
Slice Resource Allocation with Multiple Edge-Exit
Distributed Deep Neural Networks

Ali Ehsanian
EURECOM

Sophia-Antipolis, France
ali.ehsanian@eurecom.fr

Thrasyvoulos Spyropoulos
Technical University of Crete

Chania, Greece
spyropoulos@tuc.gr

Abstract—Network slicing is a pivotal concept in the evolution
of 5G networks. It enables network operators to partition
physical resources from edge to data center, allowing concurrent
multiplexing of tenants while adhering to each tenant’s Service
Level Agreement. Efficient resource allocation is critical in this
context, prompting recent research into deep neural networks
(DNNs). However, challenges arise with edge resources, including
the need to rapidly scale resources (within milliseconds) and
the cost of transmitting large volumes of data to a cloud for
centralized DNN-based processing. To address these issues, we
previously investigated distributed deep neural network (DDNN)
architectures based on CNN and LSTM with a single local exit,
facilitating efficient edge-cloud collaboration. In this work, we
aim to generalize the training methodology for such networks,
identifying both shared and unique aspects across different
models. Additionally, we propose an extended architecture that
incorporates multiple local exits, which introduces new chal-
lenges. Unlike DDNNs with one local exit, multiple local exits
observe different subsets of the input signals, while the remote
exit processes a superset of these. This leads to partially coupled
layers and exits, complicating both the model architecture and
training process. Moreover, the offloading decision mechanism
now involves more intricate trade-offs, such as determining
whether to forward specific subsets of preprocessed features to
the cloud for further processing. We explore the joint training
of DDNN exits and an optimized offloading mechanism, demon-
strating that our architecture resolves nearly 40% of decisions
at the edge without incurring additional penalty compared to
centralized models.

Index Terms—Network Slicing, Resource Allocation, Dis-
tributed Deep Neural Network, Offloading Mechanism, 5G Net-
works

I. INTRODUCTION

The rise of 5G and the transition to 5G+/6G networks
have transformed network architectures by emphasizing vir-
tualization and resource slicing, enabling flexible support for
diverse Quality of Service (QoS) requirements and Service
Level Agreements (SLAs). Virtual Network Functions (VNFs)
improve flexibility and enable data-driven optimization in re-
source allocation. Modern Machine Learning (ML) techniques,
such as deep learning [1]–[4] and reinforcement learning
[5], [6], [7], are actively being explored for slice resource
allocation and orchestration, substantially improving network
performance and resource efficiency.

This project has been supported by the European Union’s Horizon 2020
research and innovation program under Grant Agreement No. 861165.

Centralized DNNs face challenges such as stringent latency
requirements in the Radio Access Network (RAN), where low
latency is critical. This contrasts with application-layer tasks
(e.g., image classification), which can tolerate higher latency
and be offloaded to the cloud. Additionally, data transmission
overheads from edge to core networks can increase latency,
reduce throughput, and disrupt performance.

DNNs are typically designed as sequential layers with
predictions at the end, but the incorporation of intermediate
prediction modules enables early exits, reducing unnecessary
processing. Distributed Deep Neural Networks (DDNNs) ex-
tend this concept by distributing layers between the edge
and the cloud, enabling low-latency local predictions or high-
accuracy remote predictions. Joint training is essential to
balance local and remote performance by leveraging local
exits for simpler signals and offloading the processed features
of complex signals to the cloud. While final exits improve
accuracy, they also increase processing, communication, and
latency costs. Additionally, the absence of ground truth during
inference complicates the selection of the optimal exit point.

We have performed some initial exploration of these ideas in
earlier work [8], focusing on one local component that (i) sees
all signals and (ii) has a single local exit. However, practical
scenarios often involve local neural networks accessing only
subsets of signals, such as data from a single or a few
Base Stations (BSs) under small edge clouds. Multiple such
locations may exist, each with partial and possibly correlated
signals, while an aggregation point in the core or cloud can
combine all signals to make more informed decisions by
leveraging deeper layers and inter-signal correlations. This
paper investigates multi-exit DDNNs with correlated time-
series data. Although the original DDNN work [9] theorizes
multi-exit scenarios, regression tasks, as highlighted in [8],
pose significantly greater challenges compared to classification
problems.

