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Abstract. Cryptographic proof systems have a plethora of applications:
from building other cryptographic tools (e.g., malicious security for MPC
protocols) to concrete settings such as private transactions or rollups. In
several settings it is important for proof systems to be non-malleable: an
adversary should not to be able to modify a proof they have observed
into another for a statement for which they do not know the witness.

Proof systems that have been deployed in practice should arguably satisfy
this notion: it is crucial in settings such as transaction systems and in
order to securely compose proofs with other cryptographic protocols. As
a consequence, results on non-malleability should keep up with designs
of proofs being deployed.

Recently, Arun et al. proposed Jolt (Eurocrypt 2024), arguably the �rst
e�cient proof system whose architecture is based on the lookup singu-

larity approach (Barry Whitehat, 2022). This approach consists in rep-
resenting a general computation as a series of table lookups. The �nal
result is a SNARK for a Virtual Machine execution (or SNARK VM).
Both SNARK VMs and lookup-singularity SNARKs are architectures
with enormous potential and will probably be adopted more and more
in the next years (and they already are).

As of today, however, there is no literature regarding the non-malleability
of SNARK VMs. The goal of this work is to �ll this gap by providing
both concrete non-malleability results and a set of technical tools for
a more general study of SNARK VMs security (as well as �modular�
SNARKs in general). As a concrete result, we study the non-malleability
of (an idealized version of) Jolt and its fundamental building block, the
lookup argument Lasso. While connecting our new result on the non-
malleability of Lasso to that of Jolt, we develop a set of tools that enable
the composition of non-malleable SNARKs. We believe this toolbox to
be valuable in its own right.

1 Introduction

A zero-knowledge proof (ZKP) is a privacy-enhancing cryptographic tool that
allows to prove that a statement is true while preserving con�dentiality of se-
cret information [29]. A special class of ZKPs are the zkSNARKS [37] that are
non-interactive, short, and e�ciently veri�able, which make them a critically
important tool in a wide range of applications.
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SNARKs for VMs and the Lookup-Singularity A popular approach to SNARKs
is that of SNARKs for Virtual Machines (or SNARK VMs3), which at their
heart consist of proving the execution of a computer program�expressed in a
predetermined instruction set�over some CPU abstraction. This design has a
number of attractive features: it makes available all the existing optimizing com-
pilers for pre-existing instruction sets; it o�ers an excellent developer experience
making SNARKs usable by anyone able to write a computer program [2]. Many
SNARKs that are currently being deployed in practice follow this design pat-
tern. Examples include the Cairo-VM [28], the RISC Zero project [50], Scroll's
Ceno [35], Polygon Miden [34] and many others. Among these schemes, a notable
example is Jolt [2], a SNARK for VMs that is based on the lookup-singularity ap-
proach [47], which consists in reducing execution of opcodes in a VM to a series
of table lookups. This approach has huge potential for adoption being simple,
easy to extend and to audit. It is also leads to extremely fast provers.

Strong Security Properties in zkSNARKs Most of the proposed constructions
for zkSNARKs usually provide security for what we may consider bare mini-
mum security properties, e.g., zero-knowledge and knowledge-soundness. How-
ever, when deployed in larger protocol it is important for cryptographic proof
systems to satisfy stronger properties. This includes simulation extractability (or
SIM-EXT) introduced by De Santis et al. [18], that requires that the knowledge
extractor succeeds even when the malicious prover can request simulated proofs
for arbitrary statements. This security notion implies non-malleability, where
an accepted proof cannot be successfully tinkered with (mauled) into a di�er-
ent one without knowing the witness. This requirement is crucial for protocol
composition in general [14] and to prevent basic types of attacks on transaction
blockchains (e.g. double spending).

A recent line of works [17,20,21,25,26,32] has shown simulation extractability
of several zkSNARKs like Bulletproofs [9], Spartan [41], Sonic [36], PLONK [24],
Marlin [16], Lunar [10] and Basilisk [38]. However, none of these results cover
the case of zkVMs (we expand on the technical gap between these works and
zkVMs in Section 1.4). Since zkVMs are behind the design of deployed systems
with non-malleability requirements, this remains an urgent open problem.

1.1 This Work: Concrete Results & General Tools

Our general goal is to make progress on the problem above. The approach we
take in this work is:

3 A note on terminology: in this paper we will not use the phrase �zk� unless we are
talking about zero-knowledge. In particular: we use the phrase SNARK for VM or
simply SNARK VM to mean �a succinct, scalable argument of knowledge for a VM
architecture (which might or might not be zero-knowledge)�; we will apply the phrase
zkVM only to denote the more speci�c notion of a �SNARK VM that also satis�es
zero-knowledge� (i.e., that has hiding properties). Notice that we are diverging from
a common usage which calls �zkVM� a SNARK VM without zero-knowledge features
(or denotes by �zero-knowledge� a succinct SNARK).
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(i) to analyze the simulation extractability of a concrete, representative zkVM
design to use as a case study.

(ii) to provide, at the same time, a set of methodological tools for the study of the
simulation extractability of zkVMs in general�that is, beyond our speci�c
choice of zkVM construction in item (i). In fact, as we elaborate on below,
we will provide a set of technical results useful for an even broader family of
SNARK constructions, namely Lego-ish SNARKs (which we de�ne below).

(i) SIM-EXT of Jolt We will choose as a case study a design loosely based
on Jolt, a lookup-singularity SNARK VM for the RISC-V instruction set, at
the heart of which is Lasso, an argument for lookups with attractive e�ciency
features. This makes Jolt/Lasso a likely adoption in di�erent settings in the near
future. However, besides their e�ciency, Jolt/Lasso constitute a natural choice
since they together provide the �rst example of lookup-singularity SNARK VM
having been concretely described and implemented. Finally, and crucially, Jolt [2]
and Lasso [43], might be the most formal treatment of SNARKs for VMs in the
literature at the present moment. This is important for us since otherwise we
would not be able to carry out the type of formal analysis required by simula-
tion extractability. To be more precise, the concrete design we will consider will
not be exactly identical to that sketched in [2]. First o�, the original descrip-
tion of Jolt and Lasso is not zero-knowledge. Since the framework of simulation
extractability presupposes zero-knowledge, we have to naturally start from a
zero-knowledge version of Lasso/Jolt. Second, for sake of generality and simplic-
ity, we will abstract out some parts of the Jolt design. At the high-level, Jolt runs
a VM dividing it into three parts4 each proven by a di�erent �sub-SNARKs�: in-
struction execution (via Lasso), instruction-fetching and memory-checking (both
proven via Spartan-like proof systems [41]). In our concrete result (Corollary 1)
we assume that instruction execution applies (our variant of) Lasso, while we
abstract out the remaining sub-SNARK specifying what properties they need to
satisfy in order for the �nal zkVM to be simulation-extractable.

(ii) zkVMs through the lens of modularity Our discussion above hints
to how it may be possible to approach the simulation extractability of zkVMs
in general: since SNARKs for VMs lend themselves to modular designs, this
is potentially something we can leverage5. Thus, on our way towards our goal
in item (ii) above, we tackle a develop a more broadly interesting problem: the
non-malleability of modular (or Lego-ish) SNARKs [12], i.e. SNARKs that are

4 We stress that in the Jolt paper, this distinction is sketched and the reader can think
of this paragraph as our own (intentionally fuzzy) paraphrase. A formal treatment
of di�erent components of a VM is highly dependent on the VM at hand. We will
attempt a general formal treatment in Section 6.2.

5 This modularity is not a mere technical artifact of the work in Jolt [2]. It has been
used explicitly in other works [35] and it is a natural design approach: di�erent
sub-components of VMs will have distinct features where sub-SNARKs of di�erent
designs will shine. Arguably, a modular design is already explicitly at the core of
�lookup-singularity� SNARKs since their de�ning principle is to use a specialized
SNARK (a lookup argument) for a speci�c component (instruction execution).
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obtained from the composition of several �sub-SNARKs�, each possibly of a dif-
ferent design. In particular, we address this question:

What can we say about the non-malleability of a modular SNARK knowing that
(some of) its building blocks are non-malleable?

Modular SNARKs have been identi�ed as worth of a systematic investigation
of their own because of their simplicity and e�ciency [1,6,10,12]; general treat-
ment of open problems in SNARKs designs�e�cient distributed proving�have
recently bene�ted from an explicit modular approach [39]. While we do have a
general theoretical framework to reason about knowledge-soundness and zero-
knowledge of Lego-ish SNARKs [12], to the best of our knowledge, no work prior
to ours systematically studied the simulation extractability of modular SNARKs.

Challenges of Lego-ish SIM-EXT. We remark that composing non-malleable ob-
jects while maintaining their non-malleability does not come for free. For in-
stance, as demonstrated in [20], there are copy-paste attacks when composing
di�erent Interactive Oracle Proofs (IOPs) (see Ben-Sasson, Chiesa and Spooner
[5]) into one simulation-extractable zkSNARK. These attacks consider composi-
tions of schemes for arbitrary relations without any shared knowledge. Brie�y,
our framework shows how to circumvent these attacks by �gluing" together the
witnesses, either by considering a shared witness or by considering witnesses
that are somehow logically linked (we will elaborate more in the next section
and make these intuitions precise in our compilers in Section 5). To prove a
statement composed of di�erent relations, we will have to identify speci�c con-
straints for both the relations themselves as well as the sub-SNARKs used to
prove each individual relation.

