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Abstract—An emerging concept in sixth-generation mobile
networks is Joint Communication and Sensing (JCAS), which
offers a unified approach to communication and sensing tasks.
In this paper, we present a novel mathematical framework for
evaluating the performance of JCAS wireless networks, utilizing
stochastic geometry as an analytical tool. Our focus is on deriving
the meta distribution of the signal-to-noise-plus-interference ratio
(SINR) for JCAS networks. This approach provides a detailed
quantification of individual user or radar performance within
these networks. Our contributions include the modeling of JCAS
networks and the derivation of mathematical expressions for
the JCAS SINR meta distribution. Through simulations, we
validate our theoretical analysis and demonstrate how the JCAS
SINR meta distribution is influenced by factors such as antenna
patterns, blockages, and network deployment density.

Index Terms—Joint communication and sensing, stochastic
geometry, coverage probability, meta distribution, 6G.

I. INTRODUCTION

One of the envisioned features of the sixth generation
(6G) mobile networks is the synergy between wireless com-
munications and sensing [2]–[6]. Joint communication and
sensing (JCAS) networks, also referred to as integrated sensing
and communication (ISAC) networks, represent an emerging
research topic that facilitates the effective utilization of the
spectrum or waveform and paves the way for applications such
as autonomous vehicles, indoor localization, urban monitoring
and extended reality [7]–[9].

Recently, JCAS networks have sparked interest among re-
searchers and industry experts due to their potential to address
both communication and sensing requirements concurrently.
A considerable body of prior work in this field has focused
on topics such as MAC layer scheduling [10], signal pro-
cessing and waveform design [11], which necessitate careful
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consideration of both functionalities. Therefore, it is imper-
ative to develop a tractable models and derive well-defined
performance metrics to gauge the network’s effectiveness and
optimize strategies that enhance both communication and
sensing capabilities. In [12], the coverage and rate of JCAS
networks were evaluated, along with the average performance
of all user equipment (UEs) and sensed objects (SOs). The
metric, however, fails to capture the performance variations
across individual link. To address this concern, a fine-grained
analysis is needed for JCAS network. Inspired by this, we
seek to address the following question: What fraction of UEs
and SOs in the network achieve a certain link probability
at predefined thresholds? To answer this question, the meta
distribution [13], which describes the entire distribution of
the individual link reliability, needs to be studied. In this
paper, we provide a comprehensive analysis on the signal-
to-interference-and-noise (SINR) meta distribution in JCAS
network.

A. Related work

Stochastic geometry has emerged as a powerful analytical
framework for modeling and analyzing network-wide perfor-
mance, offering theoretical models that effectively charac-
terize various aspects of wireless communication networks.
By modeling the locations of base stations (BSs) as a ho-
mogeneous Poisson point process (PPP), stochastic geometry
has been successfully applied to evaluate SINR coverage
probability, rate analysis, and achievable data rates in cellular
networks [14], heterogeneous networks [15], and device-to-
device (D2D) networks [16].

Additionally, stochastic geometry-based analysis has been
extended to sensing networks. The distribution of vehicles
[17]–[19] and pulsed radar sensors [20], [21] were modelled as
PPPs as well. As for the performance analysis for the sensing
network, different performance metrics are adopted for radar
detection and parameter estimation models. For instance, [18]
examines the radar detection range and false alarm rate in
relation to the radar detection scenario by taking the strongest
interferer approximation into account. By characterizing the
cumulative distribution of the signal-to-clutter-and-noise-ratio
(SCNR) as the detection coverage probability, [22] quantified
the radar detection performance with a focus on discrete
clutter conditions. Such a metric simplifies computation com-
pared to traditional metrics such as detection probability and
false alarm rates, while still providing substantial insights.
Regarding the parameter estimation problem, [12] associates
the classic metric Cramer-Rao lower bound (CRLB) with
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SINR, demonstrating the utility of stochastic geometry in
such problems. In summary, stochastic geometry significantly
contributes to sensing applications by providing models to
characterize the system’s SINR or SCNR.

In recent years, stochastic geometry has surfaced as a strong
analytical framework for JCAS networks. For instance, time-
sharing networks were explored in [20], detailing their radar
detection range, false alarm rates, and communication success
probabilities. In [23], a joint radar communication system
was studied, in which BS performs downlink communication
towards mobile users after successfully detecting them using
the integrated radar. The concepts of coverage probability and
ergodic capacity were extended to the radar applications in
[12], where the upper and lower bounds of these metrics
were calculated for communication and sensing, respectively.
Additionally, [24] derived the ergodic rate and coverage proba-
bility of sensing and communication in a coexistence network,
considering the coupling effects of these two functions and
formulating the joint performance of the overall network.
Other studies, such as [25] and [26], focused on the energy
and spectrum efficiency, formulating optimization problem
with respect to BS deployment to maximize the network
performance.

Despite these advancements, there remains a knowledge
vacuum regarding the unique behavior of users or radar sys-
tems in a JCAS network. Most existing studies have primarily
concentrated on the coverage probability, a geographic average
that only provides information about the expected JCAS
performance across all network deployments, thus overlooking
the variability in user or radar experiences. For instance, two
network realizations may exhibit the same spatial average, but
one may display a wider range of success probabilities (for
instance, from 0.5 to 0.99), while the other may display a
narrower range (for instance, from 0.85 to 0.95). This indicates
the need for a more granular performance analysis tool.

The concept of the meta distribution, introduced in [13], ad-
dresses this need by characterizing the cumulative distribution
function (CCDF) of the conditional success probability (CSP),
treating it as a random variable dependent on the point process
realization. This metric allows the quantification of the propor-
tion of links that achieve a given SINR threshold and exceed
the required reliability level. As a result, the meta distribution
has been widely applied in communication networks [16],
[27], [28] and sensing networks [19], [29]. Specifically, [19]
computed the meta distribution for a vehicle detection scenario
and assessed the average local radar detection latency. In [29],
the meta distribution of the SCNR was used to calculate the
variance in detection coverage, providing insights into the
reliability of detection performance. As previous work has
been confined to either communication or radar detection, our
work fills the gap by deriving meta distribution for JCAS
networks.

B. Contributions

To fill in the research gap, we investigate the SINR meta
distribution in the JCAS network in this research. We perform
a comprehensive investigation on the performance of the

User equipment Radar echoesBase station Sensed object

Communication signalsSensing interferences Communication interferences

Fig. 1: Illustration of the JCAS network considered, with
BSs simultaneously sending information packets to UEs and
sensing waveforms to the SOs for which they receive radar
echoes.

network under reasonable assumptions. The contribution of
this paper are summarized as follows:

• We establish an analytical framework for modeling the
JCAS network. Our analysis is tractable and incorporates
key features including path loss, small-scale fading, an-
tenna patterns, network blockage, and random network
topology.

• We derive the analytical expressions of the moments of
the conditional success probability for both communica-
tion and sensing, respectively, which are then used to
obtain the SINR meta distribution of the JCAS network.
We further explore the asymptotic behavior of the UE/SO
densities and present several relevant special cases to
potentially simplify the analytical results.

• Our analysis is validated through extensive simulations.
Numerical results are provided to demonstrate how the
JCAS SIR meta distribution responds to different net-
work deployment configurations. The results demonstrate
that increasing the proportion of UEs in the network
and enhancing the antenna directivity at the BSs could
improve the JCAS performance. Furthermore, the results
also reveal that incorporating blockage and increasing BS
densities will enhance the sensing performance, while
there is no such monotonicity for communication per-
formance.

The rest of the paper is organized as follows: Section II
presents the system model. Section III provides the analytical
results. Section IV provides the numerical results and analysis.
Finally, the entire work is concluded by Section V.

