prior research focused primarily on the coexistence of eMBB
and URLLC in 6G and mMIMO-based RAN [27], [28], our
intelligent approach incorporates all predefined service types
during training. This enables the provision of end-to-end slices
tailored to each type after training. Managing five service
types posed challenges in our previous work [11], motivating
a deeper study to improve consistency and reduce complexity.

The next section provides a detailed explanation of the
newly proposed approach.

IV. THE PROPOSED MORL-BASED SCHEME
A. The General Idea

Unlike traditional connection-oriented communication sys-
tems, intelligence and sensing are integral components of
6G networks. These intelligent network entities enable task-
oriented communications driven by user requests. Here, a
“user” encompasses a wide range of entities, including vehi-
cles, devices, and individuals. The network must provide cus-
tomized, user-centered services [29]. A user-centric network,
leveraging widely available edge resources, achieves scalabil-
ity and robustness while remaining adaptable to individual user
configurations.

While dynamic service type mapping has been studied in the
literature [11], this work considers all effective parameters for
dynamically delivering the predefined QoS for each service
type. A single agent evaluates effective metrics and KPIs
for each service type and executes a sequence of actions
tailored to that slice type. Consequently, the agent manages
resource allocation, O-RU clustering, and O-DU assignment,
culminating in a user-centric, dynamic slice configuration. Fig.
2 illustrates the user-centric slice, where clusters of O-RUs
and O-DUs service users by activating appropriate connection
links. Each color in this figure represents a potential cluster
of O-RUs and O-DUs assigned to service a user. As shown in
Fig. 2, an O-RU or O-DU may serve multiple users. However,
when treating each o-RAN entity as a set of resource blocks,
no single block is shared across users, ensuring slice isolation.

This approach eliminates the need for separate agents for
each service type, reducing the number of agents required to
match the number of tenants the network serves. To achieve

0-DUs

0-RUs

o

User i and its slice of the system
User j and its slice of the system

Users

Fig. 2. A user-centric network slice in O-RAN

this, a MORL agent is implemented instead of multiple single
RL agents. This MORL agent learns policies over competing
objectives without prior knowledge of their relative importance
during training. Once trained, it can execute optimal policies
for any given objective [30].

In MORL, the Markov Decision Process (MDP) is extended
to the Multi-Objective Markov Decision Process (MOMDP).
This includes a vector reward function (instead of one single
value), a space of preferences (objectives or service types),
and preference functions. If the preference space contains
only one value, the MOMDP reduces to a standard MDP.
Furthermore, this work leverages an Envelope Multi-Objective
Q-learning (Envelope MOQ-learning) algorithm [30]. The pro-
posed Envelope MOQ-learning algorithm is designed to learn
policies across multiple preferences simultaneously. Unlike
scalarized Q-learning, which simplifies rewards into single
values, the Envelope MOQ-learning algorithm uses vectorized
value functions. It updates parameters based on the convex
envelope of the solution frontier, offering a more robust
optimization. The extended Bellman operator handles multi-
objective value functions, with the update defined as:

(TQ)(s,a,w) :=1(s,a) + YEgup(fs,a) (HQ)(s',w)] (1)

where H is an optimality filter for the MOQ function that
selects the multi-objective value corresponding to the supre-
mum. In the extended Bellman optimality operator, w is the
m-dimensional preference vector. The return of argg in H
depends on which w is chosen for scalarization.

The learning algorithm minimizes a combined loss function
consisting of two parts of L# and LZ, which ensure proximity
to expected rewards and guide the solution toward greater



utility, respectively. The final loss function is:
L(0) = (1 = \)LA(0) + ALP(9) 2)

where A gradually increases from O to 1, shifting focus
between loss terms through Homotopy optimization [31].
Additionally, the algorithm uses Hindsight Experience Replay
[32] to improve sample efficiency and policy gradient methods
to adapt the agent’s policy when preferences are unknown.