1.2 Our Results

A. SIM-EXT of Joltish Our main result consists in proving that a lookup-
based singularity zkVM, which we call Joltish, is simulation-extractable.

Theorem (informal) Under the hardness of DLOG there exists a simulation-
extractable lookup-singularity zkVM.

Our Joltish is based on our simulation-extractable lookup argument zkLasso,
which makes Joltish a lookup-singularity zkVM. In the technical overview in
Section 1.3 we give more details on how we obtain Joltish.

B. A toolbox for SIM-EXT from commit-and-prove zkSNARKs A
commit-and-prove argument of knowledge is an argument of knowledge where
the witness is committed using a (non-interactive) commitment scheme. The
work LegoSNARK of Campanelli, Fiore, and Querol [12] shows that commit-
and-prove SNARKs are very useful for composing di�erent SNARKs together in
meaningful ways.
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We show two compositions derived from commit-and-prove schemes that are
simulation extractable. In particular, we provide two natural ways to compose
schemes.

The �rst composition we consider is the conjunction of two relations. At
�rst glance, given an argument for a relation RF and an argument for a rela-
tion RG, we can realize an argument for "their conjunction" by running the
two arguments independently. This composition is knowledge-sound; however, it
is not simulation-extractable, as we can mount a copy-paste attack where the
attacker knows a witness for the instance in RF and uses a simulated proof
for RG (see [20] for more details). We avoid this attack by considering a con-
junction of relations where the committed witness is shared between the two
instances. Given this, we show that if the two arguments (for RF and RG) are
simulation-extractable, then their composition is also simulation-extractable.

The second composition is what we call function composition. Consider a
SNARK for correct function execution, namely, a SNARK that proves F (x,w) =
y for a function F , with public input x, private input w, and output y. Consider
two commit-and-prove schemes: one that proves F (xf ,wf ) = yf , and a second
that proves G(xg,wg) = yg and let us call them ΠF and ΠG respectively. Now
we can compose them together to prove G ◦F (xf ,xg,wf ) := G(xg, F (xf ,wf )).
The idea is to generate the �rst and second instances so that they share the
commitment to yf , thus linking the private output of F with the private input
of G. Also in this case, we can show that if the two commit-and-prove schemes
are simulation-extractable, then their composition is also simulation-extractable.

These two results are rather straightforward and rely only on the fact that
when the two schemes share knowledge, one cannot mount the trivial copy-paste
attack described above.

We can actually improve the conditions of the results by assuming an extra
property from one of the relations, which we refer formally as e�cient witness
computability (WIT-SAMP). Loosely speaking, this property states that we can
�nd easily valid witnesses for the (non-committed part of the) instances. For ex-
ample, in the functional composition, if the prover has the freedom to sample the
commitment to yf = wg, then the zero-knowledge simulator for the composed
scheme could sample a dummy input (xf ,0) for F , run the honest prover for
ΠF , and simulate the proof for ΠG. Since the simulator for the composed scheme
does not use the simulator for ΠF , we can (1) reduce the simulation extractabil-
ity of the composed scheme to the knowledge soundness of ΠF , and (2) reduce
the zero-knowledge of the composed scheme to the witness indistinguishability
of ΠF . There is a caveat in this composition: ΠF could be re-randomizable,
allowing the adversary to create a forgery for an instance where it has already
seen a simulated proof (i.e., we can only prove weak simulation extractability
for the composed scheme). However, we can address this issue, and prove full
simulation extractability for the composed scheme, by assuming that ΠG is a
signature-of-knowledge (SoK) and by signing the proof for ΠF using ΠG. We
summarize our results on generic composition of commit-and-prove SNARKs in
the following informal version of Theorem 3.
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Theorem (informal) There exists a black-box transformation from two SIM-
EXT commit-and-prove SNARK ΠF , ΠG to a SIM-EXT conjunction (resp. com-
position) proof system ΠF∧G (resp. ΠG◦F ). Moreover, there exists a black-box
transformation to a SIM-EXT conjunction proof system ΠF∧G (resp. for func-
tions composition ΠG◦F ) from two commit-and-prove SNARKs ΠF , ΠG where
(1) ΠF is KSND and (statistically) WI and RF satis�es WIT-SAMP and (2)
ΠG is a signature of knowledge.

Recipes for parallelizable SIM-EXT SNARKs A problem when using signature of
knowledge is that we can call ΠG only after having computed the proof for ΠF ,
which forces sequentiality in the proof generation. To mitigate such a bottleneck,
in [11] we describe a notion of signature of knowledge where, roughly speaking,
the message can be fed at the very end of the prover's computations. We refer to
this as a signature of knowledge with delayed message. We give two instantiations
of SoK with delayed message. We show (1) that the classical Fiat-Shamir ap-
proach for signature of knowledge can be adapted to the delayed message setting
extending the results on Fiat-Shamir-based simulation-extractable argument [17]
and (2) we give a black-box construction of signature-of-knowledge with delayed
message from (classical) signature-of-knowledge and one-time signatures. For
space reasons, we elaborate on this only in [11].

C. Other contributions At the technical basis of our results on the non-
malleable zkVMs lies a series of contributions that we are going to present
in more detail in the next section. First, we give a zero-knowledge version of
Lasso and provide the analysis of its simulation extractability. Second, we re-
visit the technical results of [17], weakening their requirements and achieving
tighter bounds for Spartan and Bulletproofs. Finally, we give a proof of the
simulation extractability of HyraxPC, which may be of independent interest.

1.3 Technical Overview

SIM-EXT of zkLasso The technical core of our contribution is providing a
simulation-extractable indexed lookup argument derived from Lasso. We take
the work of [17] as our starting point. They prove the simulation extractabil-
ity of (zero-knowledge variants of) schemes such as Bulletproofs and Spartan.
Their work follows the results of simulation extractability for Fiat-Shamir based
arguments inspired by the work of Faust et al. [22] and further investigated in
[25,26,32]. Their approach works in three steps which together provide simu-
lation extractability: (i) have ZK version of the protocols;6 (ii) prove that all
the inner (sub)protocols are computational7 special-sound, i.e., it is possible to
extract a witness from a su�cient number of valid proofs and whose transcript
possibly satis�es some additional predicate; (iii) proving that for a speci�c k

6 The usual notion of simulation extractability makes sense for ZK protocols only.
7 If the extractor fails to extract a witness, then we argue that the malicious prover
is able to break some computationally-hard problem.
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(where k is a round index) the protocol satis�es two properties referred as k-
ZK and k-unique response (k-UR for short). k-ZK restricts the ZK simulator
by allowing it to reprogram the random oracle only at the k-th round. k-UR
states that the malicious prover's responses are uniquely determined after the
k-th round.

To achieve step (i), Dao and Grubbs need to replace all the occurrences of
the inner protocols, such as the sum-check-based reductions, with their blinded
versions. For example, if we consider the classical sum-check protocol which
eventually evaluates on a random point x de�ned by the veri�er's challenges
a committed polynomial f , the blinded counterpart would instead commit to
f(x), for example using Pedersen, and then show in zero-knowledge that such
a commitment opens to the evaluation of f on x. Thus the scheme blinds the
value y which might leak information about the witness.

While several of the building blocks of Lasso are common to those of Spartan,
and we naturally use some of the same �low-level� technical tools, our analysis
diverges substantially from that of [17] and requires to develop some more ma-
chinery.

More in detail, we follow [17] and substitute the sub-protocols with their
blinded versions. To do so, we need to de�ne a blinded version of the grand
product argument due to [44] and prove it computational special-sound.

Once done that, we need a stronger analysis of the computational special
soundness of the hash-based multi-set �ngerprinting used in Spartan. Speci�-
cally, Lasso and Spartan use Spark as their underlying (sparse) polynomial com-
mitment scheme; however, while in Spartan some of the sparse polynomials are
committed honestly by the veri�er, in Lasso these polynomials are committed by
the untrusted prover. Crucially, in our case these sparse polynomials encode the
matrix of the lookup indexes, i.e., the witness we wish to extract from the proof
of the adversary, and this discrepancy introduces non-trivial di�erences between
our work and [17] when analyzing the computational special soundness.

A second component of both Lasso and Spartan is (yet another) polynomial
commitment called HyraxPC [45]. We improve the analysis for HyraxPC. Specif-
ically, digging into the technical details of [17], to prove computational special
soundness of Hyrax, we need �rst to de�ne a tree of transcripts where the edges
of each node satisfy a set of constraints that Dao and Grubbs formalize through
a set of predicates. We show that we need to introduce one more predicate to
�x the proof of computational special soundness of HyraxPC. Moreover, we ad-
ditionally prove that HyraxPC achieves k-ZK and k-UR, and thus, as additional
result, we can prove that this polynomial commitment is simulation-extractable.