II. SYSTEM MODEL

A. Network Deployment

We consider a JCAS wireless network, comprising several
base stations (BSs), user equipment (UEs), and sensed objects
(SOs), as depicted in Fig. 1. The locations of the BSs, UEs, and
SOs are modeled as three independent homogeneous Poisson
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point processes (PPPs), denoted by Φb, Φu, and Φs, with
intensities of λb, λu, and λs, respectively. The BSs are in
charge of sending information packets to UEs in the downlink
or sending sensing waveforms to the SOs and receiving
echoes from them. Communication and sensing functionalities
are performed using a shared multicarrier waveform that is
reused throughout the network, leading to interference among
transmissions from different nodes. We assume that each BS is
active and selects one randomly assigned entity (either a UE or
SO) within its coverage area to provide the appropriate service.
It is also assumed that λu ≫ λb and λs ≫ λb, meaning each
cell will contain multiple UEs and SOs. Furthermore, each
wireless transmission channel is subject to Rayleigh fading
and path loss, which follows a power-law distribution, with
the BSs transmitting at a given power Ptx.

B. Propagation Model and Association Policies

First, we characterize the large-scale path loss in the prop-
agation model. Depending on whether a blockage intersects
the link, a pair of transmitters and receivers can have a line-
of-sight (LoS) or non-line-of-sight (NLoS) link. We use the
blockage probability model from [30], where the probability
of establishing an Los link with a length r is given by

pL(r) = exp(−βr), (1)

and the probability of establishing a NLos link is

pN(r) = 1− pL(r), (2)

where β is a parameter capturing the density of blockages.
Note that communications can occur over either an LoS

or NLoS link, each characterized by distinct system factors.
Specifically, the path loss function for a link of length r is
given by

L(r) =

{
KLr

−αL , w.p. pL(r),

KNr
−αN , w.p. 1− pL(r),

(3)

where KL and KN denote the channel gains associated with
LoS and NLoS links, respectively, and αL and αN are path
loss exponents for LoS and NLoS links, respectively.

The association of UEs to BSs and the selection of BSs
for SO measurement play an important role in coverage and
rate. Specifically, we assume that each UE is connected to
the BS with the smallest path loss, via either LoS or NLoS
links. Moreover, we consider a monostatic sensing scenario
in which the BSs transmit sensing waveforms and receive
echos from the SOs. We assume only the SOs with LoS links
are viable for wireless sensing, as detecting or estimating
the location of a NLoS object is particularly challenging in
practice. Consequently, each SO is associated with the nearest
BS with an LoS path.

C. Antenna Pattern

We consider that all BSs and UEs perform directional beam-
forming for both communication and sensing purposes. For
analytical tractability, we utilize a sector model [31] to model
the antenna pattern of BSs and UEs. Specifically, we model the
radar as having a single omnidirectional element transmitter

and a receiver equipped with a uniform planar square antenna
array and half-wavelength antenna spacing between antennas.
The main 3 dB beamwidth, main lobe gain, and front-to-back
ratio (ratio of sidelobe gain to main lobe gain) of the antenna
are denoted as ψ, G, and ξ, respectively. Moreover, we assume
the BS is equipped with a full-duplex transceiver to facilitate
monostatic sensing [32]. In what follows, we use the subscripts
b, u, t, and r to refer to the antenna patterns of the BS, UE,
transmitter, and receiver, respectively.

For a communication link, the BS and UE select the
direction of the main lobe to maximize the received power.
For a sensing link, since sensing only occurs over an LoS link,
the BSdirects both its transmit and receive beams toward the
desired SO. Perfect alignment is assumed between the typical
UE/SO and its serving BS. Consequently, the gain for the
desired signal at the typical UE is Gb,tGu,r, while the gain
for the radar return is Gb,tGb,r.

For interfering links that are not aligned with the intended
receiver, we model their antenna gains as independent ran-
dom variables. More precisely, the normalized antenna gain
between the transmitting BS and receiving UE over the k-th
interfering link is given by

Ḡkb,t =

{
1, w.p. pb,t =

ψb,t

2π ,

ξb,t, w.p. 1− pb,t,
(4)

and

Ḡku,r =

{
1, w.p. pu,r =

ψu,r

2π ,

ξu,r, w.p. 1− pu,r.
(5)

According to the SO association policy, the serving BS
always directs its beams toward the desired SO. However, in-
terference arises from other BSs as well as from the serving BS
itself, rather than from the SO. Consequently, the interference
pattern in the sensing scenario is non-isotropic. As outlined in
[12], the normalized antenna gain of the receiving BS can be
expressed as

Ḡkb,r(r0, rk) =

{
1, w.p. pb,r(r0, rk),

ξu,t, w.p. 1− pb,r(r0, rk),
(6)

in which

pb,r(r0, rk)

=

ψb,r

2 − J(rk; r0,max{cos(ψb,r

2 ), rk2r0
})1{rk ≤ 2r0}

π − J(rk; r0,
rk
2r0

)1{rk ≤ 2r0}
, (7)

and function J(r; r0, z) is given by

J(r; r0, z) =

∫ 1

z

(1− u2)−
1
2 exp

(
− β

√
r2 − 2rr0u+ r20

)
du,

(8)

where r0 and rk represent the distances from the serving BS
and the k-th interfering BS to the typical SO, respectively.

To this end, the normalized antenna gains for the com-
munication and sensing links of the k-th interfering node,
denoted by gkc = Ḡkb,tḠ

k
u,r and gks = Ḡkb,tḠ

k
b,r, respectively,

are discrete random variables evaluated at ac,j and as,j (j ∈
{1, 2, 3, 4}) with probability pc,j and ps,j(r0, rk), as shown in
Table I.
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TABLE I: Different Evaluations and Probabilities of Gc,i

and Gs,i

j 1 2 3 4

ac,j 1 ξb,t ξu,r ξb,tξu,r

pc,j pb,tpu,r (1− pb,t)pu,r pb,t(1− pu,r) (1− pb,t)(1− pu,r)

as,j 1 ξb,t ξb,r ξb,tξb,r

ps,j pb,tpb,r (1− pb,t)pb,r pb,t(1− pb,r) (1− pb,t)(1− pb,r)

D. SINR Models

Based on Slivnyark’s theorem [33], we focus on a typical
UE situated at the origin. This typical UE is connected to the
BS via either LoS or NLoS links with minimal path loss. Let
X0 denote the location of the tagged BS (also referred to as
the typical BS) of the typical UE and Xk denote the location
of the k-th BS in the network.The normalized noise power at
the receiver is defined as

σ̄2
c =

σ2

Gb,tGu,rPtx
, (9)

where σ2 denotes the noise power. Then, the SINR received
at the typical UE can be expressed as

SINRc =
h0L(∥X0∥)∑

k ̸=0 hkg
k
cL(∥Xk∥) + σ̄2

c

, (10)

where hk ∼ exp(1) is the channel fading from the k-th BS
to the typical UE, gkc represents the total normalized effective
antenna gain of the k-th interfering link, and ∥ · ∥ denotes the
Euclidean norm.