To implement the Envelope MOQ-learning algorithm within
our system model, we represent the system as a binary tree,
which acts as the interactive environment for the algorithm.
This structured representation allows for systematic interac-
tions between the algorithm and the model, enabling efficient
learning and decision-making processes. As outlined in Algo-
rithm 1, the agent is limited to two possible actions at each
step. In detail, our MORL agent models O-DUs and O-RUs
as nodes, while the interfaces between them are represented
as edges (Algorithm 1: Lines 2, 3). The system’s binary tree
has a depth equal to the total number of O-DUs and O-RUs
(Algorithm 1: Line 4). At each level of the tree, selecting the
right subtree indicates that the node at that level is included in
the chosen path, whereas selecting the left subtree signifies that
the corresponding O-DU or O-RU is excluded from the path
under consideration (Algorithm 1: Lines 5-10). Consequently,
during each time step within an episode, the agent decides
whether to include a particular node in the path. Each final
node in the binary tree contains an array of reward values
corresponding to the parameters relevant to each service type
or objective. This array includes one value for each service
type, constructed to account for the important metrics specific
to that type. When a user requests a particular service type,
the algorithm assigns a path spanning all levels of the tree
that represents the most appropriate slice for the request in
the current network instance (Algorithm 1: Line 11). While
Algorithm 1 provides an overview of the slice configuration
process, detailed explanations are presented in the following
section.

Algorithm 1 The selection of the network slice

1 Input = Objective (mapped request)
Nodes = DUs , RUs
Edges = User-RU links , RU-DU links
Model = A Binary tree of Nodes and Edges
Based on the selected objective:
For (the depth of the tree):
If (Node is selected):
Include the Node and the Edge ending to the
selected Node to the slice path
9 Else :
10 Go to the next level
11 Output = Slice (selected path in the tree)

0NN N R W

B. Implementation Technicalities

As previously described, the system architecture in this
work incorporates CF mMIMO, enabling each user to poten-
tially connect to all O-RUs. Furthermore, there is a physical

connection between all O-RUs and O-DUs. However, this does
not imply that every user is connected to all O-RUs or that
all O-RUs are connected to all O-DUs simultaneously. Instead,
when the agent determines the optimal path through the O-RUs
and O-DUs, only the relevant links are activated for that spe-
cific user. This approach ensures the system remains energy-
efficient by minimizing unnecessary active connections.

Fig. 3 provides an alternative representation of the system
model as a binary tree. The depth of the tree corresponds to
the total number of O-RUs and O-DUs. Each final node in
the tree represents a binary number ranging from 0, 1,...,2"
with n as the tree’s depth. he binary representation consists
of n n digits, with each digit corresponding to an entity. The
higher-valued positions in the binary sequence (starting from
the left) represent O-DUs, while the lower-valued positions
correspond to O-RUs. A value of 1 in a position indicates that
the corresponding O-DU or O-RU is included in the selected
path, while a 0 means it is excluded. At the 2" th level of
the binary tree, each node is associated with a reward vector,
where each element reflects the path’s value for a particular
parameter or objective. Each service type corresponds to one
objective, represented by specific parameters that quantify the
value of a path for that service type. Thus, as shown in Fig. 3,
the tree’s depth n defines 2" reward vectors, each consisting
of m elements, where m is the total number of service types.

To train the MORL agent, we implement the Envelope
MOQ-learning algorithm proposed in [30]. The novelty of
the algorithm is based on the incorporation of the concept
of vectorized value functions, enabling the agent to optimize
across multiple objectives simultaneously. Instead of focusing
on a single preference during value updates, the algorithm
leverages the convex envelope of the solution frontier to update
parameters. By extending the Bellman equation, the agent
learns a single parametric representation of the optimal poli-
cies for all preferences. During the training phase, the agent
operates without prior knowledge of the relative importance of
different service types, while it learns optimal policies across
the entire space of service types. After training, the agent’s
policy dynamically adapts to any chosen service type based
on user demands. The next section delves into the details of
the implementation and simulation processes, showcasing the
results of this approach.

V. SIMULATIONS AND NUMERICAL EVALUATIONS

In what follows, we implement the Envelope MOQ-learning
algorithm and a self-designed environment. Simulations use
Python 3.9, and the environment is developed by deploying
the OpenAl gym library.

A. Simulation and training details

As discussed in Section IV.B, the system model in our
architecture is represented as a binary tree with depths of
eight, as it considers three O-DUs and five O-RUs. The O-
RUs may connect to a random number of users ranging from
0 to 3, while a similar arrangement is applied to the O-DUs
while serving assigned to the user request. This mapping is
performed at a higher level by the high-level decision-making
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Fig. 3. Binary tree representation of the system model in Low-part

MARL agents [11]. The episode concludes once the agent
assigns a path through the O-RUs and O-DUs to the user
corresponding to the requested service type. Consequently,
the binary tree has 255 leaves at its 8th level, representing
all possible paths. Each state in the simulation consists of
a double denoting potential positions in the tree, while the
possible actions are moving left or right within the binary tree.
The reward at each leaf (or path) is a tuple of four elements.