By revisiting the techniques of [17], we also introduce some improvements
that directly apply to Spartan and Bulletproofs, as well as to Lasso. First, we
design a (slightly) tighter blinded sum-check protocol that only relies on the
simple distinctness predicate, and for which it is su�cient to use the tree-builder
of Attema et al. [3]. Second, and more importantly, we achieve a tighter bound
in our extractor (cf. [11]) avoiding a loss quadratic in the number of the prover's
queries and by solving a problem left open in the previous work.
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From zkLasso to Joltish We provide a model for arguments of knowledge for
virtual machine execution. While similar formalizations exist in the literature
[4,8,19,51], our framework focuses on abstracting zkVMs based on the lookup
singularity. We isolate the logical components in the VM that lookup argument
can handle from the rest and demonstrate that our compiler for conjunction, de-
scribed in Section 5, is su�cient to achieve simulation-extractable zkVMs. More
in detail, we adopt an indirect way to achieve such a formalization: we de�ne a
commit-and-prove relation R⋆ as the series of logical and memory constraints
and checks to perform to the trace of the program execution which, together with
the correct instructions execution handled by the lookup argument, prove cor-
rect program execution. This abstraction results in a conjunction of a scheme for
R⋆ and a lookup argument. Thus we can use our general non-malleable composi-
tion results (see the informal theorem at page 5 and the associated Theorem 3).
In particular, we can leverage on a simulation-extractable lookup argument to
weaken the necessary security properties of the scheme for R⋆. To do so, we show
that R⋆ is WIT-SAMP, by showing how to derive a valid trace of a program
execution that uses an invalid instruction set. As a consequence, the scheme
for R⋆ needs only to be WI and knowledge sound, which open the doors to
many instantiations. Next, we demonstrate how to integrate our zkLasso into
the framework, resulting in a broad class of zkVMs that, as we argue, includes
Joltish, our zero-knowledge variant of Jolt [2]. This task is easier since we can use
the knowledge-soundness results for the scheme(s) for R⋆ of [2]. We emphasize
that our composition theorem for zkVMs, Theorem 4, is general and allows for
the replacement of components in Joltish with di�erent SNARKs, which is why
we refer to a large class of zkVMs.

1.4 Why new results for SNARK VMs?

One way to achieve zero-knowledge is to compose Jolt/Lasso with another zk-
SNARK, i.e., we could use a zkSNARK to prove the knowledge of a valid
Jolt/Lasso proof (e.g., the recent work Testudo [13] composes Spartan with
Groth16 [30], and some folding-based schemes such as Nova [33] follow this ap-
proach). If this zkSNARK is also simulation-extractable, then it seems we get
the maximum result with the minimum e�ort. Despite viable, this approach of
�adding� ZK by composition has some theoretical and practical drawbacks. In
particular, it would require representing the Jolt veri�er in a format like R1CS
or Plonkish, which may be cumbersome and partially limit the bene�ts of the
improved auditability depicted above. Furthermore, this arithmetization proce-
dure incurs in a direct random oracle instantiation that hence becomes public
to the adversary, which may lead to insecure schemes [15].

1.5 Related Work

Simulation extractability was �rst introduced by De Santis et al. [18], expanding
the de�nition of simulation soundness of Sahai [40]. For zkSNARKs, this notion
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was studied by Groth and Maller [31] who proposed as an interesting applica-
tion the succinct signatures of knowledge, or Snarky signatures. Recently, we
had several results [17,20,21,25,26,32] about the simulation extractability of no-
table zkSNARKs, such as Bulletproofs [9], Spartan [41], Sonic [36], PLONK [24],
Marlin [16], Lunar [10] and Basilisk [38].

We mention some notable works related to SNARKs for virtual machine
execution. Beginning with the pioneering work of [4], which required an expensive
trusted setup, the �eld has advanced signi�cantly. Subsequent works, such as
[8,51], showed schemes with transparent setups and improved e�ciency. More
recent developments include Cairo-VM [28] and Ceno [35].

A technical tool we leverage is an e�cient tree-builder to prove the knowledge
soundness of computational special sound arguments compiled using the Fiat-
Shamir transform, that was studied in the work of [17] in the wake of the results
of [25,26].

1.6 Future Work

We foresee applications for our toolbox results beyond zkVMs. For example it
could be used to provide alternative proofs for the SIM-EXT of Spartan and
Bulletproofs potentially substantially simplifying the approach in [17] and our
own approach for zkLasso with it. Spartan in particular is a good candidate
for this given its several moving parts which can be seen as separate block (the
Hyrax polynomial commitment, grand product arguments, etc.).

2 Preliminaries

A function f is negligible in λ (we write f ∈ negl(λ)) if it approaches zero faster
than the reciprocal of any polynomial. For an integer n ≥ 1, we use [n] to
denote the set {1, 2, . . . , n}. We consider both strict polynomial time (PPT) and
expected polynomial time (EPT) algorithms.

Let GroupGen be some PPT algorithm than on input 1λ, returns a description
ppG of a group G. Every element in G can be written as gx for some generator
g ∈ G and exponent x ∈ F, but given gx, it is in general hard to compute x
(discrete logarithm problem).

Lemma 1 (Discrete Log Reduction, [27]). For all EPT adversary A, there
exists an EPT adversary B, nearly as e�cient as A, such that:

Pr[
∏n

i=1 g
ai
i = 1 ∧ (a1, . . . , an) ̸= 0 | (a1, . . . , an)← A(g) ] ≤ AdvDL

G (B) + 1

|F|

where g := (g, g1, . . . , gn) are random generators of G and AdvDL
G (B) :=

Pr[gx = h |h←$ G;x← B(g, h) ] is the advantage of B.
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Multilinear extensions For any function f : {0, 1}ℓ → F, there exists a unique
ℓ-variate multilinear polynomial f̃ such that f̃(x) = f(x) for all x ∈ {0, 1}ℓ. We

refer to f̃ as the multilinear extension of f . For a vector a ∈ Fn, where n is a
power of 2, we similarly de�ne the multilinear extension ã : Flogn → F as follows:
we interpret a in the natural way as listing all n evaluations of a function with
domain {0, 1}logn, and de�ne ã to be the multilinear extension of this function.

Commitment schemes A commitment scheme with message space M is
a tuple of algorithms CS = (Setup,Commit,VerCom) that works as follows:
Setup(ppG) → ck takes as input group parameters ppG and outputs a com-
mitment key ck. Commit(ck,m) → (c, ρ) takes as input the commitment key
ck and a message m ∈ M, and outputs a commitment c and an opening o
VerCom(ck, c,m, ρ) → b takes as input the commitment key ck, a commitment
c, a message m ∈M and an opening o, and it accepts (b = 1) or rejects (b = 0).
Besides correctness, a commitment scheme satis�es two more properties.
(Computational) Binding: no PPT adversary can �nd, unless with negligible
probability, a commitment c, two messages m ̸= m′ and two openings o, o′:

VerCom(ck, c,m, ρ) = VerCom(ck, c,m′, ρ′) = 1

(Statistical) Hiding: ∀m,m′, ∀ck: {c : (c, ρ)← Commit(ck,m)} is indistin-
guishable from {c′ : (c′, o′)← Commit(ck,m′)}

Interactive Arguments An (NP-)relation R is a set of tuples (pp,x,w) de-
cided by a PT algorithm. Here pp are system-wide parameters, x is the public
input (or instance), and w is the private input (or witness). We interchangeably
represent a relation R either as an algorithm with boolean output or as a set,
thus R(pp,x,w) ⇐⇒ (pp,x,w) ∈ R. Moreover, when clear from the context,
we omit the parameters and simply write R(x,w).

A public-coin interactive argument for a relation R is a tuple of PPT algo-
rithms Π := (Setup,P,V) where:

Setup(1λ,ppG)→ pp: outputs parameters pp given global parameters ppG
⟨P(w),V⟩(pp,x)→ {0, 1}: a public-coin interactive protocol whereby the prover
P, holding a witnessw, interacts with the veri�er V on common input (pp,x)
to convince V that (pp,x,w) ∈ R. At the i-th round, V samples its message
uniformly at random from the challenge space Ci. At the end, V outputs a
bit to accept or reject.

We consider interactive arguments that satisfy the standard propeties complete-
ness, knowledge soundness and honest-veri�er zero-knowledge.

Commit-and-Prove Arguments Roughly speaking, a commit-and-prove argu-
ment of knowledge is an argument of knowledge whose witness is committed
using a commitment scheme. We adapt a simpler de�nition of commit-and-prove
SNARK than the one in [12]. We assume that there is only a single commitment
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Game KSP∗
0,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H
(pp)

b← VH
(pp,x, π)

return b

Game KSE,P∗

1,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H
(pp)

b← VH
(pp,x, π)

w← EP
∗
(pp,x, π)

return b ∧(pp,x,w) ∈ R

Fig. 1. Knowledge soundness security games. The extractor E is given black-box access
to P∗, it simulates H and and can rewind P∗ to any point.

(rather than an arbitrary number) and that this opens to the entirety of the
witness (instead of allowing for uncommitted portions as in [12]).