Similarly, in a monostatic sensing scenario where the BSs
transmit the sensing waveforms and listen to the echo of the
SOs, without loss of generality, we place the typical SO at the
origin [12]. According to [34], the signal strength of the radar
echo measured at the typical BS is given by

Ss =
PtxGb,tGb,rλ

2
wσcsLret(∥X0∥)

(4π)3

= A
σcs
4π

Lret(∥X0∥), (11)

where Gb,t and Gb,r denote the antenna gains of transmission
and reception in the sensing stage, respectively, λw is the
carrier wavelength, σcs ∼ exp(1) represents the radar cross-
section, which can be modeled as a random variable that
follows the exponential distribution with unit mean [35], and
A = PtxGb,tGb,r(λw/4π)

2.
Since sensing utilizes the same carrier as communication,

the interference accumulated at the typical BS can be ex-
pressed as

Is =
∑
k ̸=0

Ah̃kg
k
s L(∥Xk −X0∥), (12)

where h̃k ∼ exp(1) stands for the channel fading from the
k-th BS to the typical BS, gks denotes the normalized effective
antenna gain from the k-th interfering link. As a simplification,
we assume the LoS/NLoS status of the interfering BSs with

respect to the typical BS is independent of the LoS/NLoS sta-
tus of the BSs observed by the typical SO. Let the normalized
noise power at the typical BS for typical SO be defined as

σ̄2
s =

σ2

Gb,tGb,rPtx
. (13)

By analogy with the communication scenario, the sensing
SINR at the typical BS can be written as follows

SINRs = 1{∥X0∥ <∞}Ss

Is

= 1{∥X0∥ <∞}
σcs

4π Lret(∥X0∥)∑
k ̸=0 h̃kg

k
s L(∥Xk −X0∥) + σ̄2

s

, (14)

where 1{∥X0∥ < ∞} indicates that sensing link is LoS path
only, and thus, SINR is zero if there are no LoS links between
the BSs and the typical SO.

We note that while SINRc is an actual SINR, SINRs is a
conceptual one, constructed as a proxy for the BS’s efficacy
in estimating the SO’s parameter of interest.1 Based on these
SINR models, we can establish suitable metrics to assess the
JCAS network performance.

E. Performance Metric

The probability that SINRc surpasses a decoding threshold
θc is known as the coverage probability or success probability,
a widely-used metric to evaluate link performance in cellular
networks. This metric provides information about the fraction
of UEs in the network that achieves an SINR at least equal to
θc. A similar definition can be applied to sensing performance.
The estimation rate, defined as the mutual information between
the radar return and the parameter of interest divided by
the coherent processing interval, characterizes the quality of
sensing, with upper and lower bounds determined by log-
arithmic functions of SINRs [12]. Hence, sensing accuracy
can be captured using a measure based on the distribution of
SINRs. For instance, one could consider the sensing coverage
probability, which is defined as the probability that SINRs

exceeds a predetermined threshold θs and reflects the average
portion of the SOs whose SINR meets or exceeds θs.

Since coverage probabilities provide only average JCAS
performance across all network deployments, this paper em-
ploys the concept of conditional coverage probability (a.k.a.
conditional transmission success probability) ) and the meta
SINR distribution [13], [27], [28] to obtain a fine-grained
perspective of the JCAS network performance. Specifically,
given the PPP Φb, we define the conditional JCAS coverage
probability as the joint fraction of UEs or SOs whose corre-
sponding SINR exceeds their corresponding threshold, given
by

P (θc, θs) = PΦu+Φs(SINR > θ | Φb)

(a)
=

λu
λu + λs

Pc(θc) +
λs

λu + λs
Ps(θs), (15)

where

Pc(θc) = PΦu
(SINRc > θc | Φb), (16)

1In the following, for the sake of readability, we neglect the constant
multiplier 1

4π
in (14) as it can be embedded into the decoding threshold.
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and

Ps(θs) = PΦs
(SINRs > θs | Φb) (17)

stands for the conditional communication and sensing cov-
erage probabilities, respectively, and (a) follows from the
independence of Φu and Φs and using the superposition
theorem for the stationary process. (15) indicates that by con-
ditioning on the BS topology, the strongly coupled relationship
of communication and sensing due to co-existence of BS
deployments can be eliminated. Hence we can analyze the
performance of communication and sensing separately when
characterizing the JCAS network.

We note that P (θc, θs) remains a random variable because,
although channel fading is averaged out, the randomness
stemming from Φb persists 2. In that respect, we leverage
the concept of the SINR meta distribution in communication
networks [13] and define the JCAS SINR meta distribution as
the complementary cumulative distribution function (CCDF)
of P (θc, θs), i.e.,

F (θc, θs, x) = P(P (θc, θs) > x). (18)

This quantity provides information about the fraction of end
terminals (UEs or SOs) in the network that can attain the
desired SINR (at levels of θc and θs for SINRc and SINRs,
respectively) with a reliability (i.e., probability) of at least x.

III. ANALYSIS OF JCAS SINR META DISTRIBUTION

This section details the steps to derive analytical expressions
for the quantity in (18). First, we calculate the general mo-
ments of the conditional sensing and communication coverage
probabilities. Then, we derive the analytical expression for the
JCAS SINR meta distribution.

A. Moments of Conditional Sensing Coverage Probability

We begin by deriving the conditional sensing coverage prob-
ability Ps(θs) by averaging out the randomness introduced by
channel fading. The quantity Ps(θs) represents the probability
that, given a network realization Φb, the effect of channel
fading results in sensing SINRs exceeding the threshold θs.

Lemma 1. Conditioned on the point process Φb , the sensing
coverage probability is given by

Ps(θs) =
∏

i∈{L,N}

∏
Xk∈Φi

b\X0

(
4∑
j=1

ps,j(∥X0∥, ∥Xk −X0∥)
1 +

θsKias,j∥X0∥αL

KL∥Xk−X0∥αi

)

× exp
(
− θsσ̄

2
s

KL
∥X0∥2αL

)(
1− exp

(−2πλb
β2

))
, (19)

where ΦL
b\X0

and ΦN
b\X0

represent the interfering nodes in Φb

with LoS and NLoS paths to the serving BS, respectively.

2The conventional coverage probability can be obtained by taking the
expectation of P (θc, θs) with respect to Φb, thereby disregarding the de-
pendence of the JCAS performance on the network realization Φb.

Proof: Using (14), we can calculate the conditional JCAS
coverage probability as

P (θs) = PΦs
(SINRs > θs | Φb)

(a)
= P

(
σcs >

θs
∑
k ̸=0 h̃kg

k
s L(∥Xk −X0∥) + θsσ̄

2
s

Lret(∥X0∥)
|

∥X0∥ <∞,Φb

)
× P

(
∥X0∥ <∞

)
(b)
= E

[
exp

(
− θs

∑
k ̸=0

h̃kg
k
s

L(∥Xk −X0∥)
Lret(∥X0∥)

)
| ∥X0∥ <∞

]
× exp

(
− θsσ̄

2
s

KL
∥X0∥2αL

)(
1− exp

(−2πλb
β2

))
(c)
=

∏
i∈{L,N}

∏
Xk∈Φi

b\X0

( 1

1 + θsgks
Ki∥X0∥αL

KL∥Xk−X0∥αi

)
× exp

(
− θsσ̄

2
s

KL
∥X0∥2αL

)(
1− exp

(−2πλb
β2

))
(d)
=

∏
i∈{L,N}

∏
Xk∈Φi

b\X0

( 4∑
j=1

ps,j(∥X0∥, ∥Xk −X0∥)
1 + θsas,j

Ki∥X0∥αL

KL∥Xk−X0∥αi

)

× exp
(
− θsσ̄

2
s

KL
∥X0∥2αL

)(
1− exp

(−2πλb
β2

))
, (20)

where (a) follows from that P (∥X0∥ <∞) = 1−exp(−2πλb

β2 )
[36], (b) follows from the fact that σcs obeys an exponential
distribution, (c) holds because fading realizations are also
exponentially distributed and mutually independent, as well as
the independence of point processes ΦL

b\X0
and ΦN

b\X0
, while

(d) follows from the independence of gks .
Using the above results, we can derive different moments

of P (θs), which are presented below.