Training multi-exit models presents challenges such as
determining the optimal placement of exits, designing branch
architectures, developing effective training strategies, and eval-
uating performance. This paper introduces, trains, and analyzes
a distributed DNN architecture tailored for multi-edge resource
allocation. The key contributions of this work are as follows:

• (Architecture) We propose a distributed DNN with mul-
tiple edge exits for rapid local inferences, along with a



(a) Centralized DNN

Local (Edge) Remote (Cloud)

Local Exit

May or May not be Executed for Inference

(b) Distributed DNN (one local exit)

Local Exit 1

Local Exit 2

Local (Edge) Remote (Cloud)
May or May not be Executed for Inference

(c) Distributed DNN (two local exits)

Fig. 1: Distributed and Centralized DNN Schemes

remote exit in the central cloud to process aggregated fea-
tures from the edge networks to achieve higher accuracy
when necessary.

• (Offline Optimization) We optimize joint training hyper-
parameters to strike a balance between making accurate
local decisions and generating informative features for
remote layers when required.

• (Online Optimization) We develop an optimized offload-
ing mechanism that selects samples for cloud processing,
aiming to minimize communication and latency costs.
This mechanism is trained on historical data and approx-
imates oracle-level performance.

The remainder of this paper is organized as follows: Section
II outlines the problem setup, section III elaborates on the
DDNN architectures. Section IV explores offline joint train-
ing and online inference. Section V validates the proposed
architectures using real traffic data. Section VI presents future
work and conclusions.

II. PROBLEM SETUP

Slice Resource Allocation with DNN: We assume a net-
work infrastructure hosting multiple network slices composed
of various Virtual Network Functions (VNFs). We model each
VNF as a discrete-time series reflecting required computa-
tional resources (such as CPU and memory). Denoting the set
of VNFs by K = {1, ...,K} and their resource demands at time
t as dkt , we aim to utilize past traffic data to optimize resource
allocation for all VNFs through a DNN-based framework as
follows:

ŷkt = F(dk
t,N ;θ), (1)

where the DNN input, dk
t,N = {dkt−N , ..., dkt−1}, consists of

N historical traffic samples for VNF k ∈ K up to time t. The
model, represented by F(·;θ), with θ as the parameter vector,
is trained to forecast ŷkt , the resource allocation for VNF k at
time t. This forecast aims to optimize resource allocation by
balancing under-/over-provisioning costs against the expected
(unknown) demand dkt .

Objective Function for Slice Resource Allocation: The
objective in standard traffic forecasting is to predict future
traffic, ŷt, to closely match the actual traffic, dt, at time t
using past N traffic samples. This goal is conventionally met
by employing a DNN trained with a least squares objective
function.

f(ŷt, dt) = (ŷt − dt)
2. (2)

The objective in our work diverges from conventional
models by considering the asymmetric costs associated with
under-provisioning (where predictions are less than the actual
demand which risks violating SLAs) and over-provisioning
(where predictions exceed the actual demand which leads
to unnecessary resource wastage). Our approach employs a
DNN tailored for minimizing the consequences of both SLA
violations and resource wastage. Without loss of generality, we
adopt the following objective function to balance these factors
efficiently:

f(ŷt, dt) =

{
c1 · (ŷt − dt)

2 if (ŷt − dt) ≤ 0

c2 · (ŷt − dt) if (ŷt − dt) > 0,
(3)

where quadratic terms are applied for SLA violations, and
linear terms for the opportunity cost of resource wastage1.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORK

In the context of a 5G network, we consider a scenario
where various VNFs require certain resources (such as CPU,
memory, and bandwidth) to meet user SLAs. At any given
time t, each VNF demands a specific quantity of resources,
represented as dkt , based on past N demand values, dk

t,N ,
which are random and potentially non-stationary. The demand
vector dk

t,N is input into a DDNN which then predicts the
resource allocation for each VNF at time t, denoted as ŷkt .
We can describe the DDNN with the following equation:

(ŷkL1,t, ŷ
k
L2,t, ŷ

k
R,t) = F(dk

t,N ;θDDNN), (4)

where F(·;θDDNN) is the approximation function modeling the
DDNN, and θDDNN denotes the model parameters. Contrary to
the traditional DNN described in Eq. (1), the DDNN features
three outputs: ŷkL1,t and ŷkL2,t for the two local exits, and ŷkR,t

for the remote exit2.
The architecture, illustrated in Fig. 1, consists of two

parallel, compact initial DNN modules located at separate edge

1Note that our architecture is adaptable to various non-symmetric objective
functions, similar to those in [10], [11].