De�nition 1. Given a relation R and a commitment scheme CS, the commit-
and-prove argument for the relation R with commitment scheme CS is an argu-
ment for the relation R̂ such that R̂((pp, ck), (c, x), (w, ρ)) = 1 if and only if c
is commitment to w using CS with commitment key ck and opening material ρ,
namely VerCom(ck, c, w, ρ), and R(x,w).

Indexed Lookup Argument A lookup argument allows an untrusted prover
to commit to a vector a ∈ Fm and prove that all entries of a reside in some
predetermined table T ∈ Fn. In an indexed lookup argument, in addition to
a commitment to a, the veri�er is handed a commitment to a second vector
b ∈ Fm. The prover claims that ai = T [bi] for all i ∈ [m]. We refer to a as the
vector of looked-up values, and b as the vector of indices. We can de�ne the
commit-and-prove relation:

Rlookup(pp = (T, n,m),w = (a, b)) ⇐⇒ ∀i ∈ [m] : T [bi] = ai.

Non-Interactive Arguments in the ROM A non-interactive argument (in
the ROM) for a relationR is a tuple of PPT algorithmsΠ := (Setup,P,V) where:
Setup(ppG) → pp generates the public parameters PH(pp,x,w) → π generates
a proof π VH(pp,x, π) → b checks if a proof is valid or not and outputs a bit
b ∈ {0, 1} and H is a random oracle.8 We consider non-interactive arguments
that, besides the standard completeness, satisfy the following two properties.

(Knowledge-Soundness) There exists an EPT extractor E such that for any
stateful PPT adversary P∗, the following probability is negligible in λ:

AdvKS
ΠFS,R(E ,P

∗) :=
∣∣∣Pr[KSP∗

0,ΠFS,R(λ)
]
− Pr

[
KSE,P

∗

1,ΠFS,R(λ)
]∣∣∣

8 For public-coin (2r + 1)-message interactive arguments with challenge spaces
C1, . . . , Cr, we actually need r independent random oracles Hi : {0, 1}∗ → Ci with
i ∈ [r]. For simplicity, we denote these by a single random oracle H, and it will be
clear from context which random oracle is being used in a given round.
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and the knowledge soundness games are de�ned in Fig. 1.
(Zero-Knowledge) There exists a PPT simulator S such that for pp ←$

Setup(ppG) and any unbounded adversary A:9

Pr
[
AH(·),P(pp,·,·)(1λ) = 1

]
≈s Pr

[
AH(·),SRePro(pp,·,·)(1λ) = 1

]
where RePro is an oracle that on input a pair (a, b) reprograms H(a) := b.

We notice that zero-knowledge is de�ned in a model where the random oracle
is explicitly-programmable [46] by the simulator: in particular, S can reprogram
the random oracle H (using RePro).

To turn public-coin interactive arguments into their non-interactive versions,
we can employ the Fiat-Shamir (FS) transform in a setting where P and V have
black-box access to a random oracle H. We use ΠFS to denote the non-interactive
argument derived by applying the FS transform to the argument Π.

Tree of Transcripts An (n1, . . . , nr)-tree of transcripts for a (2r+1)-message
public-coin protocol is a set of

∏
i∈[r] ni transcripts arranged in the following

tree structure:

� The nodes in this tree correspond to the prover's messages and the edges
correspond to the veri�er's challenges.

� Every node at depth i has precisely ni children.
� Every transcript corresponds to exactly one path from the root to a leaf.

This notion, introduced by [3], was later generalized by [17] to support custom
predicates for the veri�er challenges. In particular, in the generalization of [17],
the edges (i.e., the veri�er's challenges) of each node need to be distinct and
they also need to jointly satisfy a predicate ϕi where i is the depth of their
corresponding node. In this work, we consider only the following predicates:

� ϕ± that on input n �eld elements (c1, . . . , cn) returns 1 if and only if for all
i ∈ [n], there is not j ̸= i such that ci + cj = 0. We use the shortcut n± to
indicate a node supporting this predicate.

� ϕ:k that on input n challenges (c1, . . . , cn) ∈ Fn·m returns 1 if and only if
all the inputs have di�erent pre�xes of length k. We use the shortcut n:k to
indicate a node supporting this predicate.

We say that T is accepting with respect to an input-transcript pair (x, tr) if (x, tr)
corresponds to the left-most path of T. We de�ne a predicate IsAccepting((ϕ,n),
pp,x, (π, )T) to check whether T is an (ϕ,n)-tree of accepting transcripts for pp
and x, and optionally π. We refer the reader to [11] for the formal de�nition.

We now de�ne computational special soundness that essentially guarantees
that there exists a tree-extractor algorithm T E that, given as input a tree of
accepting transcripts produced by an e�cient adversary, outputs a valid witness
with high probability.

9 Zero-knowledge is a security property that is only guaranteed for valid statements in
the language, hence A never queries P/S with a pair (x,w) such that (pp,x,w) ̸∈ R.
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Game SST E,A
Π,R,(ϕ,n)(λ)

pp←$ Setup(1λ, ppG)

(x,T)← A(pp)

w← T E(pp,x,T)
return (pp,x,w) ̸∈ R ∧ IsAccepting((ϕ,n), pp,x,T)

Fig. 2. Computational Special Soundness security game.

Game SES,P∗

0,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H,S
(pp)

b← VH′
FS (pp,x, π)

return b ∧ (x, π) ̸∈ QS

Game SEE,S,P∗

1,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H,S
(pp)

b← VH′
FS (pp,x, π)

w← EP
∗
(pp,x, π)

return b ∧ (x, π) ̸∈ QS ∧(pp,x,w) ∈ R

Fig. 3. Simulation extractability security games. S returns a proof π upon an input x
(and may reprogram the random oracle), while QS records all the pairs (x, π) queried
by P∗. H′ denotes the modi�ed RO after all the proof simulation queries. E is given
black-box access to P∗.

De�nition 2 (Computational Special Soundness). Let Π be a (2r + 1)-
message public-coin interactive argument for a relation R with challenge spaces
C1, . . . , Cr. For any n := (n1, . . . , nr) ∈ Nr and any ϕ := (ϕ1, . . . , ϕr) with
ϕi : Cni

i → {0, 1}, we say Π is (ϕ,n)-computational special sound if there exists
a PPT tree-extraction algorithm T E such that for every EPT adversary A, the
following probability is negligible in λ:

AdvSS
Π,R,(ϕ,n)(T E ,A) := Pr

[
SST E,AΠ,R,(ϕ,n)(λ)

]
and the special soundness game is de�ned in Fig. 2

Attema et al. prove the existence of an e�cient tree-builder algorithm that
can generate n-trees of accepting transcripts having oracle access to a (mali-
cious) prover P∗. This result was later generalized by [17] to support partition
predicates; in [11] we show how to adapt their result to achieve tighter bounds
for the predicates needed to instantiate Spartan [41] and Bulletproofs [9].

Simulation extractability Simulation extractability is a property that re-
quires that extractability holds even when the malicious prover is given access
to simulated proofs, possibly for false statements.

De�nition 3 (Simulation extractability). Let Π := (Setup,P,V) be a public
coin zero-knowledge interactive argument for relation R with associated NIZK
ΠFS := (Setup,PFS,VFS). We say ΠFS is simulation extractable (with respect
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to a simulator S) if there exists an EPT extractor E such that for every PPT
adversary P∗, the following probability is negligible in λ:

AdvSIM−EXT
ΠFS,R (S, E ,P∗) :=

∣∣∣Pr[SES,P∗

0,ΠFS
(λ)

]
− Pr

[
SEE,S,P

∗

1,ΠFS
(λ)

]∣∣∣
and the security games are de�ned in Fig. 3.

Hereafter, we introduce two more properties, namely k-zero-knowledge and
k-unique response. Roughly speaking, the former notion captures zero-knowledge
when the simulator is only allowed to reprogram the random oracle in the k-th
round, while the latter states that the malicious prover's responses are uniquely
determined after the k-th round. These two properties together with knowledge-
soundness imply simulation extractability [25,17].

De�nition 4 (k-Zero-Knowledge, [17]). Let Π := (Setup,P,V) be a (2r +
1)-message public-coin interactive. We say that ΠFS satis�es (perfect) k-zero-
knowledge, for some k ∈ [r], if there exists a zero-knowledge simulator SFS,k
that only needs to program the random oracle in round k, and whose output is
identically distributed to that of honestly generated proofs.

De�nition 5 (k-Unique Response, [17]). Let Π := (Setup,P,V) be a (2r +
1)-message public-coin interactive argument. We say that ΠFS satis�es k-unique
response, for some k ∈ [r], if for every PPT adversary A:

Pr

b ∧ b′ ∧ π ̸= π′ ∧ π|k = π′|k

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ,ppG)

(x, π, π′, c)← AH(pp)

b← VH[(pp,x,π|k)→c]
FS (pp,x, π)

b′ ← VH[(pp,x,π′|k)→c]
FS (pp,x, π′)

 ∈ negl(λ)

where H[x→ c] denotes the RO when the input x is reprogrammed to output c.