The simulation considers the following service types:
FeMBB, umMTC, ERLLC, LDHMC, and ELPC. Although
LDHMC is included in the broader system model, it is
excluded from this level of management since its primary
defining KPI is mobility [11]. This exclusion allows the
simulation to focus on the remaining four service types, with
one element in the reward array assigned to each type.

The reward array elements are defined as follows:

1) Available resource blocks: Best suited for FeMBB, this
metric reflects the high data-rate and high spectral effi-
ciency (SE) required by this service type.

Channel quality metric: Assigned to umMTC, this met-
ric combines user distance from an O-RU and the
number of users already served by the O-RU. It aligns
with the latency and connectivity density KPIs of this
service type.

Distance metric: Used for ERLLC, which focuses on
real-time, emergency-related use cases where minimiz-
ing distance improves reliability and responsiveness.
System balance: Linked to ELPC, this metric empha-
sizes distributed management. Maintaining the balance
between in-use and available resources ensures that all
parts of the network can efficiently serve new users.
This approach improves connectivity density, area traffic
capacity, and overall network availability.

The available resources of a path (the first element of
the leaf reward vector) are calculated as the sum of avail-
able bandwidth in the engaged O-DUs, and the data-rate
that engaged O-RUs can provide [12]. To further refine this

2)

3)

4)

metric, the available bandwidth of an O-DU is weighted by
a coefficient inversely proportional to its distance from the
O-RUs. This weighting helps the agent avoid selecting O-
DUs and O-RUs that are further apart, even if they offer
higher bandwidth, ensuring path uniqueness for the agent.
While system bandwidth is shared equally among O-DUs, the
available bandwidth for each O-DU is affected by the number
of users it is already serving. The network balance metric
represents the ratio of available resources from all engaged
nodes (O-DUs and O-RUs) to the total available resources
across all nodes. Other metrics, such as channel quality and
distance, follow the definitions established in [12]. Thus, the
state space, action space, and reward space in the system are
defined as follows:

{an}a 3{0320 - 1}
state space = : 3)
{8,0}, 3{8328 - 1}
action space = {0,1} “4)
reward space = {available resources,
channel quality metric,
(5)

distance,

network balance}

The binary tree in our system model represents a combina-
tion of the state space and 255 reward arrays at the final level.
While the state space (tree structure) remains fixed across all
episodes, the last level of the tree is regenerated at the start
of each episode by resetting the environment.

Table I shows the simulation parameters with fixed values,
while the unfixed parameters, which vary dynamically in each
episode, include:

1) The number of users already being served by the O-RUs.

2) The number of O-RUs actively connected to the O-DUs.



TABLE I
SIMULATION FIXED PARAMETERS
[ Parameter | Name [ Value
P, Pilot power 200mW
Py Transmission powr 200mW
« Path loss exponent 3.76dB
(0)? Variance of AWGN —94dBM
d ORU-UE distance Random(1,10)
Bpu BU bandwidth 18000M H z
Bru RU bandwidth 6000M H z
TABLE II
LOGICALLY DELETED LEAVES
Path num- | Binary representation Network nodes
ber
0 0,0,0,0,0,0,0,0 —
1 0,0,0,0,0,0,0,1 RUy
.- R No DUs included
31 0,0,0,1,1,1,1,1 RU1, ..., RUs
32 0,0,1,0,0,0,0,0 DUy
64 0,1,0,0,0,0,0,0 DU>
96 0,1,1,0,0,0,0,0 DUy, DUs
128 1,0,0,0,0,0,0,0 DU3
160 1,0,1,0,0,0,0,0 DUs, DU;
192 1,1,0,0,0,0,0,0 DUz, DUs
224 1,1,1,0,0,0,0,0 DUs, DU, DU1

3) The distance between the existing users and the new user

initiating the request.

These parameters are randomly assigned in every episode,
ensuring that the metrics and the environment dynamically
evolve for each simulation instance. To stabilize the training
process and improve numerical computations, all metrics are
normalized to fit within the range [0, 1]. Normalization serves
two primary purposes: first, it enhances the stability of training
and numerical operations. Second, it ensures that the agent can
effectively identify the path that maximizes utility for a given
service type.