2Note that the number of local exits can exceed two, and these exits
operate in parallel rather than sequentially. This arrangement differs from
configurations where multiple local exits are distributed sequentially along
the network layers.



sites, tasked with executing partial local allocation decisions,
with each local component processing a distinct subset of the
input data.

ŷkL1,t = FL1(dk
L1,t,N ;θL1), (5)

ŷkL2,t = FL2(dk
L2,t,N ;θL2), (6)

where dk
L1,t,N and dk

L2,t,N are the inputs for each local DNN
module, such that dk

L1,t,N ∪ dk
L2,t,N = dk

t,N and dk
L1,t,N ∩

dk
L2,t,N = ∅. FL1(·;θL1) and FL2(·;θL2) represent the local

DNNs, each with their respective parameters θL1 and θL2.
For some samples, these local decisions may not be deemed
appropriate, i.e., they may incur relatively high costs. In such
cases, the output of the local DNNs (e.g., zkt = zkL1,t ∪ zkL2,t,
as shown in Fig. 1) is sent to a much larger DNN module,
located remotely from the decision-required site (e.g., the base
station). This remote module then provides its own allocation
decision, as follows:

ŷkR,t = FR(zkt ;θR), (7)

where the output from the local DNN blocks, zkt , serves as the
input to the remote component. FR(·;θR) denotes the remote
DNN, characterized by its parameters θR.

Local Exits: In DDNNs, local exits are initial layers located
at the network edge. Without loss of generality, we consider
two distinct local components, each comprising a shallow
DNN block, which is less complex than the remote com-
ponent. During training, outputs from these blocks, zL1, tk

and zL2, tk, are processed by their respective Fully Connected
(FC) layers and aggregated as ztk for transmission to remote
layers, as shown in Fig. 1. The combined local outputs,
ŷL, tk = ŷL1, tk ∪ ŷL2, tk, constitute the local prediction or
local exit inference.

Remote Exit: In our DDNN, the remote exit is a component
located in the central cloud. Without loss of generality, the
remote component comprises three DNN blocks followed by
four Fully Connected (FC) layers. The aggregated input, ztk,
obtained from the local modules, is processed to generate the
remote prediction or remote exit inference, denoted as ŷR, tk.

IV. DDNN TRAINING AND INFERENCE

A. Offline DDNN Joint Training

Training a DDNN is inherently more complex than training
a centralized DNN. It requires balancing the contributions of
local and remote exits within the unified objective function
to enable effective backpropagation across all layers. While
local exits were originally introduced in [12] (GoogleNet) and
[13] (BranchyNet) primarily as a regularization strategy that
was not utilized during inference, our joint training approach
explicitly focuses on optimizing performance trade-offs in
several critical areas:

• Backpropagate the local exit’s performance to its layers
(i.e., θL) to ensure reliable local decisions ŷkL1,t and
ŷkL2,t, even with a simpler DNN module.

• Backpropagate the remote exit’s performance to both
remote layers(i.e., θR) and local layers (i.e., θL) to
enhance remote inferences (ŷkR,t) and ensure local layers
generate valuable intermediate features (i.e., zkL1,t and
zkL2,t) for remote processing.

The computation of the DDNN loss integrates contributions
from both edge and cloud components, and it is expressed
using the following formula:

DDNN Loss =
K∑

k=1

wL1 · f(FL1(dk
L1,t,N ;θL1), d

k
L1,t)

+wL2 · f(FL2(dk
L2,t,N ;θL2), d

k
L2,t)

+wR · f(FR(zkt ;θR), d
k
t )

=

K∑
k=1

wL1 · f(ŷkL1,t, d
k
L1,t) + wL2 · f(ŷkL2,t, d

k
L2,t)

+wR · f(ŷkR,t, d
k
t ).

(8)

In Eq. (8), the ‘local weights” (wL1 and wL2) and remote
weight” (wR) play a pivotal role in determining the influence
of local and remote exits on the overall loss during joint
training. For simplicity and without loss of generality, we
assume the two local weights are equal and collectively refer
to them as the “local weight” (i.e., wL = wL1 = wL2). These
weights are constrained within [0, 1] with wR = 1 − wL.
Selecting optimal values for wL and wR is essential to
ensure reliable local predictions, accurate remote decisions,
and efficient resource allocation.