Theorem 1 ([17]). Let Π be a (2r + 1)-message public-coin interactive ar-
gument. If ΠFS is knowledge-sound and there is k ∈ [r] such that ΠFS satis�es
k-zero-knowledge and k-unique response, then ΠFS is simulation extractable.

Commitment Instantiations We mostly rely on the Pedersen commitment
scheme with message space Fn, for some n ∈ N, that works as follows:

Setup(ppG) outputs n+ 1 random generators g1, . . . , gn, h of G.
Commit(ck,a;ω) parses ck as (g1, . . . , gn, h) and outputs the commitment C :=∏

i∈[n] g
ai
i hω and the opening ω.

VerCom(ck, C,a, o) outputs 1 i� Commit(ck,a; o) = C.

We use the shortcut ga to represent the multi-exponentiation
∏

i∈[n] g
ai
i .

In this work, we make use of polynomial commitments, namely, commitment
schemes with message space F[X1, . . . , Xµ] for some µ ∈ N. In particular, we
rely on the HyraxPC polynomial commitment scheme [45].
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3 Simulation extractability of Hyrax

HyraxPC is a commitment scheme, equipped with a (µ+1)-rounds Eval protocol
for a µ-variate multilinear polynomial that has been proved (2µ/2, (4±)

µ/2, 2)
computational special sound in [17].10 The protocol Eval is a public coin inter-
active argument for the relation:

REval =

ck, (Cp, x, Cv), (p, ωp, v, ωv) :
Cp = Commit(ck, p;ωp),
Cv = Commit(ck, v;ωv),
p(x) = v ∧ p is multilinear,


In [17], the authors prove the computational special soundness of Eval under
the additional condition that the evaluation point x ∈ Fµ is sampled uniformly
at random. Although conceptually sound, their statement does not ful�ll the
formalism of De�nition 2. We �x this inconsistency of the notation of Dao and
Grubbs by, �rst, de�ning a di�erent relation:

ROpen = {ck, (C), (p, ω) : C = Commit(ck, p;ω) ∧ p is multilinear}

We then de�ne a protocol Open which, basically, runs Eval on a random challenge
x, and we prove computational special soundness for Open: crucially, in the proof
we can rewind the prover feeding di�erent challenges x.

By additionally proving that the Open protocol achieves µ-zero-knowledge
and µ-unique-response, we derive that HyraxPC is simulation-extractable. We
refer the reader to [11] for the proofs.

4 Simulation extractability of Lasso

In this section, we show how we can apply Theorem 1 to prove that a zero-
knowledge version of Lasso is simulation-extractable.

The starting point of Lasso is to model the lookup argument in a sparse way,
as it is done in schemes like Caulk [48] or Baloo [49]: given a commitment to a
table t ∈ Fn and a a commitment to a vector a ∈ Fm, the prover can prove to
know a sparse matrix M ∈ Fm×n such that (1) each row of M is a unit vector,
i.e., there are n−1 zeroes and one cell is equal to 1, and (2) M · t = a. This turns

out to be equivalent, up to negligible soundness error logm · |F|−1, to check that:∑
y∈{0,1}log n

M̃(r, y) · t̃(y) = ã(r) (1)

when r ∈ Flogm is chosen uniformly at random by the veri�er after the prover
has sent (a commitment to) M̃ . The core idea of Lasso is to use Surge, a gener-

alization of the Spark commitment scheme [41], to commit to M̃ and then prove

that Eq. (1) holds by evaluating M̃ in a point (r, rx) chosen by the veri�er. To
do that, the table t needs to be �decomposable� as we de�ne hereafter.11

10 Their proof has some technical �aw, but we show how to �x it.
11 In previous work, this is also referred to as Spark-only structure (SOS).
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De�nition 6 (Decomposable Table). A table t ∈ Fn is decomposable if
there is k ≥ 1 and α := kc tables t1, . . . , tα, each of size n1/c, as well as an α-

variate multilinear polynomial f̂ such that for every (r1, . . . , rc) ∈ ({0, 1}
1
c logn)c:

t[r1, . . . , rc] = f̂(t1[r1], . . . , tk[r1], tk+1[r2], . . . , t2k[r2], . . . , tα−k+1[r−c], . . . , tα[rc])

Let nz(i) denote the (unique) column in the i-th row of M that contains the
value 1. First, we observe that can rewrite the l.h.s. of Eq. (1) as:∑

k∈{0,1}log m

ẽq(k, r) · t[nz(i)] (2)

and if t is decomposable we can further rewrite Eq. (2) as:∑
k∈{0,1}log m

ẽq(k, r) · f̂(t1[nz1(i)], tk[nz1(i)], . . . , ta−k+1[nzc(i)], . . . , tα[nzc(i)])

for some polynomial f̂ , where nz1(i), . . .nzc(i) are the �chunks� in which nz(i)
has been decomposed.

For all j ∈ [c], let dimj : Flogm → F be equal to ñzj . Moreover, for all
i ∈ [α], let Ei : Flogm → F be the logm-variate multilinear polynomial that
interpolates all the m lookups into ti, namely ∀k ∈ {0, 1}logm, we have that
Ei(k) := ti[dimi(k)]. Given this, we can rewrite Eq. (1) simply as:∑

k∈{0,1}log m

ẽq(k, r) · f̂(E1(k), . . . , Eα(k)) = ã(r) (3)

In Lasso, the prover commits to M sending commitments to dim1, . . . ,dimc,
Ei, . . . , Eα and the �counter polynomials� for the i-th sub-table Ti, read_tsi and
final_tsi. Then, the prover and the veri�er engage in a sum-check protocol to
check that Eq. (3) holds.

Finally, the prover needs to convince the veri�er that the polynomials Ei are
actually encoding the values read from the (honest) memory ti: to do that, they
apply a memory checking procedure [7] that �nally results into a sum-check-
based grand products argument.

More in detail, let WS and RS be two sets accounting for the write and
read operations, respectively, and let S be the �nal state of the memory. Every
time a read operation (i.e., a lookup) is issued, a write operation is performed
too with the goal of updating the �counter� (i.e., the timestamp) associated with
that memory location. The goal of the prover is to convince the veri�er that the
invariant �every value that has been read must have been written� is maintained
at the end of the lookup process, i.e., WS = RS ∪ S.

Lasso is not zero-knowledge since a proof essentially leaks evaluations of M̃
in some random coins sent by the veri�er.
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Setup Phase. Let pp := (ppG, g, g1, . . . , gµ/2, h), where µ :=

max (deg(f̂), logm, 1
c
logN), deg(f̂) is the total degree of g and (g1, . . . , gµ/2) are

random generators of G. Let ppPedersen,1 := (ppG, g, h) be the parameters for Pedersen
with message space F; for ν > 1, let ppPedersen,ν := (ppG, g1, . . . , gν , h) be the parame-
ters for Pedersen with message space Fν . For ν ∈ N let ppHyraxPC,2ν := (ppG, g1, . . . , gν)
be the parameters for HyraxPC with message space F[X1, . . . , X2ν ].

Interaction Phase.

1. P sends to V HyraxPC commitments to 3α di�erent (logm)-variate multilinear
polynomials E1, . . . , Eα, dim1, . . . , dimα, read_ts1, . . . , read_tsα and α di�erent
( 1
c
logN)-variate multilinear polynomials final_ts1, . . . , final_tsα, where ∀i ∈ [α]:

Ei is purported to specify the values of each of the m reads into Ti, dimi is the
multilinear extension of nzi, while read_tsi and final_tsi are the �counter polyno-
mials� for the i-th sub-table Ti.

2. V picks a random r ∈ Flogm and sends it to P.
3. P sends a Pedersen commitment Cv to the value v supposedly equal to ã(r).
4. P and V engage in a sum-check to check that v =

∑
k∈{0,1}log m u(k), where u(X) :=

ẽq(r,X) · f̂(E1(X), . . . , Eα(X)): after logm rounds of interaction, the prover sends
a Pedersen commitment Cex to the value ex supposedly equal to u(rz)

5. P sends the Pedersen commitments Cv1 , . . . , Cvα to values v1, . . . , vα, supposedly
equal to E1(rz), . . . , Eα(rz)

6. P and V engage in GenPfg,α to check that f̂(v1, . . . , vα) = exẽq(r, rz)
−1

7. The veri�er checks using HyraxPC.Eval that Ei(rz) = vi for all i ∈ [α].
8. V picks two random �eld elements γ, τ .
9. For i = 1 to α:

� P sends to V the Pedersen commitment Chi to the value hi supposedly equal
to Hγ,τ (WSi) and Hγ,τ (RSi) ·Hγ,τ (Si).

� P and V engage in GrandProd to check that Hτ,γ(WSi) = hi and Hτ,γ(RSi) ·
Hτ,γ(S) = hi.

10. P and V engage in HyraxPC.Eval to check that v = ã(r)

Fig. 4. The indexed lookup argument zkLasso.