Theorem 1. The b-th moment of the conditional sensing
coverage probability is given by

M s
b =

(
1− exp

(−2πλb
β2

))b−1
∫ ∞

0

f(r0) exp
(
− bθsσ̄

2
s

KL
r2αL
0

−
∑

i∈{L,N}

∫ ∞

0

(
1−
( 4∑
j=1

ps,j(r, r0)

1+θsas,j
Kir

2αL
0

KLrαi

)b)
λi(r, r0)dr

)
dr0,

(21)

in which

f(r0) = 2πλbr0pL(r0) exp
(−2πλb

β2

(
1− e−βr0(βr0 + 1)

))
,

(22)

and

λi(r, r0) = 2pi(r)λbr
(
π − J(r; r0,

r

2r0
)1{r ≤ 2r0}

)
. (23)

Proof: Please refer to Appendix A.
Notably, the first moment of the conditional sensing cover-

age probability is the standard sensing SINR coverage proba-
bility of the network, denoted as M s

1 , which is given by

M s
1 =

∫ ∞

0

f(r0) exp
(
− θsσ̄

2
s

KL
r2αL
0 −

∑
i∈{L,N}∫ ∞

0

(
1−

4∑
j=1

ps,j(r, r0)

1 + θsas,j
Kir

2αL
0

KLrαi

)
λi(r, r0)dr

)
dr0. (24)
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B. Moments of Conditional Communication Coverage Proba-
bility

Similar to the previous section, we commence our analysis
by deriving an initial expression for the conditional commu-
nication coverage probability.

Lemma 2. Given typical UE is associated with a BS through
either LoS or NLoS paths, the conditional communication
coverage probability is

Pc,ρ(θc) =
∏

i∈{L,N}

∏
Xk∈Φi

(
4∑
j=1

pc,j

1+
θcbkc,jKi∥X0∥αρ

Kρ∥Xk∥αi

)

× exp
(
− θcσ̄

2
c

Kρ
∥X0∥αρ

)
, ρ ∈ {L,N}, (25)

where ρ indicates whether the path between the serving BS and
the typical UE is LoS or NLoS, ΦL and ΦN are the interfering
BSs whose communication links toward the typical UE is LoS
and NLoS, respectively.

Proof: This can be proven using a method similar to that
of Lemma 1, and is therefore omitted here.

Since communication can occur over either LoS or NLoS
links, the conditional communication coverage probability can
be obtained by averaging out the randomness in the link status,
i.e.

Pc(θc) = ALPc,L +ANPc,N, (26)

where AL and AN denote the probabilities that the typical UE
establishes a LoS and NLoS to its associated BS, respectively,
as given by [36]

AL = BL

∫ ∞

0

e−πλb

∫ ϕL,N(x)

0 (1−pL(t))tdtf(x)dx, (27)

where f(x) is defined in (22), BL and ϕρ,i(r0), ρ, i ∈ {L,N}
are given by the following, respectively,

BL = 1− e2πλb

∫ ∞
0
rpL(r)dr, (28)

ϕρ,i(r0) = (Ki/Kρ)
1/αir

αρ/αi

0 , (29)

and AN = 1−AL.
Next, we can derive the expressions for various moments

of Pc(θc).

Theorem 2. The b-th moment of the conditional communica-
tion coverage probability is given by

M c
b =

∑
ρ∈{L,N}

∫ ∞

0

f̂ρ(r0) exp
(
− bθcσ̄

2
c

Kρ
r
αρ

0 − 2πλb
∑

i∈{L,N}∫ ∞

ϕρ,i(r0)

(
1−

( 4∑
j=1

pc,j

1 + θsac,j
Ki

Kρ
r
αρ

0 r−αi

)b)
rpi(r)dr

)
dr0,

(30)

where

f̂L(r0) = 2πλbr0pL(r0) exp
(
− 2πλb

(
− e−βr0(βr0 + 1)

β2

+
ϕ2L,N(r0)

2
+

e−βϕL,N(r0)(βϕL,N(r0) + 1)

β2

))
, (31)

and

f̂N(r0) =2πλbr0pN(r0) exp
(
− 2πλb

(r20
2

+
e−βr0(βr0 + 1)

β2

− e−βϕN,L(r0)(βϕN,L(r0) + 1)

β2

))
. (32)

Proof: According to [36, Lemma 3], given that the typical
UE is associated with a LoS/NLoS BS, the probability density
function (pdf) of the distance to its serving BS (denoted by
r0) is

fρ(r0) = f̂ρ(r0)/Aρ, ρ ∈ {L,N}, (33)

where f̂L(r0) and f̂N(r0) are defined in (31) and (32), respec-
tively. Then, the result may be proven similarly to Theorem
1 by calculating the moments conditioned on r0 and then
subsequently de-conditioning using (33).

We also provide the standard communication coverage
probability in the following corollary.

Corollary 1. Given that the typical UE is associated with
a LoS BS, the first moment of conditional communication
coverage probability (a.k.a. the standard communication SINR
coverage probability) is given as

M c,L
1 =

∫ ∞

0

fL(r0) exp
(
− θcσ̄

2
c

KL
rαL
0

− λb
(
AL(r0)−AN(r0) +B(r0)

))
dr0, (34)

where

Ai(r0) =
(βr0 + 1)e−βr0

β2

( 4∑
j=1

pc,j

1 + θi,jr
−αi
0

− 1
)

+
αi
β2

4∑
j=1

θi,jpc,j

∞∑
n=0

1

β−αi(n+1)

(
e−βr0(βr0)

n−αi

+ (1− αi(n+ 1))Γ(1− αi(n+ 1), βr0)
)
, (35)

and

B(r0) =
1

2

4∑
j=1

θN,jpc,j2F1(2,−δN − 1; 1− δN;−θN,jrαN
0 )

+
r20
2

( 4∑
j=1

pc,j

1 + θN,jr
−αN
0

− 1
)
, (36)

whereas θi,j = θsac,jKir
αL
0 /KL, δN = 2/αN, Γ(s, x) =∫∞

x
ts−1etdt represents Gamma incomplete function.

Proof: Please refer to Appendix B.
The coverage probability given the typical UE is associated

with a NLoS BS can also be obtained by substituting fL(r0)
and θsac,jKir

αL
0 /KL with fN(r0) and θsac,jKir

αN
0 /KN in

(34).

C. JCAS SINR Meta Distribution

Finally, using the moments of both the conditional com-
munication coverage probability and the conditional sensing
coverage probability, we derive the JCAS SINR meta distri-
bution, defined as the CCDF of P (θc, θs).
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Theorem 3. The meta distribution of the SINR in the JCAS
network under consideration is given by

F (θc, θs, x) =
1

2
+

1

π

∫ ∞

0

Im
{
x−jωMJCAS

jω

}dω
ω
, (37)

where Im{·} denotes the imaginary part of the input variable,
j =

√
−1, and Mb is the b-th moment of P (θc, θs), given by

MJCAS
b =

1

(λu + λs)b

∞∑
m=0

(
b

m

)
λb−mu λms M

c
b−mM

s
m. (38)

where M c
b−m is the (b−m)-th moment of Pc(θc) and M s

m is
the m-th moment of Ps(θs).

Proof: The b-th moment of P (θc, θs) can be calculated
as

MJCAS
b = E

{
P (θc, θs)

b
}

(a)
=

1

(λu + λs)b
E
{ ∞∑
m=0

(
b

m

)
λb−mu Pc(θc)

b−mλms Ps(θs)
m
}

(b)
=

1

(λu + λs)b

∞∑
m=0

(
b

m

)
λb−mu E[Pc(θc)

b−m]λms E[Ps(θs)
m]

=
1

(λu + λs)b

∞∑
m=0

(
b

m

)
λb−mu λms M

c
b−mM

s
m, (39)

where (a) follows from the binomial expansion and (b) follows
from the independence of Pc(θc) and Ps(θs). The proof is
completed by invoking the Gil-Paleaz theorem [37].