B. DDNN Online Inference

After training the local and remote DNN modules, a key
forward-pass decision is whether the local resource allocation
is sufficient or requires refinement by the remote DNN layers3.
This decision operates as an unsupervised learning task, deter-
mining whether to rely on local outputs or escalate to remote
layers, without prior knowledge of the potential benefits/costs
of additional processing.

Oracle-based Offloading: We assume an ideal “oracle”
with complete knowledge of the potential added value of
remote processing for each sample. This oracle serves as a
benchmark for analytical evaluations. We calculate the loss
difference as follows:

L =

K∑
k=1

f(ŷkL1,t, d
k
L1,t) + f(ŷkL2,t, d

k
L2,t)− f(ŷkR,t, d

k
t )

= (CL1 + CL2)− CR = CL − CR.

(9)

We define a general average cost for processing a sample
in the cloud, which includes additional latency, offloading
decision, and communication costs. For simplicity, this average
cost is denoted as CT and referred to as the transmission cost.

The loss difference, L, is evaluated against the transmission
cost (CT ). If L < CT the sample is resolved locally, indicating

3The goal is not traffic load prediction but resource allocation that mini-
mizes overall costs, balancing SLA penalties and resource wastage.



dL1

dL2

FL1(dL1)

FL2(dL2)

FR(z)

GL1(zL1)

GL2(zL2)

zL2

zL2

zL1

yL2

yL1 yR

zL1

z = [zL1, zL2]

(a) DDNN Training

dL1

dL2

Offload

FL1(dL1)

FL2(dL2)

FR(z)

GL1(zL1)

GL2(zL2)

zL2

zL1

yL2

yL1 yR

zL2

zL1

z = [zL1, zL2]

If P > 0.5

If P <= 0.5

If P <= 0.5

(b) DDNN Inference

Fig. 2: DDNN (a) Training and (b) Inference Schemes. In both configurations,
only the remote block (the purple colored) is located in the cloud, and other
blocks are deployed at the edge.

that local processing is more cost-effective. Conversely, if
L > CT , remote processing is preferred due to its greater
benefits. An ideal oracle, if it existed, would consistently
enable accurate decisions on whether to process samples
locally or remotely.

Optimized offloading: We design a “binary classifier”
to decide whether samples should be processed locally or
remotely. This classifier is trained after the DDNN has been
trained to ensure the stability of the data path, given the
sensitivity of DDNN training to the selection of local and
remote exit weights. During the offline training phase, all
samples are processed through both local and remote lay-
ers. Consequently, by the end of this phase, the local cost
CL =

∑K
k=1 f(ŷ

k
L1,t, d

k
L1,t) + f(ŷkL2,t, d

k
L2,t), the remote cost

CR =
∑K

k=1 f(ŷ
k
R,t, d

k
t ), and the transmission cost CT for the

training set samples are all known.
The binary classifier categorizes samples into two classes

based on comparative costs: Class 0:, where CT < CL−CR,
indicating that remote processing is more cost-effective, and
Class 1:, where CT ≥ CL−CR, favoring local processing due
to high remote costs. The classifier generates a probability p
to determine whether a sample should be processed locally or
remotely (this is a supervised learning method)4.

During online inference (Fig. 2(b)), the input signal (dk
t,N ) is

directed to both the local DNNs and the optimized offloading
mechanism. The offloading mechanism evaluates p and deter-
mines whether to offload locally. If additional processing is
deemed unnecessary, the intermediate signals zkL1,t and zkL2,t

are sent to the local FC layers, and resources are allocated
based on ŷkL1,t and ŷkL2,t (green path in Fig. 2(b)). Otherwise
the aggregated intermediate signal zkt = zkL1,t∪ zkL2,t is routed
to the remote DNN, where the output ŷkR,t determines resource
allocation (red path in Fig. 2(b)).

V. PERFORMANCE EVALUATION

Data preprocessing: We use the publicly available Milano
dataset [14], widely referenced in related research [15], and
[16], to simulate VNF traffic patterns with data from base
stations measured in megabytes. Input: At time t, the DDNN

4At each time t, resource allocation decisions across all K correlated
elements are binary, processed either locally or remotely. Future work will
explore partial decision-making strategies using more complex layer hierar-
chies.

processes (dk
t,N ,K) ∈ RN×K , representing a snapshot of his-

torical traffic data for K VNFs over N time intervals. Output:
The DDNN generates an output yt = {y1t , y2t , ..., yKt } ∈ RK ,
where ykt corresponds to the resource allocation for VNF
k ∈ K, determined either locally (ŷkL1,t or ŷkL2,t) or remotely
(ŷkR,t).