4.1 Zero-Knowledge Lasso

We de�ne the main protocol in Fig. 4. It uses Pedersen, HyraxPC, three (2-
perfect special sound) Σ-protocols sharing the same setup:

� ProdPf to prove that three commitments Cx, Cy, Cz satisfy xy = z,
� DotProdPf to prove that a multi-commitment Cx and a commitment Cy

satisfy y = ⟨x,a⟩ for a public vector a

� GenPff̂ ,n to prove that n commitments (Cvi)i satisfy f̂((vi)i∈[n−1]) = vn
and the following sub-protocols:

� A protocol SumCheck to reduce the task of proving that
∑

x∈{0,1}µ p(x) equals

v, given the commitments (Cp, Cv), to the claim that p(rx) = ex for a random
rx ∈ Fµ sampled randomly by the veri�er, and some claimed value ex ∈ F,
where Cex is provided by the prover at the end of the procedure (see [11]).

� A sum-check-based protocol GrandProd for �grand products� (see Fig. 5).
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4.2 On the instantiation of GenPf and GrandProd

If f̂ is a simple string concatenation, we can exploit the homomorphism of
Pedersen and reduce GenPf to a single invocation of a Σ-protocol for the
equality of two commitments (cf. EqPf in [17,45]). As for GrandProd, we use
a commit-and-prove version of the Thaler's grand product argument [44] that is
an optimized application of the GKR protocol for circuit evaluation to a circuit
computing a binary tree of multiplication gates. Another possibility would be to
use the protocol due to Setty and Lee [42] that reduces the communication cost,
and hence the proof size, at the cost of committing to additional �eld elements.

Let z0 = r1 = 0. P also sets e1 ← v. For i = 1 to d− 1:

1. If i > 1 P and V engage in a (i rounds) sum-check to reduce the task of proving

that
∑

p∈{0,1}i g
(i)
zi−1(p) = Ṽi(zi−1) to the claim that g

(i)
zi−1(ri) = ei, for some ri

and Cei ← Commit(pp, ei;ωei) provided by the prover by the end of the protocol.

2. P sends Cw1,i ← Commit(pp, Ṽi+1(ri, 0);ωw1,i) and Cw2,i ←
Commit(pp, Ṽi+1(ri, 1);ωw2,i)

3. P and V engage in ProdPf on input (pp, (Cw1,i , Cw2,i , C
1/ẽq(zi−1,ri)
ei ),

(w1,i, ωw1,i , w2,i, ωw2,i , ei/ẽq(zi−1, ri), ωei))
4. V sends a challenge βi ←$ F
5. P and V set zi ← li(βi), where li(X) is the unique line such that li(0) = (ri, 0)

and li(1) = (ri, 1)

6. P and V set Cvi ← C
(1−βi)
w1,i ·Cβi

w2,i
. Additionally, P sets vi ← w1,i(1− βi) +wi,2βi

Finally, P and V engage in HyraxPC.Eval to prove that Ṽd(zd−1) = vd−1.

Fig. 5. The protocol GrandProd to prove that the product of 2d inputs equals v, given
a commitment Cv and a commitment to the MLE Ṽd of the input vector to a binary-
tree circuit of depth d. The output gate is labelled 0, and the two inputs to a layer-i
gate labelled p ∈ {0, 1}i are labelled as (p, 0) and (p, 1) respectively; hence GrandProd

allows to prove that V1(0) = v. For all i ∈ [d− 1] and for all p ∈ {0, 1}i, we have that
g
(i)
z (p) := ẽq(z, p) · Ṽi+1(p, 0) · Ṽi+1(p, 1)

Below we analyze the special soundness of GrandProd (cf. Fig. 5).

Lemma 2. For all d > 1, the protocol GrandProd is computational special
sound, i.e., there exist a tree extractor T EGrandProd and EPT adversaries B,B′
such that given an nGrandProd,d := ((n0, 2, 2), . . . , (nd−2, 2, 2))-tree of accepting
transcripts (produced by an adversary A) for the grand product, we have:

AdvSS
GrandProd,n(T EGrandProd,A) ≤AdvSS

HyraxPC.Open,((2d/2):d/2,(4±)d/2,2)(T EHyraxPC,B)

+

d−2∑
i=1

4i ·AdvSS
SumCheck,(1,2,2)i(T ESumCheck,B′)

where n0 is the empty string and ni := (4, 2, 2)i for all i > 0.
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Proof. We construct a tree extractor T EGrandProd that does the following.
1. For each iteration i ∈ [d− 1]:

(a) If i > 1, run T ESumCheck on each of the 4i di�erent (1, 2, 2)i-subtrees,

associated with the di�erent random challenges r
(j)
i , to extract the poly-

nomials sent during the sum-check

(b) Run T EProdPf on each 2-subtree to extract the values (w
(j)
1,i , w

(j)
2,i , e

(j)
i )

and let fi be the polynomial that interpolates all the pairs (r
(j)
i , e

(j)
i )

2. Extract the polynomial Ṽd running T EHyraxPC on the subtree obtained by
merging each ((4±)

d/2, 2)-subtree corresponding to a di�erent challenge point
At each iteration, the protocol GrandProd performs a sum-check to reduce the
task of proving that a certain polynomial equals some claimed value over an
hypercube of a given size, and a �reduction to a line� to batch two claims into
one. Notice that the polynomial in the sum-check is only �virtually� represented
and is never directly evaluated. We need to prove that at each iteration the
prover performs a sum-check on a polynomial that is �consistent� wrt to the
MLE of the input Ṽd that we extract using T EHyraxPC.

We start by focusing on the last iteration of the protocol. Let fz(X) :=

ẽq(z,X) · Ṽd(X, 0) · Ṽ (X, 1). We need to prove that the polynomial fd−1 ex-
tracted by T EGrandProd at the (d − 1)-th iteration is equal to fz(X) for some z
(corresponding to an ancestor of the current subtree).

First, by the guarantees of the information-theoretic sum-check and the spe-
cial soundness of ProdPf, we have that

∑
p∈{0,1}d−2 fi(p) = vd−2, for a value

vd−2 that has been committed at the previous iteration. Second, we observe
that fd−1 is a (d− 1)-variate polynomial of individual degree at most 3: this is
because the polynomials sent during the sum-check are univariate polynomials
of maximum degree 3, due to the number of Pedersen generators in pp and later
used to run ProdPf. Moreover, by de�nition fz is a (d − 1)-variate polynomial

of individual degree 3. Let Agree be the event that fd−i(r
(j)
d−1) = fz(r

(j)
d−1) for

all j. Since there is a unique (d− 1)-variate polynomial, of individual degree at

most 3, that �densely� interpolates the pairs (r
(j)
d−1, fz(r

(j)
d−1)), we conclude that,

conditioned on Agree, fd−1 ≡ fz. When Agree does not occur, we have that

there is at least one challenge r := r
(j)
d−1 such that fd−1(r) ̸= fz(r). In particular,

this implies that w
(j)
1,d−1 ̸= Ṽd(r, 0) ∨ w

(j)
2,d−1 ̸= Ṽd(r, 1). Let ℓ be the unique line

interpolating ((r, 0), w
(j)
1,d−1), ((r, 1), w

(j)
2,d−1); then, there exists at most one �eld

element β such that ℓ(β) = Ṽd(r, β). However, when Agree does not occur, we

can �nd in the corresponding subtrees two distinct challenges β
(j)
d−1, β

′(j)
d−1 such

that the above equation holds, from which we conclude that Pr[Agree] = 1.
A similar analysis can be run for all the layers of the circuit. We do not need

to run T ESC when we reach the �rst iteration since the protocol does not invoke
the SumCheck protocol. At the �rst layer, we only rely on the special soundness
of ProdPf to extract the value v consistent with the output Ṽ1(0). ⊓⊔
Lemma 3. zkLasso satis�es n-computational special soundness, where n is:

(2logm, (2, 2, 2)logm, 2, (4±)
(log logm)/2, 2, 3, µ+1, (nGrandProd,µ)

α, (4±)
(log logm)/2, 2)
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Proof. We construct a tree extractor T ELasso that, given an n-tree of accepting
transcripts, does the following:

1. Run T ESumCheck on the �rst sum-check subprotocol on each (1, 2, 2)logm sub-
tree to extract the polynomials sent during the sum-check for h(X)

2. Run T EGenPf on each corresponding 2-subtree to extract the values v1, . . . , vα
such that f̂(v1, . . . , vα) = ex/ẽq(r, rz)

3. Run T EHyraxPC on the subtree obtained by merging each ((4±)
logm/2, 2)-

subtree, corresponding to di�erent challenge points, to extract α logm-
variate multilinear polynomials Ei such that Ei(rz) = vi for all i ∈ [α]

4. Run T EGrandProd on each nGrandProd,µ-subtree to extract the multilinear poly-
nomials dimi, read_tsi,write_tsi, for all i ∈ [α], corresponding to the MLE
of the last layer of the circuit

5. Output matrix M derived from the encoding of its non-zero entries in dimi

We show that, conditioned on the event that none of the sub-extractor fails,
the matrix M extracted by T ELasso is a valid witness. In particular, from the
guarantees of T EGrandProd and T ESumCheck and the soundness of the corresponding
protocols, we have that the prover unconditionally passes the veri�er's checks for
the sum-check and the memory checking argument (cf. [11]) and, moreover, the
rows of M are unit vectors. Also, from the guarantees of T ESumCheck, T EHyraxPC
and the soundness of the sum-check protocol we have that M · t = a because the
check holds for more than logm random rows. ⊓⊔

We are ready to present our theorem on zkLasso, whose proof is in [11].