As a byproduct, we can obtain the JCAS coverage proba-
bility by computing the first moment of (39) with respect to
Φb, given by:

MJCAS
1 =

λuM
c
1 + λsM

s
1

λu + λs
, (40)

which is consistent with the definition in [12]. Such a metric
reflects the joint fraction of UEs and SOs whose coverage
conditions are satisfied.

Moreover, when λs ≫ λu, the network is considered to be
sensing only. The meta-distribution for such a network can be
derived using the Gil-Paleaz theorem, given by

F (θs, x) =
1

2
+

1

π

∫ ∞

0

Im
{
x−jωM s

jω

}dω
ω
. (41)

Similarly, when λu ≫ λs, the meta distribution of commu-
nication SINR is given by

F (θc, x) =
1

2
+

1

π

∫ ∞

0

Im
{
x−jωM c

jω

}dω
ω
. (42)

D. Approximation of the JCAS SINR Meta Distribution

According to Theorem 3, the derivation of meta distribution
requires calculating the moments of the coverage probability
of communication, M c

b , and sensing, M s
b . However, calcu-

lating M s
b involves tedious numerical calculations of nested

integrations due to the intricate interfering BSs process and
its antenna pattern. It is notable that the probability of the
normalized antenna gain of the receiving BS taking a value of
1, pb,r, as defined in (7), is lower bounded by ψb,r

2 . Therefore,

we can use this lower bound to accelerate the computation,
with its accuracy validated in Fig. 3.

While Theorem 3 provides an exact analytical expression
for the JCAS SINR meta distribution, evaluating it can be
computationally expensive due to the infinite summation and
the calculation of imaginary moments in (39). Since the value
of the conditional JCAS coverage probability ranges from 0 to
1, we simplify the expression by approximating the conditional
JCAS coverage probability in (19) using a beta distribution
[13]. This approximation is achieved by matching the first and
second moments, M1 and M2. The former is provided in (40),
and the latter can be readily obtained from (39), given by:

MJCAS
2 =

λ2uM
c
2 + 2λuλsM

c
1M

s
1 + λ2sM

s
2

(λu + λs)2
. (43)

Thus, the meta distribution of the SINR in the JCAS
network in (37) can then be approximated as

F (θc, θs, x) ≈ 1− Iv

( βµ

1− µ
, β
)
, v ∈ [0, 1], (44)

where Iv(x, y) =
∫ 1−v
0

zx−1(1 − z)y−1dz/B(x, y) is the
regularized incomplete beta function, with B(·, ·) denoting the
beta function. Here, µ =M1 and β = (M1−M2)(1−M1)

M2−M2
1

.

E. Special Cases

Although Theorem 1 and Theorem 2 provide general results
for the moments of conditional sensing and communication
coverage probabilities in a complex form, simpler and more
intuitive expressions can be derived under specific link condi-
tions or deployment scenarios. We now turn our attention to
several relevant special cases.

1) Sensing and Communication on Orthogonal Channel
In the system model under consideration, communication

and sensing functions are executed using a shared multicarrier
waveform, which results in interference among transmissions
from different nodes. Here, we examine a scenario where
communication and sensing are allocated on orthogonal time-
frequency resources.

When communication and sensing tasks are conducted on
separate frequency bands, interference for each task arises only
from BSs concurrently performing the same task, rather than
from all BSs as previously discussed.

Corollary 2. If communication and sensing are allocated
orthogonal frequency-time resource units in the JCAS network,
the b-th moment of the conditional sensing coverage prob-
ability and that of the conditional communication coverage
probability are, respectively, given by

M s
b =

(
1− exp

(−2πλb
β2

))b−1
∫ ∞

0

f(r0) exp
(
− bθsσ̄

2
s

KL
r2αL
0 −

δs
∑

i∈{L,N}

∫ ∞

0

(
1−
( 4∑
j=1

ps,j(r, r0)

1+θsas,j
Kir

2αL
0

KLrαi

)
b
)
λi(r, r0)dr

)
dr0, (45)
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and

M c
b =

∑
ρ∈{L,N}

∫ ∞

0

f̂ρ(r0) exp
(
− bθcσ̄

2
c

Kρ
r
αρ

0 −2πδcλb
∑

i∈{L,N}∫ ∞

ϕρ,i(r0)

(
1−
( 4∑
j=1

pc,j

1+θsac,j
Kir

αρ
0

Kρrαi

)b)
rpi(r)dr

)
dr0. (46)

where δs and δc = 1− δs denote the proportion of interfering
BSs that simultaneously perform sensing/communication tasks.

Proof: Since each BS supports communication and sens-
ing but only on separate frequency bands, the distance of
a typical UE/SO to its serving BS r0 follows the same
distribution f(r0) or f̂ρ(r0) as in Theorem 1 and Theorem 2.
For a given sensing link, the interfering BSs transmitting on
the same frequency are a thinned version of the original PPP
and have a density kλb. Since a thinned version of a PPP is a
PPP, the rest of the proof follows Theorem 1 and Theorem 2.

Note that under a random scheduling policy [38], where
during each downlink time slot each BS randomly chooses to
perform sensing or communication with a certain probability,
the proportion coefficients in Corollary 2 are determined by
said probability.

2) Noise-Limited Case
Due to the large bandwidth in the mmWave frequency band,

mmWave networks can be considered noise-limited when BSs
are sparsely deployed [39]. In this scenario, the b-th moment of
conditional sensing coverage probability can be significantly
simplified.

Corollary 3. If the JCAS network is noise limited, the b-th
moment of conditional sensing coverage probability is given
by

M s
b =
(
1− exp

(−2πλb
β2

))b−1
∫ ∞

0

f(r0)

× exp
(
− bθsσ̄

2
s

KL
r2αL
0

)
dr0, (47)

and conditional communication coverage probability is given
by

M c
b =

∑
ρ∈{L,N}

∫ ∞

0

f̂ρ(r0) exp
(
− bθcσ̄

2
c

Kρ
r
αρ

0

)
dr0. (48)

Proof: This can be easily proven by taking the expecta-
tions of σCS, h0 and r0, respectively.

3) Asymptotic Antenna Behaviour
For mmWave networks, it is both crucial and interesting

to explore how performance varies with the size of the BS
antenna array. For simplicity, we assume that the number of
the antenna elements at both the BS transmitter and receiver is
the same, denoted as Nb. According to [40], the relationship
between the antenna parameters and the size of the antenna
array is given by:

ψ =

√
3√
Nb

, (49)

G = Nb, (50)

ξ =
1

Nb sin
2( 3π

2
√
Nb

)
. (51)

We examine two specific cases of the antenna pattern for
BSs, one where Nb = 1, corresponding to an omnidirectional
antenna array, and the other where Nb → ∞, corresponding
to an extremely massive antenna array.

When Nb = 1, we have ξ = 1, indicating that the antenna
has the same radiation pattern in all directions. The moment
of the conditional sensing coverage probability is then given
by:

M s
b =

(
1− exp

(−2πλb
β2

))b−1
∫ ∞

0

f(r0) exp
(
− bθsσ̄

2
s

KL
r2αL
0

−
∑

i∈{L,N}

∫ ∞

r0

(
1−
( 1

1 + θs
Kir

2αL
0

KLrαi

)b)
2πrpi(r)dr

)
dr0. (52)

On the other hand, the beamforming effect for communi-
cation still exists because the antenna arrays of UE remain
unchanged. Therefore, when Na = 1, the moment of the
conditional communication coverage probability is given by:

M c
b =

∑
ρ∈{L,N}

∫ ∞

0

f̂ρ(r0) exp
(
− bθcσ̄

2
c

Kρ
r
αρ

0 − 2πλb
∑

i∈{L,N}∫ ∞

ϕρ,i(r0)

(
1−

( pu,r

1 + θs
Ki

Kρ
r
αρ

0 r−αi
+

1− pu,r

1 + θsξu,r
Kir

αρ
0

Kρrαi

)b)
× rpi(r)dr

)
dr0. (53)

When extremely large antenna arrays are used, i.e., as Nb →
∞, the expression for the moment of the conditional sensing
coverage probability is given by the following corollary.