We adopt the preprocessing method outlined in [10] to
prepare time-series data from base stations (BSs), leveraging
correlations among BSs in high-traffic areas (e.g., tram lines,
metro stations). This preprocessing organizes the data matrix
such that highly correlated BSs are positioned adjacently,
enabling unified resource allocation predictions for multiple
BSs and improving efficiency, as explained in [10]. LSTM-
based DDNN: We use the previous N = 144 samples
(equivalent to daily measured samples for each base station
in Milano dataset) to forecast the subsequent samples for
K = 16 base stations simultaneously. The input fed into
the LSTM-based DDNN is therefore structured as an array of
dimensions (K, N ). CNN-based DDNN: CNN architectures
perform optimally with tensor inputs that exhibit strong local
correlations. Therefore, the input to the CNN-based DDNN is
designed as a “traffic box” with dimensions

√
K ×

√
K over

a temporal window of length N .
Performance Metrics: Our two metrics are the percentage

of samples resolved locally and the overall cost of the DDNN:

CDDNN =

M∑
m=1

Im · Cm
L + (1− Im) · Cm

R , (10)

where, for sample m, Cm
L and Cm

R are the local and remote
exit costs, respectively, and Im indicates whether the sample
exited locally or not.

Im =

{
1 if the sample m exited locally
0 else.

(11)

We implement and compare the following models (the
architectures are summarized in Table I): Centralized CNN: A
fully centralized 3D-CNN-based DNN, inspired by DeepCog
[10], designed for resource allocation. This model operates
entirely in the cloud and lacks edge prediction capabilities.
Centralized LSTM: A fully centralized LSTM architecture
that processes all data samples in the cloud, offering no edge
prediction capabilities. Oracle-based DDNN: A DDNN utiliz-
ing an ideal offline optimal offloading policy, which assumes
perfect knowledge of all exit points. While theoretical and
impractical for real-world applications, it serves as a best-case
benchmark. Random-based DDNN: A DDNN employing
a random offloading policy, where each offloading decision
follows a Bernoulli distribution with a success probability
p. Optimized DDNN: A DDNN implementing an optimized
offloading policy through a binary classifier, as previously
described.

Resource Allocation Trade-off: We generate trade-off
curves to analyze the relationship between total cost and the
percentage of locally resolved samples. The model processes
the test set, yielding outputs that are handled locally or



(a) DDNN with (wL, wR) = (0.9, 0.1) (b) DDNN with (wL1, wL2, wR) = (0.9, 0.9, 0.1) (c) DDNN with (wL, wR) = (0.1, 0.9)

Fig. 3: Trade-off curves (Total loss vs Percentage of samples predicted locally)

TABLE I: Models for Performance Comparison

Model Joint Training Edge Offloading Cloud Offloading Realizability
Centralized DNN × × ✓ ✓

Oracle-based DDNN ✓ ✓ ✓ ×
Random-based DDNN ✓ ✓ ✓ ✓

Optimized DDNN ✓ ✓ ✓ ✓

remotely based on the offloading mechanism, with total cost
computed using Eq. (10). The offline oracle-based trade-off
curve is derived from Oracle-based Offloading, where varying
the transmission cost (CT ) changes the local sample resolution
rate, serving as a lower-bound baseline. The trade-off curve
for the random policy is obtained by adjusting the probability
parameter p from 0 to 1, forming an upper-bound baseline for
performance evaluation. Offloading policies resulting in costs
that surpass this curve are deemed ineffective. The online-
optimized trade-off curve is produced using the Optimized
Offloading method, where increasing the transmission cost
(CT ) alters the curve.

Figs. 3 and 4 presents the trade-off curves for DDNN
models with LSTM and CNN architectures. As illustrated
in Figs. 3(a) and 3(b), at the point where no samples are
predicted locally on the x-axis, simply introducing a local exit
during training enhances baseline performance by 20-40%,
even when all samples are resolved remotely5.

Key observation 1: The incorporation of local exits has
a clearly positive impact; however, increasing the number of
local components can reduce the overall effectiveness of the
DDNN.