Theorem 2. zkLasso is simulation-extractable.

5 Modular Composition of Sim-Extractable Arguments

We describe two variations of two compilers for modular compositions of non-
interactive arguments of knowledge. The �rst compilers handles conjunction of
relations with shared witness; the other two handle functional compositions.

5.1 General Results on Conjunction and Functional Composition

In both cases, the compilers start from commit-and-prove arguments that are
simulation-extractable. However, for two of the compilers, we require the slightly
more general notion of signature-of-knowledge.

De�nition 7. We say that a non-interactive argument Π is a signature-of-
knowledge for a relation R, if Π is a complete, simulation extractable and zero-
knowledge non-interactive argument for the (augmented) relation R′ such that:

∀msg ∈ {0, 1}λ : R(pp,x,w) ⇐⇒ R′(pp, (msg,x),w),

where msg is referred to as the signed message.
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Domain separation: H1 and H2 are two random oracles.

// Conjunction proofs Π∧ and Π̄∧ (including boxed instructions )

Prover: PH1,H2(pp, (xA,xB),w) does:
1. commit c, ρ← CS.Commit(ck,w),
2. prove πA ← ΠA.PH1(pp, (c,xA), (w, ρ)),
3. prove πB ← ΠB .PH2(pp, ( msg ,Mc(c),xB), (M(w),Mρ(ρ)))

where msg := xA∥πA

Veri�er: VfH1,H2(pp, (xA,xB), π) parses π = (c, πA, πB), return 1 if and only if
VfH1(pp, (c,xA), πA) = 1 and VfH2(pp, ( msg, Mc(c),xB), πB) = 1

// Composition proofs Πg◦f and Π̄g◦f (including boxed instructions )

Prover: PH1,H2(ci, co,xi,xo,wi,wo, ρi, ρo) does
1. parse xi = xf,i∥xg,i and xo = xf,o∥xg,o and xf = (xf,i, xf,o),
2. let (xf,o, wg,i)← f(xf,i, wf,i) and c′, ρ′ ← CS.Commit(ck, wg,i).
3. prove πF ← Πf .PH1(ci, c

′, (xf,i, xFo), (wi, wg,i), ρi, ρ
′),

4. prove πG ← Πg.PH2( msg , c′, co, (xg,i, xg,o), (wg,i, wo), ρ
′, ρo)

where msg := ci∥xF ∥π1

Veri�er: Vf((ci, co,xi,xo), π) parses π = (c′, π1, π2), return 1 if and only if
Πf .Vf

H1((ci, c
′, xf,i, xf,o), π1) = 1 and Πg.Vf

H2((msg, c′, co, xg,i, xg,o), π2) = 1.

Fig. 6. Compiler to proofs for conjunction (top) and function composition (bottom).
For X ∈ {A,B, f, g} ΠX is assumed to be a commit-and-prove non-interactive argu-
ment over commitment scheme CS (assumed to be M -malleable for the compiler for
conjunction). For Π̄∧ (resp. Π̄g◦f ) we additionally assume that ΠA (resp. Πg) is a
signature of knowledge.

(Generalized) Conjunction of arguments We consider two compilers for con-
junction of relations with common witnesses with di�erent trade-o�s. Addition-
ally, we generalize the notion of conjunction with common witness by assum-
ing a (possible) processing through a function M to such a common witness.
Speci�cally, given relation RA and RB we de�ne RM

A∧B the relation such that
RM

A∧B(pp,xA,xB ,w) ⇐⇒ RA(pp,xA,w) ∧RB(pp,xB ,M(w)).

De�nition 8. Let M be a polynomial time function, we say that a commit-
ment scheme CS is M -malleable if there exist e�ciently computable functions
Mc,Mρ such that, for any commitment c to w with opening ρ we have that
Mc(c) is a valid commit to M(w) with opening Mρ(ρ). Namely ∀pp, c,w, ρ :
VerCom(pp, c,w, ρ)⇒ VerCom(pp,Mc(c),M(w),Mρ(ρ)).

We de�ne a compiler from simulation-extractable arguments (resp. signature-
of-knowledge) Π∧ (resp. Π̄∧) for RM

A∧B in Fig. 6.

Functional composition of arguments For any polynomial-time function f let the
relation Rf be such that Rf (pp, (xi,xo), (wi,wo)) ⇐⇒ f(xi,wi) = (xo,wo).
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We de�ne g◦f to be the functional composition of g and f , namely, the function
that on input ((xf,i, xg,i), wf,i) computes (xf,o, wg,i) ← f(xf,i, wf,i), computes
(xg,o,wo)← g(xg,i, wg,i) and outputs ((xf,o, xg,o),wo).

We de�ne a compiler to functional composition from simulation-extractable
arguments Πg◦f and from a signature of knowledge Π̄g◦f for Rg◦f in Fig. 6.

Additional De�nitions and Theorem on Compilers Security We are almost ready
to state the theorem. We �rst need two additional de�nitions.

De�nition 9. We say that a relation R is e�ciently witness computable if
there exists a EPT algorithm M such that for any pp and x we have either
R(pp,x,M(pp,x)) = 1 or (pp,x) ̸∈ LR. We say that a relation R is always
satis�able if, for any pp, the language LR,pp = {0, 1}∗, where the latter is the
language associated to the relation for given parameters pp.

The de�nition above indicates that the relation R can be decided by an expected
polynomial-time algorithm. At �rst glance, one might consider an argument of
knowledge for a relation in P 12 to be somewhat trivial. However, the scenario
becomes more compelling in the context of commit-and-prove relations. In this
case, while R is decidable, the corresponding commit-and-prove relation R̂ is
not, unless, we allow the prover to sample the commitment to the witness.

Nicely, when the relation RA (resp. Rf ) is e�ciently witness computable
we can weaken the zero-knowledge property of ΠA (resp. Πf ) in the compilers
to witness indistinguishability (WI)13. Furthermore, for WI to hold, it is not
necessary to reprogram the random oracle.

De�nition 10. An non-interactive argument for R is statistically witness in-
distinguishable (WI) if for any pp and any x,w1,w2 such that (pp,x,wi) ∈ R
the distributions PH(pp,x,wi) for i ∈ {1, 2} are statically close.

Theorem 3. Assuming that the commitment scheme CS is hiding and binding,
the following statements hold true:
1. For any PT M , if CS is M -malleable, and ΠA and ΠB are trapdoorless

zero-knowledge and simulation extractable then Π∧ for the relation RM
A∧B is

simulation-extractable.
2. If Πf and Πg are trapdoorless zero-knowledge and simulation extractable

then Πg◦f is simulation-extractable.
3. For any PT M , CS is M -malleable, and if ΠA is knowledge sound and sta-

tistically witness indistinguishable, RA is always satis�able and e�ciently
witness computable and ΠB is trapdoorless zero-knowledge and a signature-
of-knowledge then Π ′ is simulation-extractable.

4. If Πf is knowledge sound and statistically witness indistinguishable, Rf

is always satis�able and e�ciently witness computable or the public out-
put of f is the empty string, namely for any xf,i,wi we have |xf,o| = 0
where xf,o, wf,o = f(xf,i,wi), and Πg is trapdoorless zero-knowledge and a
signature-of-knowledge then Π̄g◦f is simulation-extractable.

12 More precisely, the class AvgP .
13 Zero-knowledge implies witness indistinguishability, see Feige and Shamir [23].
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Before proving the theorem we remark that the notion of trapdoorless zero-
knowledge is key for the four statements to hold. This is evident, for example, in
the proof of the fourth statement, where we can invoke the knowledge soundness
of Πf in the presence of simulated proofs for Πg. We can do this because to
simulate proofs we only need to reprogram the random oracle H2 which does
not interfere with Πf . On the other hand, if we needed a trapdoor for the
simulations then we would need to make sure that the knowledge sound of Πf

held in the presence of such a trapdoor (for example, by sampling independent
reference strings for the two schemes, which is unnatural and cumbersome in
many practical scenarios).

5.2 Discussion and Applications

We note that, if we disregard the aspects of commitment malleability (see De�-
nition 8), the compilers for functional composition are more general than those
for conjunction. Speci�cally, we could think of the function f as computing the
relation RA and passing the witness, unchanged, to the next function g, which
in turn computes the relation RB .

We chose to present two distinct types of compilation (conjunctions and func-
tional compositions) because this approach arguably makes it easier to present
our results. Additionally, the simpler compiler (for conjunction) allows us to
handle the commitment malleability aspects more directly.

In terms of assumptions, the third and fourth results trade the (additional)
e�cient witness sampleability property (see De�nition 9) for weaker assumptions
on the security of the arguments of knowledge. While the assumption of e�cient
witness sampleability might seem strong, for functional composition, we can omit
this assumption by requiring a structural property on f . This is another reason
why we include the fourth result, even though in the following discussion on
zkVM in Section 6, we only require the compilers for conjunction.