As a result, all the leaf nodes being in a convex coverage set
is a prerequisite for the agent. The convex coverage set of the
Pareto frontier contains all possible solutions that maximize
the cumulative utility for all possible preferences (four service
types) [30]. However, in the real scenario of our network, 39
paths out of 255 paths are not practical and, thus, not optimal.
Table II presents these paths non-functional paths. Thus, we
assign a negative number to the reward array of these paths
to logically eliminate the path. The final reward space is then
defined as follows:

—1lor
[0, 1],
(6)

—1lor
[0, 1],

—1lor
[0, 1],

—1 or

reward space = { 0.1]

) ) )

The Q-network for the Enveloped Q-learning [30] utilizes
double Q-learning [33]. Although it can be with similar off-
policy algorithms, Q-learning with a target network and prior-
itized experience reply is the best choice to ensure compatibil-
ity with our previously proposed high-level decision-making
approach in [11]. The primary difference between a DQN and
a multi-objective QN lies in their inputs and outputs during im-
plementation. In MORL, the state representation also includes

the parameters of a linear preference function. The output layer
dimensions are determined by the product of the action space
size and the number of objectives. The implemented Multi-
Objective Q-networks (MQNs) are implemented as four fully
connected layers consisting of 16, 32, 64, and 32 multiplied by
the sum of space and action sizes. After extensive trials with a
random combination of hyperparameters, as suggested in [30],
the training process uses the Adam optimizer along with the
values 0.95, le — 3, and 0.5 for gamma, learning rate, and
epsilon, respectively. The training loss and reward plots are
presented in Fig. 4 and Fig. 5.

Loss of Training
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Fig. 4. Loses of training for 1000 episodes
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Action] Q-value

— Action2 Q-value
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0 500 1000
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Fig. 5. Normalized Q-values and Reward plots of the training

As Fig.4 shows, the agent was trained for 1000 episodes,
converging after approximately 700 episodes. Fig.5 presents
the Q-values for each possible action (shown in green and
orange curves). The blue plot is the total reward of the
episodes. After the training phase, we test the model. As
mentioned before, in our dynamic environment, each episode
shows a different representation of the environment. The test
was conducted on a tree representation of a network with the
numerical values shown in Table III and Table IV. Also, Table
V shows the chosen path for every service type:



TABLE III

RUS "DATA
RUs | Distance | Number Distances Data-rate RU can pro-
of user | of of already | vide for user (Mbps)
from already serving
RU(m) serving users (m)
users
1 5 2 8,1,9 7.69841741e + 03
2 2 3 2,3,4 2.71952530e + 02
3 4 3 2,3,5 7.73846452¢ + 03
4 1 3 5,4,2 9.85962201e + 02
5 4 0 — 2.82952730e + 04
TABLE IV
DUS "'DATA
DUs | Number Remaining] Distance to RUs 1,2,3,4,5 (m)
of RUs | Band-
already width
serving (MHz)
1 0 18000 2000, 2700, 2900, 2650, 2950}
2 2 14000 2500, 2300, 2400, 2800, 2800}
3 1 16000 3000, 3100, 2600, 2750, 2800}

B. Analysis of the numerical results

We follow the same approach as in [12] to estimate the
data-rate, enabling an approximation of Signal-to-Interference-
plus-Noise-Ratio (SIN R) that is independent of the type of
precoding scheme. We assume the SINR for transmissions
between O-DUs and O-RUs to be zero, making the provided
data rate approximately equal to the available bandwidth.

Data-rate and SE: As shown in Fig. 6, the data-rate results
show that the tenant who was assigned the FeMBB service
type is able to access 32000 M Hz bandwidth of O-DUs,
and the three O-RUs can provide approximately 36 Gbps of
data-rate; this fact meets the goal of the FeMBB service. The
selected O-RUs are serving 6 other users, which results in a
total of 12000 M H z of O-RUs’ bandwidth in-use for them in
our simulation. As a result, the SE of the considered slice is
approximately 6 bit/s/Hz.