Figs. 3(a), 3(b), 4(a), and 4(b) show that the optimized of-
floading mechanism achieves near-optimal performance when
up to 30-40% of samples are resolved locally. However, in
scenarios requiring a higher proportion of local processing, all
models exhibit noticeable deviations from the optimal bound.

Key observation 2: The ability to make online decisions
regarding which samples to process locally and how many to

5This superior performance of our distributed model, achieved with lower
overhead compared to the centralized model, can be attributed to the local
exit’s influence on gradient flow. This effect, observed in other studies [9],
[13], [17], demonstrates that the local exit not only enhances operational
efficiency but also provides a regularization effect, resulting in improved
performance with reduced overhead, a mutually beneficial outcome.

handle at the edge presents significant performance trade-offs.
Notably, up to 40% of decisions can be resolved locally “for
free”, without increasing overall provisioning costs compared
to centralized models.

Figs. 3(a) and 3(b) show that LSTM-based DDNNs
consistently outperform their CNN-based counterparts, likely
due to LSTMs’ superior ability to handle sequential data,
especially in scenarios with multiple local exits. Additionally,
the performance gap between Oracle and Optimized offloading
mechanisms in CNN-based DDNNs is 5-15% larger than
LSTM-based models.

Key observation 3: LSTM models are particularly well-
suited for applications requiring complex, time-dependent pro-
cessing.

Figs. 4(a) and 4(b) reveal that adding a second local exit
generally shifts the trade-off curve upward, resulting in higher
costs across all configurations compared to single-exit models.
The performance gap between Oracle-based and optimized
mechanisms also increases slightly with the addition of the
second exit. This effect arises because, in the two-exit model,
each local component processes only half of the data, leading
to lower-quality intermediate features (zkt ) for the remote
component.

Key observation 4: Adding a second local exit (in par-
allel with the first) increases the complexity of the trade-
off, resulting in higher overall costs while also offering more
opportunities for local processing.

In Fig. 3(c) demonstrates the significant impact of weight
allocation on DDNN performance, with training weights set
to (wL, wR) = (0.1, 0.9), placing low emphasis on local
layers. While the optimal weight pair (e.g., (0.9, 0.1)) cannot
be precisely determined in advance, our analysis across various
scenarios consistently shows that assigning greater weight to
the local exit is essential for achieving optimal performance.

Key observation 5: The selection of training weights
(wL, wR) is a critical factor that significantly influences the
model’s overall performance.

Latency Reduction: This experiment investigates whether
our model achieves latency reduction by evaluating both “com-
munication” and “computation” times. For communication
time, we reference a recent systems-oriented study [18], which



(a) LSTM-based DDNN with 2 local exits (b) CNN-based DDNN with 2 local exits

Fig. 4: Total loss vs percentage of samples predicted locally

TABLE II: Latency Comparison (milliseconds per sample)

L (% of local resolution) 0 5 20 40 50 60 80 95 100
LSTM-based DDNN 42.72 40.40 34.05 25.43 21.09 16.78 8.20 1.75 1.25
CNN-based DDNN 42.70 40.36 34.01 25.37 21.02 16.70 8.10 1.65 1.25
Centralized LSTM 42.67 - - - - - - - -
Centralized CNN 42.63 - - - - - - - -

estimates the average round-trip transmission time (RTT)
from edge to cloud to be 42.46 ms per sample. To measure
computation time, we execute each model multiple times on
the same server and calculate the average processing time per
sample for various models6.

Table II summarizes our findings, where “L” represents the
percentage of samples processed locally, and “T” indicates the
average time required to resolve a single sample in each sce-
nario. For example, with 40% of samples resolved locally (“L”
= 40%), the total average resolution time (“T”) is calculated
as the sum of the following: {the average processing time
per sample for the local DNN, the average processing time
per sample for the offloading block, 40% of the average local
inference time per sample, 60% of the round-trip transmission
(RTT) time from edge to cloud, and 60% of the average
remote inference time per sample}. The results demonstrate
that increasing the percentage of locally processed samples
reduces inference latency. Notably, processing 50% of samples
locally with the DDNN achieves performance parity with
centralized baselines in terms of cost efficiency, while reducing
inference latency by 49%. Additionally, we observe that the
CNN-based DDNN outperforms the LSTM-based DDNN in
terms of latency. It is important to note that preprocessing time
is not included in this table.