Corollary 4. When Nb → ∞, the b-th moment of the condi-
tional sensing coverage probability and that of the conditional
communication coverage probability are, respectively, given by

lim
Nb→∞

M s
b =

(
1− exp

(−2πλb
β2

))b−1
∫ ∞

0

f(r0) exp
(

−
∑

i∈{L,N}

∫ ∞

0

(
1−

( 1

1 + ( 4
9π2 )2

θsKir
2αL
0

KLrαi

)b)
λi(r, r0)dr

)
dr0,

(54)

and

lim
Nb→∞

M c
b =

∑
ρ∈{L,N}

∫ ∞

0

f̂ρ(r0) exp
(
− 2πλb

∑
i∈{L,N}∫ ∞

ϕρ,i(r0)

(
1−

( pu,r

1 +
4θsKir

αρ
0

9π2Kρrαi

+
1− pu,r

1 +
4θsξu,rKir

αρ
0

9π2Kρrαi

)b)
× rpi(r)dr

)
dr0. (55)

Proof: From the expression for the main lobe gain G in
(50) and the normalized noise power σ̄2

s in (13), when Nb →
∞, we have σ̄2

s → 0, indicating that the noise effect can
be neglected. Similarly, algebraic operations yield ψ → 0,
pb,r(r0, rk) → 0 and ξ → 4

9π2 when Nb → ∞. Substituting
these limit results into (46), we can obtain the the final result.
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This corollary provides the following sights: (1) As Nb →
∞, the effect of noise is completely suppressed, as the nor-
malized noise powers σ̄2

s → 0, σ̄2
c → 0, making the network

interference-limited. (2) For a sensing link, as Nb → ∞, the
normalized total antenna gain of interfering links approaches
an isotropic value with a constant gain of 4

9π2 .
4) No Blockage and Isotropic antennas
To gain further insights, we consider a special case where

the blockage parameters are sufficiently small and the BSs are
equipped with isotropic antennas instead.

Corollary 5. Ignoring the blockage effects in the network and
assuming constant antenna gains, i.e. β → 0 , Gs = Gc = 1,
the b-th moment of P (θs) can be simplified as

M s
b =

∫ ∞

0

2πλbr0 exp
(
−λb(πr20+ F sb (r0))−

bθsσ̄
2
s

KL
r2αL
0

)
dr0,

(56)

with

F sb (r0) = 4πr20

(
2F1(b, δL; 1 + δL; θs(

r0
2
)

2
δL − 1

)
+ 4r20

∞∑
n=0

Γ(n+ 1
2 )

Γ( 12 )n!(1+2n)
C

(
b, θs

(r0
2

) 2
δL , δL

(
n+

3

2

))
+2πr20C

(
b, θs

(r0
2

) 2
δL , δL

)
, (57)

where δL = 2/αL, Γ(·) is the gamma function, whilst

C(x, y, z)=1−2F1

(
x, x+z;x+z+1;−1

y

)
× z

yx(x+z)
, (58)

and the conditional communication coverage probability is

M c
b =

1

2F1(b,−δL; 1− δL;−θc)
. (59)

Proof: Please refer to Appendix C.

IV. NUMERICAL RESULTS

This section presents the numerical results to validate our
analysis and evaluate how the JCAS SINR meta distribution
is influenced by the SINR thresholds and by the BS density.

A. Experiment Setup
We generate 1000 PPP realizations for the locations of

BSs, UEs, and SOs. Within each Voronoi cell formed by the
BSs, UEs and SOs are distributed in a square area measuring
1,000 meters on each side.Once the topology is constructed, it
remains unchanged, but the fading realizations of communica-
tions and sensing across each link are recalculated over 1,000
time periods. We then collect statistics for communications and
sensing to compute the conditional JCAS coverage probability
for each realization. Unless otherwise specified, we use the
following parameters path loss exponent and channel gains
associated with LoS and NLoS links: αL = 2.5, αN = 4,
KL = −75.96 dB, KN = −90.96 dB. We set densities for
BSs, UEs and SOs to λb = 10−4 m−2, and λu = λs =
10−3 m−2. The blockage density is set to β = 0.0071, which
corresponds to an urban environment [12]. The power and
antenna parameters are Ptx = 15 dB, σ2 = −100 dB, the
number of antenna elements at the BS transceiver is Nb = 64,
corresponding to a highly directional antenna array [16], and
the number of antenna elements at the UE receiver is Nu = 16.

0 0.2 0.4 0.6 0.8 1

x
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0.2

0.4

0.6

0.8

1
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(
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Analysis

Simulations

s
 =  0, 10, 20 [dB]

(a) Meta distribution of sensing SINR for θs = 0, 10, 20 dB.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

F
(

c
,x

)

Analysis

Simulations

c
 =  0, 10, 20 [dB]

(b) Meta distribution of communication SINR for θc = 0, 10,
20 dB.

Fig. 2: SINR meta distribution given in Theorem 1 and
Theorem 2, and simulations, as a function of the reliability
threshold (x-axis) and for different SINR thresholds (θc, θs).

B. Performance Comparison & Analysis

Fig. 2 plots the simulated CCDF of the conditional sensing
and communication coverage probability (black circles) with
the analytical results from Theorem 1 and Theorem 2 across
various pairs of communication and sensing thresholds. The
JCAS SINR meta distribution in Fig. 2 provides a fine-
grained evaluation of the network performance in terms of
both communication and sensing. For instance, Fig. 2 (a)
shows that for θs = 0 dB and 20 dB, respectively, setting a
reliability threshold of 0.6 on the x-axis corresponds to values
of approximately 0.47 and 0.08 on the y-axis, respectively.
This indicates that 47% of the SOs in this network can achieve
sensing SINRs of at least 0 dB with a 60% reliability. However,
this fraction decreases to 8% when both SINR thresholds are
raised to 20 dB.

Fig. 3 compares the meta distribution of conditional sensing
coverage probability with its approximation. It is observed that
the gap between the approximation and the exact results dimin-
ishes as BS density increases, verifying that the approximation
serves as a tight lower bound to the exact results across various
BS densities. This occurs because the lower bound primarily
introduces error in the interference component, which becomes
less significant in a regime of low BS density.

Fig. 4 plots the JCAS SINR meta distribution in Theorem 3
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Fig. 3: Distribution of the conditional sensing coverage prob-
ability in Section and the approximation
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Fig. 4: JCAS SINR meta distribution as a function of the
reliability threshold under different UE density ratio γ, where
γ ≜ λu/(λu + λs), and the SINR thresholds are set as
θc = θs = 0 dB.

across various UEs and SOs densities. We observe that, for
the same SINR detection threshold θc = θs, scenarios with a
higher UE density ratio γ = λu/(λu + λs) exhibit a higher
JCAS SINR coverage probability. This is because, unlike
communication, sensing experiences double path loss and only
occurs under LoS conditions. Consequently, increasing the
proportions of scheduled communication transmissions with
respect to sensing transmissions results in a higher coverage
probability. It is notable that for high reliability thresholds,
the meta distribution of sensing coverage may exceed that
of communication. This anomalous behavior occurs when
the serving BS is unrealistically close to the typical UE/SO,
resulting in higher signal strength for sensing under the given
power law path loss model.