Latency: For the ERLLC, we first monitored the computing
latency, defined as the time the agent required to choose the

TABLE V
TEST RESULTS

Service | Metric Chosen | Binary representa- | Network nodes
type path tion
FeMBB| Available | [7,118]| [0,1,1,1,0,1,1,0] ggggg;RUs
re- ’
sources
umMTC| Quality [7,127]| [0,1,1,1,1,1,1,1] ggzllq)[%l IEIETJZSRUI
mertric ’ ’ ’
ERLLC| Distance | [7,126]| [0,1,1,1,1,1,1,0] ggf’RDg; ’15525’
ELPC | Network | [7,124]| [0,1,1,1,1,1,0,0] ESZRDI%IRUS
balance ’

Data Rate Provided by O-DUs
B Increase ] Total
3.5E+04 32E+4
3.0E+04
~ 2.5E+04
&
S 2.0E+04 1.8E+4
£ 15E+04 14E+4
<
& LOE+04
0.5E+04
0
O-DU1 0O-DU2
The serving O-DUs
Data Rate Provided by O-RUs
W increase [ Total
400E+04  3.63E+04
3.50E+04 Y 3e0s - 2 TOE402
_ 3.00E+04 0IEF
§ 2.50E+04 7.74E+03
o 2.00E+04
<
s L50E+04
<
R 1.OOE+04
5.00E+03
0.00E+00
O-RU5 0O-RU3 0O-RU2
The serving O-RUs

Fig. 6. The user-experienced data-rate in service type FeMMB

path. The observed execution time was 0.0317 s.

Next, we present the Pareto frontier of the model, consider-
ing FeMMB and ERLLC as the two conflicting service types
in the system.

As shown in Fig.7, The agent’s policy prediction achieves
more than 91 % precise accuracy compared to the real data
and converges to the true Pareto front with only an 8.8 %
error.

Reliability, connectivity density, and area traffic ca-
pacity: Reliability determines the overall experience of the
network in terms of accessibility and performance. To validate
the reliability of our approach, we monitored the execution
time for 10 different test runs by using different tree models.
As shown in Fig. 8, the algorithm’s latency ranged between
0.0175 and 0.0360 s, with an average execution latency of
0.0226 s. Fig. 9 depicts the data-rate provided by the O-RUs
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Fig. 7. Pareto frontier of the policy for FemBB and ERLLC

in 10 different network instances. As Fig. 9 demonstrates, all
the users experienced a data-rate higher than 1 Gbps. It is
worth mentioning that the actual data-rate will likely be lower
when accounting for a more realistic STN R.
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Fig. 8. The Execution latency of our agent in ERLLC service type of 10 test
runs.
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Fig. 9. The user-experienced data rate in service type FeMMB.

All 10 tests, each for 4 preferences, were successfully
assigned by the agent. Thus, the slice configuration approach
can be considered reliable. However, as these results are based
on episodic simulations with a small number of APs, the
connectivity density and area traffic capacity could not be
accurately measured. Since ensuring equally loaded entities in
the network creates available resources across all components

(avoiding fully loaded or idle states), the system balance
metric was incorporated to improve these two KPIs, as well
as network availability.

Mobility and EE: In this study, we aimed to improve mo-
bility and EE by leveraging architecture-related technologies
and our low-complexity scheme. A smooth slice reconfigu-
ration in CF-based RAN can significantly improve mobility.
Moreover, employing one agent instead of multiple agents
and training processes enhances the efficiency of the required
energy for computation and memory demands. Furthermore,
a dynamic slice configuration approach results in the efficient
use of communication links by activating only the engaged
links, thereby substantially improving energy efficiency.

C. Complexity and Scalability, Performance in Real Scenarios

Considering dynamic slice configuration and reconfigura-
tion as a complex task in 6G networks, only distributed,
scalable, and low-complex approaches are likely to be im-
plemented in real-world 6G networks. This section explains
how our considered MORL agent leverages scalability, sample
efficiency, and improved policy adaptation to ensure practical
applicability in real scenarios.

To evaluate the scalability of the MORL algorithm, we
investigate three aspects: handling a large state space (i.e.,
a large number of O-DUs and O-RUs), accommodating many
objectives (i.e., a large number of service types), and managing
large optimal policy sets.

While our simulation setup included a total number of 8
0O-DUs and O-RUgs, in real scenarios, a user will be supported
by a larger number of O-DUs and O-RUs. However, the Enve-
lope MOQ-learning algorithm w has demonstrated success in
environments with large state spaces, such as the Super Mario
Bros game, which features a state space size of approximately
4%240%256 * 3 (RGB) frames [30]. In contrast, the state space
size of our environment grows according to on+l _ 1, where
n is the total number of O-RUs and O-DUs. A comparison
of our simulation state space size with a video game’s state
space size indicates that our simulation’s state space size can
increase more than double without scalability issues for the
agent.