6 Simulation extractability of zkVMs

6.1 Preliminaries on SNARK VMs

Here we provide an abstract treatment of virtual machines. We start from this
general de�nition:

De�nition 11 (Instruction Set (Execution)). Let γ, k ∈ N. An instruction
set for a virtual machine with k registers and codewords of size γ is an e�ciently
computable function Execute : {0, 1}γ·(k+4) → {0, 1}γ·k.

We want to describe the relation which describes a virtual machine execu-
tion. Consider the circuit in Fig. 7. This is parameterized by an instruction set
Execute, an execution bound t, a bound on the number of register k, codewords of
size γ, and a bound on the output size o. We denote the circuit thus parametrized
as VMExecute,t,o. (For simplicity, we hide all the parameters but Execute, and simply
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The virtual machine VMExecute(Pcode,x, z):

Set (sregs, regs)← 0k+4,mem← x∥z.
Iterate for t times the following:
� Update Program-Counter: sregs[0]← regs[0].
� Fetch: sregs[1]← Pcode[sregs[0]].
� Read-and-Write Operations:

• sregs[2]← mem[regs[1]], //read from memory
• sregs[3]← regs[3], //load to special register
• mem[regs[2]]← sregs[3], //write to memory

� Execute: regs← Execute(sregs)
Output y = mem[0 : o].

Fig. 7. The VM with parameters the instruction set Execute and a time bound t. The
inputs are the program code Pcode, a public input x and a private input z, the output
of the VM is y. The machines load on the memory the inputs and executes t steps,
the output y of the machine is the state of the memory after t steps. There are four
special registers: sregs[0] stores the current program counter, sregs[1] stores the next
instruction, while sregs[1] and sregs[2] store the (two) operands for the next instruction,
in particular, sregs[1] stores data fetched from the main memory and sregs[2] stores data
from the result of the previous instruction. The instructions in Execute do not change
the content of the special registers and update the program counter for the fetch of
the next instruction in regs[0]. The VM, at any iteration, writes in memory at location
regs[2] the content of sregs[3] and at sregs[3] the content of regs[3], these are (somewhat
arbitrary) operations to allow �ow of information from regs to sregs and from sregs
to memory: notice that di�erent architectures performing additional reading/writing
operations are theoretically (and practically) equivalent.

write VMExecute whenever the parameters are clear from the context.) Following [2],
we de�ne the commit-and-prove relation:

RExecute
zkVM ((t, o), (Pcode,x,y), z) ⇐⇒ VMExecute(Pcode,x, z) = y (†)

Splitting RzkVM in its logical components. We now show how to approach
proving the relation RzkVM from a modular perspective. The way we �split�
relation RzkVM will roughly follow the lookup-singularity approach in [2]. For
this reason we will isolate an execution component (which in [2] is performed
through the lookup argument Lasso) and �anything else� (in relation R⋆) roughly
consisting of instruction fetching (which we abstracted out in our VM model)
and memory checking. For simplicity we do not break this second part further;
our goal is to showcase the modular �avor of zkVMs and to provide a blueprint
that can be specialized in follow-up works14. We de�ne the CP relation below:

RExecute(wregs,wsregs) ⇐⇒ ∀i ∈ [t− 1] : Execute(wsregs[i]) = wregs[i+ 1]

14 The work in [2] actually logically separates memory checking and instruction fetch-
ing. Both the components they use for these modules can be thought of more or less
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Here (wsregs[i],wregs[i]) is the state of the registers of the virtual machine at the
i-th step of computation. Looking ahead, we associate the tuple (wsregs,wregs)
with the trace of the virtual machine in the computation of the program Pcode

on input (x, z).

De�nition 12. The zkVM-complementary relation is the relation R⋆ such that
for any execution set Execute, and for any input (Pcode,x,y), z:

RExecute
zkVM ((Pcode,x,y), z) ⇐⇒ ∃(wregs,wsregs,wmem) :

RExecute(wregs,wsregs) ∧
R⋆(Pcode,x,y, (wregs,wsregs,wmem))

where RExecute
zkVM is the relation de�ned as in Eq. (†).

Intuitively, the relation R⋆ needs to handle the logic of the virtual machine and
make sure that the memory accesses, during the execution of the program, are
consistent (namely, that we read the correct instructions from Pcode, we perform
the read and write operations, and that if the virtual machine reads from the
memory the value v at location i, it means that the last time the virtual machine
wrote at location i, it wrote the value v).

6.2 A General Theorem on the Non-Malleability of SNARK VMs

We say that a commit-and-prove argument of knowledge for R⋆ has separate
commitments (for CS) if the witnesses wregs,wsregs and wmem are committed
separately. Namely, the witness w := (wregs,wsregs,wmem) for R⋆ is committed as
cX , ρX ← Commit(ck,wX) forX ∈ {regs, sregs,mem} and c := (cregs, csregs, cmem).

Theorem 4. For any instruction set Execute, let Π be a zero-knowledge argu-
ment of knowledge for RExecute that is simulation extractable, and let Π⋆ be an
argument of knowledge for R⋆ that has separate commitments. There exists a
simulation-extractable zkVM if one of the following holds:
1. Π⋆ is simulation-extractable and zero-knowledge.
2. Π⋆ is witness-hiding and Π is a signature-of-knowledge.

We prove the theorem in [11]. Brie�y, the theorem follows as an application of
Theorem 3. The interesting case is when Π⋆ is WI. In this case, we additionally
need to prove e�cient witness sampleability by showing an altered instruction
set that simply prints the output y into memory.

6.3 The Lookup-Singularity is Non-Malleable

As already mentioned in this section, we can realize an argument of knowledge
for RExecute using a lookup argument. The basic idea is to consider the truth

specialized versions of Spartan. Therefore, in spirit, our the instantiations we present
in Section 6.3 are still applicable to the original presentation in [2].
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table of the instruction set Execute as the table, and the execution trace wExecute

as the subvector. Although the truth table of the instruction set Execute is
exponentially large, [2] shows that the truth table for the instruction set of
RISC-V is decomposable (De�nition 6).

Below we use the concept that an instruction set is decomposable if it can
be described by a decomposable table (De�nition 6).

Theorem 5. If Execute is a decomposable instruction set, then zkLasso (see Sec-
tion 4) implies a simulation-extractable argument of knowledge and a signature
of knowledge with delayed message for RExecute.

Proof. Fixed Execute, we can de�ne the argument system for RExecute that runs
the prover and veri�er of zkLasso with parameter a table E that encodes the
truth table of Execute. Namely, E is the table such that E[sregs] = Execute(sregs)
for any sregs ∈ {0, 1}3·γ . Recall that the truth table of Execute, namely E, is de-
composable. To proveRExecute(wsregs,wregs) we prove thatRlookup(E,wsregs,wregs)
where wsregs de�nes the committed indexes and wregs the committed sub-table.

Additionally, we notice that Theorem 2 and our theorem on the signature
of knowledge [11] imply we can apply the FS-transform to zkLasso to create a
signature-of-knowledge with delayed messages and thus a signature-of-knowledge
with delayed messages for RExecute.

De�nition 13 (Joltish). Let Execute be a decomposable instruction set and let
Π⋆ be an argument of knowledge for R⋆. We call Joltish (instantiated with Π⋆)
the argument for RExecute

zkVM derived from the one of the compilers for conjunction
and Theorem 4 where ΠExecute for RExecute is zkLasso.

An e�cient SIM-EXT zkVM for RISC-V Following [2], and as a corollary
of Theorems 2 and 4, we have the following:

Corollary 1. Let Execute be a decomposable instruction set, then there exists
Π⋆ as in De�nition 13 s.t. Joltish instantiated with Π⋆ is simulation-extractable
zkVMs for RzkVM yielded by Execute.

To argue that Jolt, or more precisely its zero-knowledge version, is simulation-
extractable, it remains to show that the hypotheses of Theorem 4 hold for Jolt's
implementation of the argument of knowledge for R⋆.

In detail, in [2], Arun, Setty, and Thaler show how to realize a succinct ar-
gument of knowledge for R⋆ using a commit-and-prove argument of knowledge
for R1CS (they use Spartan [41]) and a commit-and-prove argument of knowl-
edge for memory consistency based on the grand-product argument and memory
checking techniques from [7].

More speci�cally, the latter parses wmem as a list of memory operations of the
form (M, τ, o, l, v), where M ∈ {Pcode,mem} indicates which of the memories15

to read from or write to, τ is a timestamp, o is the operation (e.g., read or write),

15 The Pcode is a read-only memory, thus additional optimizations are available, while
mem is a read-and-write memory.
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l is a location, and v is a value. The former proves that, assuming the memory
accesses are consistent, the logic of the virtual machine is executed correctly;
namely, the fetch and read-and-write operations (on the registers) are executed
and iterated t times. In Fig. 5, we show a zero-knowledge variant of the grand-
product argument, which allows us to state that the sub-scheme for R⋆ in Joltish

is both knowledge-sound and zero-knowledge, thus enabling us to use the result
from our theorem Theorem 3.
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