Fig. 5 presents a comparison of the meta distribution
for both communication and sensing under different time-
frequency resource allocation strategies. The meta distribution
for the case where communication and sensing operate on
orthogonal frequency bands is derived using Corollary 2, with
the proportion coefficients set to δc = 0.7 and δs = 0.3
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F
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,x
)

Sensing, no orthogonal allocation

Sensing, orthogonal allocation

Communication, no orthogonal allocation

Communication, orthogonal allocation

Fig. 5: The SINR meta distribution as a function of the
reliability threshold for both communication and sensing under
different allocation policies.
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Communication, SNR
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Fig. 6: The SINR, SIR, and SNR meta distribution as a
function of the reliability threshold for both communication
and sensing.

[38]. As illustrated in the figure, orthogonal allocation can
enhance the performance of both communication and sensing
by mitigating interference.

In Fig. 6, we compare the meta distribution of the SINR,
SIR and SNR for both communication and sensing, assuming
a noise power is set as σ2 = −100 dB. Here, the meta
distribution of SNR is obtained by Corollary 3, while the SIR
meta distribution is obtained by setting the normalized noise
power as vc = vs = 0. The close alignment between the
SIR and SINR curves in sensing indicates that interference
plays a more significant role in determining link quality for
sensing, whereas both noise and interference are equivalently
non-negligible for communication. This disparity is partly due
to the fact that interference BSs experience greater path loss
relative to the typical SO than the serving BS, yet interference
accumulates at the serving BS. Consequently, the path loss
between the interference BSs and the serving BS may exceed
that of the desired path.

Fig. 7 (a) presents the analytical results for the standard
coverage probability across different BS antenna array sizes,
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Fig. 7: The impact of antenna array size on the mean and
variance of conditional coverage probability for both commu-
nication and sensing.

Nb, for both communication and sensing. As shown in this
figure, increasing the number of BS antennas improves the
standard coverage probability. This is expected, as a larger
antenna array forms narrower beams, leading to reduced
interference, while the increased main lobe gain decreases
normalized noise power. Another observation is that communi-
cation coverage probability is more sensitive to changes in the
SINR threshold, suggesting that sensing performance exhibits
greater variability across SOs compared to communication
performance across UEs. Fig. 7 (b) illustrates the variance of
the conditional coverage probability as a function of decoding
thresholds, under varying antenna array sizes. Notably, as the
variance approaches zero at the extremes of θ, i.e., θ → 0
or θ → ∞, it reaches a maximum at a finite value θ∗. It is
observed that θ∗ increases with Na, though the variance does
not follow a strictly monotonic relationship with antenna size.
This figure indicates that network variance peaks differently as
antenna size changes, implying that performance fluctuations
in wireless links are directly influenced by the size of the
antenna array.

Fig. 8 depicts the communication and sensing coverage
probabilities as a function of BS deployment density, under
varying levels of blockage. We consider a low-blockage regime
(β = 0.0028), where the median LoS probability occurs at
50 meters, and a moderate-blockage regime (β = 0.0071),
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Fig. 8: Coverage probabilities of communication and sensing
versus BS density λb under different blockage parameters.

corresponding to an urban environment. Consistent with the
findings in [12], our result demonstrates that for a fixed block-
age parameter, the sensing coverage probability increases with
BS deployment density. In contrast, communication coverage
probability peaks at a certain value of λb and then declines.
This discrepancy arises due to the additional factor of two
in the path loss exponent for sensing signals. When viewing
increasing BS density as a reduction in the distance of all links,
the marginal improvement in desired signal power for sensing
outstrips that of interference power, owing to the double path
loss exponent. For communication, however, interference have
larger increment in the high BS density regime, leading to a
degradation of the performance. Another notable observation
is that both communication and sensing coverage probability
increases with the blockage parameter β at high BS densities
and decreases at low densities. This can be attributed to the fact
that increasing blockage reduces both interference and desired
signal power, and wireless links are dominated by interference
in high or moderate BS density regimes, and by desired signal
strength in low-density regimes.

V. CONCLUSION

In this paper, we developed an analytical framework for
evaluating the performance of JCAS in wireless networks
by employing stochastic geometry as a key tool. Our ap-
proach involved deriving mathematical expressions for the
conditional JCAS coverage probability and its distribution,
known as the SINR meta distribution, which offers much
sharper results than traditional SINR coverage performance
obtained through spatial averaging. Our theoretical models,
validated by simulations, effectively capture the impact of
network deployment density on JCAS SINR performance. The
numerical results reveal several noteworthy insights: Under
the assumptions we made for antenna pattern, blockage and
association policy, 1) Equipping BSs with large antenna arrays
is anticipated to optimize JCAS performance; 2) Network
densification improve sensing performance, although no such
monotonic relationship exists for communication performance.
Our work have made assumptions for tractability and one
extension would be generalizing the simplified rayleigh fadin
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model to more general Nakagami fading model [36], adopting
a more realistic antenna model and taking the shadow effect
into account. Future research directions include incorporating
a minimum inter-site distance between BSs and exploring
temporal dynamics, such as data traffic for communication
[41] and status updates for sensing [42].

APPENDIX A: PROOF OF THEOREM 1

The b-th moment of Ps(θs) can be expressed as:

M s
b = Er0

{{ ∏
i∈{L,N}

∏
Xk∈Φi

b\X0

(
1

1 + θsKi∥X0∥αL

KL∥Xk−X0∥αi

)b}
︸ ︷︷ ︸

Fb|r0

×
(
− bθsvs

KL
∥X0∥2αL

)
|∥X0∥

}(
1− exp

(−2πλb
β2

))b
.

(60)

Then, one must determine the moment of conditional coverage
probability of sensing conditioned on the distance between the
serving BS and the origin, r0 = ∥X0∥.

Lemma 2 of [12] states that the point process of the distance
of interfering BSs with regard to serving BS conditioned on r0
is a PPP on R+ with the following intensity function, provided
as Π0

b = {∥Xk −X0∥ : Xk ∈ Φ!X0

b }:

λ0b(r; r0) = 2λbr
(
π − J(r, r0)1{r ≤ 2r0}

)
, (61)

where J(r, r0) is defined as in (8).
Applying independent thinning theorem to Π0

b with respect
to the LoS/NLoS status, the intensity function of interfering
BSs Π0

b can be divided into two independent processes

λi(r; r0) = pi(t)λ
0
b(r, r0), i ∈ {L,N}. (62)

Then via the probability generating functional (PGFL) of PPP,
Fb|r0 can be derived as

Fb|r0 = exp
(
−

∑
i∈{L,N}

∫ ∞

0

(
1− 1

(1 + θs
Ki

KL
r2αL
0 r−αi)b

)
× λ0i (r; r0)dr

)
. (63)

Given the typical user observes at least one LoS base station,
the conditional probability density function of its distance to
the nearest LOS base station is given by [36, Lemma 1]:

fL(x) =
2πλbxpL(x) exp

(
−2πλb

β2 (1− e−βx(βx+ 1))
)

1− exp(−2πλb/β2)
.

(64)

Then, substituting (63) into (60) and de-conditioning on r0
using (64), we obtain the b-th moment in (21).