In practical 6G networks, which are decentralized, O-RU
clustering and O-DU selection are critical for efficient CF
mMIMO systems [12]. Moreover, the distance between the
user and O-RAN entities significantly impacts the QoS. Con-
sequently, in real scenarios, users are not served by all O-RAN
entities; rather, natural clusters of entities capable of better
serving specific users are formed. This clustering ensures the
agent’s adaptability to real-world implementations.

On the other hand, while having more than three preferences
(or reward elements) can be considered a problem with a large
number of objectives, our simulations show that the MORL
agent was successful with four preferences. Moreover, pre-
vious studies [30] demonstrated the algorithm’s effectiveness
with up to 6 preferences.

The size of the optimal policy also influences performance
[30]. To analyze this, we reviewed the agent’s performance
in a binary tree environment using the Coverage Ratio (CR)



and Adaptation Error (AE) metrics, as defined in [30]. CR
evaluates the agent’s ability to recover optimal solutions in
the convex coverage set (i.e., policies offering the best trade-
offs between objectives for varying preferences), while AE
measures the agent’s real-time policy adaptation to specified
preferences. CR and AE are formulated as:

_ Area covered by learned policies

CR=

(7

Area of the true Pareto frontier

and
AE(N) =V*(A) = VT (A) ®)

where V*()\) represents the optimal value for preference A,
and V™ (A) is the value of policy 7 learned by the algorithm
for the same .

The Envelope MORL agent in this work outperforms other
algorithms, such as the Multi-Objective Fitted Q-Iteration
[34], the Conditional Neural Network with Optimistic Linear
Support [35], and the Scalarized Q-update with Q-learning
[36] in binary trees with depths of 5,6, and 7 and 6 preferences
both in terms of CR and AE [30]. Moreover, the agent’s
success in trees with depths of 8 and four preferences. While
environments with smaller solution sets yield higher CR and
AE values, the Envelope MOQ-learning algorithm remains the
most stable and effective approach.

In terms of sample efficiency and policy adaptation, the
Envelope MOQ-learning algorithm demonstrates promising
performance [30], making it a more efficient solution.

Finally, the use of a MORL agent to accommodate multiple
service types is motivated by the fact that a single neural
network and one training phase can produce a policy adaptable
to multiple preferences after training. This approach eliminates
the need for training separate agents for each service type [11],
thereby reducing computational complexity and enhancing
energy efficiency. For large-scale systems requiring multiple
agents, adding one MORL agent can replace numerous single
RL agents, further improving scalability and efficiency.

VI. CONCLUSION AND FUTURE STEPS

In this research work, we proposed a dynamic network slic-
ing scheme integrated into XAPPs in Near-RT RIC of O-RAN.
This intelligent scheme leverages the extensive connectivity
and smooth mobility enabled by CF mMIMO. Our primary
objective was to increase the computational and energy ef-
ficiency through several steps. First, we proposed a MORL-
based approach to deliver multiple service types using a single
training phase for one agent. Second, we employed an agent
that offers scalability, sample efficiency, and stability in real-
world scenarios. Furthermore, our proposed scheme provides
a slice of O-DUs, O-RUs, their connecting links, and resource
blocks for every user which allows the rest of O-RAN entities
to stay in the offline mood and improves the EE in the RAN.
Extensive simulations and numerical analyses demonstrated
that this approach successfully meets the required QoS for
various service types. The results were validated by analyzing
multiple KPIs and observing the behavior of the algorithm in
our simulated environment.

This work can be improved by incorporating more service
types and different metrics for the reward array. The network
topology could also be expanded or optimized by increasing
the number of O-RUs and O-DUs. Combining the Gym-based
environment with other network-related simulators, would
enable testing the trained agent under different conditions,
such as analyzing area traffic density, which could not be
addressed in our user-centered episodic simulations. Moreover,
the integration of the proposed intelligent approach in the
xApp framework of Near-RT RIC in O-RAN has not been
discussed in this work. As a future direction, implementing
the proposed approach on experimental platforms [37], [38]
could offer valuable insights and practical validation. Further
improvements can be achieved by adopting a CF mMIMO
system that integrates both sensing and communication. In an
Integrated Sensing and Communication (ISAC) CF mMIMO
system, the signals transmitted for data communication are
also used for environmental sensing. This approach leverages
distributed sensing capabilities, enabling more efficient use of
spectrum and hardware resources, while significantly enhanc-
ing overall system efficiency.
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