Key Observation 6: The average inference latency dimin-
ishes as a greater proportion of samples are processed locally.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we developed Distributed Deep Neural Net-
works (DDNNs) tailored for forecasting traffic demand to
optimize resource allocation in 5G networks. The proposed
DDNNs incorporate multiple exits, including local exits at

6It is important to note that the implementation setup for such a distributed
architecture may vary. Our experiment uses practical parameters to effectively
demonstrate the potential for latency reduction in a real-world scenario. The
models are executed on a server equipped with an Nvidia V100 GPU, 16 GB
HBM2, and 32 GB RAM.

the edge and a remote exit in the cloud, forming hierarchi-
cal architectures where local components handle subsets of
decisions, and cloud layers integrate information from these
local components. Our findings show that LSTM- and CNN-
based DDNNs can resolve a substantial portion of decisions
locally, reducing latency and costs compared to centralized
models, with LSTM-based DDNNs outperforming CNN-based
ones. Furthermore, the optimized offloading mechanism ef-
fectively identifies samples for cloud processing, approaching
the theoretical performance of an oracle. In future work, we
plan to scale up experiments to evaluate performance in larger,
more complex scenarios and to explore independent offloading
decisions for local exits.

REFERENCES

[1] C. Zhang, M. Fiore, C. Ziemlicki, P. Patras, “Microscope: Mobile
Service Traffic Decomposition for Network Slicing as a Service,”
MobiCom, no. 38, pp. 1–14, April 2020.

[2] C. Zhang, P. Patras and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” in IEEE Communications Surveys and
Tutorials, vol. 21, no. 3, pp. 2224-2287, 2019.

[3] C. -X. Wang, M. D. Renzo, S. Stanczak, S. Wang and E. G. Lars-
son, “Artificial Intelligence Enabled Wireless Networking for 5G and
Beyond: Recent Advances and Future Challenges,” in IEEE Wireless
Communications, vol. 27, no. 1, pp. 16-23, February 2020.

[4] Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research
Challenges,” ACM Computing Surveys, vol. 55, No. 90, pp. 1-30, 2023.

[5] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,”
ICDCS, Singapore, pp. 234-244, 2020.

[6] V. Sciancalepore, X. Costa-Perez and A. Banchs, “RL-NSB: Rein-
forcement Learning-Based 5G Network Slice Broker,” in IEEE/ACM
Transactions on Networking, vol. 27, no. 4, pp. 1543-1557, August 2019.

[7] Y. Liu, J. Ding and X. Liu, “A Constrained Reinforcement Learning
Based Approach for Network Slicing,” 2020 ICNP, Madrid, Spain, pp.
1-6, 2020.

[8] A. Ehsanian and T. Spyropoulos, “Distributed LSTM-based Slice Re-
source Allocation for Beyond 5G Networks,” ICNC, Big Island, HI,
USA, 2024, pp. 868-874.

[9] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” ICDCS,
Atlanta, GA, USA, pp. 328-339, 2017.

[10] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez,
“DeepCog: Cognitive Network Management in Sliced 5G Networks with
Deep Learning,” INFOCOM, Paris, France, pp. 280-288, 2019.

[11] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Aztec: Anticipatory capacity allocation for zero-touch network slicing,”
INFOCOM, Toronto, Canada, pp. 794-803, 2020.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
CVPR, Boston, USA, pp. 1-9, 2015.

[13] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” ICPR, pp. 2464-
2469, 2016.

[14] Telecom Italia, “Milano Grid,” https://doi.org/10.7910/DVN/QJWLFU,
2015.

[15] T. Giannakas, T. Spyropoulos and O. Smid, “Fast and accurate edge
resource scaling for 5G/6G networks with distributed deep neural
networks,” WoWMoM, Belfast, United Kingdom, pp. 100-109, 2022.

[16] N. Liakopoulos, A. Destounis, G. Paschos, T. Spyropoulos, and P.
Mertikopoulos, “Cautious regret minimization: Online optimization with
long-term budget constraints,” PMLR, vol. 97, pp. 3944–3952, 2019.

[17] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” PMLR, vol. 97, pp.
3301–3310, 2019.

[18] K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: DNN Model
Slicing for Visual Analytics Containers at the Edge,” Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, pp. 179–194, 2019.