APPENDIX B: PROOF OF COROLLARY 1

The standard coverage probability can be obtained by as-
signing b as 1 :

M c,L
1 =

∫ ∞

0

fL(r0) exp
(
− θcσ̄

2
c

KL
rαL
0

− λb
(
AL(r0)−AN(r0) +B(r0)

))
dr0, (65)

where

Ai=

∫ ∞
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(
1−

4∑
j=1
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1 + θsac,j
Kir

αL
0

KLrαi

)
2πrexp(−βr)dr, (66)

B =

∫ ∞
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(
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4∑
j=1
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KNr

2αL
0

KLrαN

)
2πrdr. (67)

For Ai, using the integration by parts, we have

Ai =
(βr0 + 1)e−βr0

β2

( 4∑
j=1
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1 + θi,jr
−αi
0

− 1
)

+

∫ ∞
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(βr + 1)e−βrdr

β2

(a)
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(βr0 + 1)e−βr0

β2

( 4∑
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−αi
0

− 1
)

+
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n=0

1

β−αi(n+1)

(
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+ (−αi(n+ 1) + 1)Γ(−αi(n+ 1) + 1, βr0)
)
, (68)

where (a) uses taylor expansion of (1+θi,jr−αi)−2, and θi,j =
θsac,jKir

αL
0 /KL, δN = 2/αN. On the other hand, by algebraic

operations, B can be calculated as

B =
1

2

4∑
j=1

θN,jpc,j2F1(2,−δN − 1; 1− δN;−θN,jrαN
0 )

+
r20
2
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−αN
0

− 1
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where 2F1(·, ·; ·, ·) is the Gaussian hyper-geometric function.

APPENDIX C: PROOF OF COROLLARY 5

The derivation of moment of conditional communication
success probability has been given in [13], and thus we provide
the proof of sensing case. Conditioned on the distance from the
typical SO and serving BS, when the NLOS BSs is ignored,
the intensity measure of Π0

b may be simplified into

λ0b(r; r0) = 2λbr(π − arccos(
r

2r0
)1{r ≤ 2r0}). (70)

Then Fb|r0) in (60) can be simplified into

Ms
b|r0 = exp

(
−
∫
R2

[
1− 1

(1 + θsr
2αL
0 r−αL)b

]
λ0b(r; r0)dr

)
(a)
= exp

(
− 4λbπr

2
0δL
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0

(
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r0
2 )

2
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2
0δL

∫ ∞

1

(
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2
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− 4λbr
2
0δL

∞∑
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2 )
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∫ ∞
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)
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3
2 )−1dv

)
(b)
= exp(−λbF sb (r0)), (71)
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where step (a) follows by the substitution of v = (2r0r )αL

and the Taylor expansion of arcsin(x), step (b) follows by the
algebraic operation and F sb (r0) is defined as (57).

Since blockage effect in neglected, the typical SO is now
associated with the nearest base station. Then the pdf of the
distance between the serving BS and the typical BS r0 distance
follows a Rayleigh distribution as fR(r0) = 2πλbr0e

−λbπr
2
0 .

The proof is concluded by de-conditioning on r0.
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[18] A. Munari, L. Simić, and M. Petrova, “Stochastic geometry interference
analysis of radar network performance,” IEEE Commun. Lett., vol. 22,
no. 11, pp. 2362–2365, 2018.

[19] G. Ghatak, S. S. Kalamkar, and Y. Gupta, “Radar detection in vehicular
networks: Fine-grained analysis and optimal channel access,” IEEE
Trans. Veh. Technol., vol. 71, no. 6, pp. 6671–6681, 2022.

[20] P. Ren, A. Munari, and M. Petrova, “Performance analysis of a time-
sharing joint radar-communications network,” in Int. Conf. Computing,
Networking Commun. (ICNC), 2020, pp. 908–913.

[21] J. Park and R. W. Heath, “Analysis of blockage sensing by radars in
random cellular networks,” IEEE Signal Process. Lett., vol. 25, no. 11,
pp. 1620–1624, 2018.

[22] S. S. Ram, G. Singh, and G. Ghatak, “Optimization of radar parameters
for maximum detection probability under generalized discrete clutter
conditions using stochastic geometry,” IEEE Open J. Signal Process.,
vol. 2, pp. 571–585, 2021.

[23] Y. Nabil, H. ElSawy, S. Al-Dharrab, H. Attia, and H. Mostafa, “A
stochastic geometry analysis for joint radar communication system in
millimeter-wave band,” in IEEE Int. Conf. Commun., 2023, pp. 5849–
5854.

[24] X. Gan, C. Huang, Z. Yang, X. Chen, J. He, Z. Zhang, C. Yuen,
Y. Liang Guan, and M. Debbah, “Coverage and rate analysis for
integrated sensing and communication networks,” IEEE J. Sel. Areas
Commun., vol. 42, no. 9, pp. 2213–2227, 2024.

[25] A. Salem, K. Meng, C. Masouros, F. Liu, and D. Lopez-Perez, “Rethink-
ing dense cells for integrated sensing and communications: A stochastic
geometric view,” IEEE Open J. Commun. Society, vol. 5, pp. 2226–2239,
2024.

[26] K. Meng, C. Masouros, G. Chen, and F. Liu, “Network-level integrated
sensing and communication: Interference management and bs coordi-
nation using stochastic geometry,” arXiv preprint arXiv: 2311.09052,
2023.

[27] M. Haenggi, “Meta distributions—Part 1: Definition and examples,”
IEEE Commun. Lett., vol. 25, no. 7, pp. 2089–2093, Jul. 2021.

[28] M. Haenggi, “Meta distributions—Part 2: Properties and interpretations,”
IEEE Commun. Lett., vol. 25, no. 7, pp. 2094–2098, Jul. 2021.

[29] S. S. Ram, S. Singhal, and G. Ghatak, “Optimization of network
throughput of joint radar communication system using stochastic ge-
ometry,” Frontiers Signal Process., vol. 2, p. 835743, 2022.

[30] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban
cellular networks,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp.
5070–5083, 2014.

[31] A. Thornburg, T. Bai, and R. W. Heath, “Performance analysis of
outdoor mmwave ad hoc networks,” IEEE Trans. Signal Process.,
vol. 64, no. 15, pp. 4065–4079, 2016.

[32] T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication
and sensing for beyond 5G and 6G systems,” IEEE Access, vol. 9, pp.
30 845–30 857, 2021.

[33] A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan, Case Studies
in Spatial Point Process Modeling. Lecture Notes in Statistics. Springer,
2006.

[34] M. A. Richards, Fundamentals of radar signal processing. Mcgraw-hill
New York, 2005, vol. 1.

[35] D. Shnidman, “Expanded swerling target models,” IEEE Trans. Aerosp.
Electron. Syst., vol. 39, no. 3, pp. 1059–1069, 2003.

[36] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave
cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp.
1100–1114, 2014.

[37] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, no.
3-4, pp. 481–482, Dec. 1951.

[38] W. Cheng, Z. Zhao, H. H. Yang, W. Hong, T. Q. Quek, and Z. Ding,
“On the study of success serving probability for integrated sensing and
communication (ISAC) based on stochastic geometry,” in IEEE Int.
Conf. Commun, 2024, pp. 5098–5103.

[39] W. Yi, Y. Liu, Y. Deng, and A. Nallanathan, “Clustered uav networks
with millimeter wave communications: A stochastic geometry view,”
IEEE Trans. Commun., vol. 68, no. 7, pp. 4342–4357, 2020.

[40] C. Balanis, Antenna Theory: Analysis and Design. Wiley, 2015. [On-
line]. Available: https://books.google.com/books?id=u-xbCwAAQBAJ

[41] H. H. Yang, T. Q. S. Quek, and H. V. Poor, “A unified framework for
SINR analysis in Poisson networks with traffic dynamics,” IEEE Trans.
Commun., vol. 69, no. 1, pp. 326–339, Jan. 2021.

[42] H. H. Yang, C. Xu, X. Wang, D. Feng, and T. Q. S. Quek, “Understand-
ing age of information in large-scale wireless networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 5, pp. 3196–3210, May 2021.


