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Abstract—The work considers the N -server distributed com-
puting scenario with K users requesting functions that are arbi-
trary multi-variable polynomial evaluations of L real (potentially
non-linear) basis subfunctions of a certain degree. Our aim is to
reduce both the computational cost at the servers, as well as the
load of communication between the servers and the users. To do
so, we take a novel approach, which involves transforming our
distributed computing problem into a sparse tensor factorization
problem F̄ = Ē ×1 D, where tensor F̄ represents the requested
non-linearly-decomposable jobs expressed as the mode-1 product
between tensor Ē and matrix D, where D and Ē respectively
define the communication and computational assignment, and
where their sparsity respectively allows for reduced communi-
cation and computational costs. We here design an achievable
scheme, designing Ē ,D by utilizing novel fixed-support SVD-
based tensor factorization methods that first split F̄ into properly
sized and carefully positioned subtensors, and then decompose
them into properly designed subtensors of Ē and submatrices
of D. For the zero-error case and under basic dimensionality
assumptions, this work reveals a lower bound on the optimal
rate K/N with a given communication and computational load.

Keywords—Distributed computing, MapReduce, sparse ten-
sor factorization, low-rank tensor approximation, tessellations,
tensor decomposition, random matrix theory, capacity, bulk
synchronous parallel.

I. INTRODUCTION

There is a growing demand for massive parallel comput-
ing approaches that effectively distribute computations across
distributed servers [1], [2]. To address this pressing need, nu-
merous works have introduced novel methods tackling various
aspects of distributed computing, including scalability [3]–[6],
privacy and security [7]–[13], completion time [14], as well as
latency and straggler mitigation [15]–[17], among others. For
a comprehensive overview of such related works, the reader
is encouraged to consult [18], [19].

Beyond these considerations, the renowned computation-
versus-communication tradeoff lies at the heart of distributed
computing as a foundational principle with far-reaching impli-
cations. This tradeoff emerges as a critical limiting factor in
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numerous distributed computing scenarios [20], [21], including
the practical settings of multi-user, multi-server distributed
computation of linearly-separable functions, addressing sev-
eral classes of computing problems, e.g., gradient coding [22]–
[25], linear-transform computation [26]–[28], matrix multipli-
cation, or multivariate polynomial computation [15], [29]–
[31], as well as training of large-scale machine learning
algorithms and deep neural networks with massive data [20],
where communication and computation are often the two
interdependent bottlenecks that significantly shape overall per-
formance.

While multi-user linearly-separable settings have been ex-
tensively studied from various perspectives, such as coding
theory [32]–[34], compressed sensing [35], and tessellation-
based schemes for fixed-support matrix factorization [36], to
our best knowledge, for the broader scenario of non-linearly
separable functions, which nicely captures several classes of
computing problems in approximation theory [37], [38], neural
networks [39], [40], non-linear optimization [41], the prior
work has not explored the coding gains and the achievable
bounds on the computation cost. This work is the first to
address non-linearly-separable functions.

A. Multi-User Non-Linearly Separable Distributed Computing

We focus on the very broad and arguably practical N -server
distributed computing framework with K users requesting
from distributed servers arbitrary multi-variable polynomial
evaluations of L real (potentially non-linear) basis subfunc-
tions of a certain degree, as we will detail below.

Our setting, as depicted in Figure 1, initially considers a
master node that coordinates, in three phases, a set of N
distributed servers that compute functions requested by the
K users. During the initial demand phase, each user k ∈ [K]
independently requests the computed output of a single real
function Fk(.). Under the real-valued non-linear separability
assumption1, these functions take the basic form

Fk(.) =
∑

p∈[P1]×...×[PL]

fk,p W p1−1
1 . . .W pL−1

L (1)

where Wℓ = fℓ(x), x ∈ D, denotes the real-valued output
file of fℓ(·) for a multi-variate input x from any domain set
D, fℓ(·) denotes a (basis or component) subfunction, and

1This nicely captures non-linearly separable functions, where each Fk(.),
taking L subfunctions as input, can be written as a non-linear combination
of L univariate basis subfunctions.



fk,p denotes a real-valued basis coefficient. Moreover, the
range of degrees for each basis subfunction Wℓ in each user’s
demand is equal to [0 : Pℓ − 1],∀ℓ ∈ [L]. In (1), each
basis subfunction fℓ(·) has a degree pℓ − 1 that introduces
a multiplication cost1 to computation. Hence, the cost of
computing the pℓ-th power of each fℓ(·) for each server is
considered a multiplication cost of pℓ versus the computation
time of fℓ(·). Capturing these multiplication costs enables us
to analyze the critical communication-computation tradeoff for
distributed computing of general multi-variable polynomials.

Subsequently, during the computing phase, the master as-
signs to each server n ∈ [N ], a set of subfunctions Sn ⊆ [L] to
compute locally2 and also assigns to each server n ∈ [N ], a set
of functions3 M ∈ 2

∏
ℓ∈Sn

[Pℓ] to generate the corresponding∏
ℓ∈Sn

W pℓ−1
ℓ from the computed output functions. M deter-

mines how to compute the powers of different subfunctions,
and how to multiply the output subfunctions computed locally
on each server. Then during the communication phase, each
server n forms signals

zn,t ≜
∑
p∈Pn

en,p,t
∏
ℓ∈Sn

W pℓ−1
ℓ , n ∈ [N ], t ∈ [T ] (2)

as dictated by the encoding coefficients en,p,t ∈ R, n ∈
[N ], t ∈ [T ], which we will design later on, where

Pn ≜ {p |
∏
ℓ∈Sn

W pℓ−1
ℓ is computed in server n} .

We note that pℓ = 1, ∀ℓ /∈ Sn, reflecting the cases where
given the absence of certain basis subfunctions, it does not
apply to consider their powers. The nth server subsequently
proceeds to transmit zn,t during time-slot t = 1, 2, . . . , T , to a
subset of users Tn ⊆ [K], via an error-free shared link. Finally,
during the decoding part of the last phase, each user k linearly
combines its received signals to get

F ′
k ≜

∑
n∈[N ],t∈[T ]

dk,n,tzn,t (3)

as dictated by the decoding coefficients dk,n,t ∈ R, n ∈
[N ], t ∈ [T ], k ∈ [K]. Naturally dk,n,t = 0,∀k /∈ Tn, simply
because user k ∈ [K] does not receive any symbols from
server n ∈ [N ] during any time t ∈ [T ]. Note that both
encoding and decoding coefficients are determined by the
master node after the demand phase, and thus are dependent on
the functions requested, but remain independent of the instance
of the input to the requested functions.

Furthermore, we consider computation, communication, and
multiplication costs

Γ ≜ max
n∈[N ]

|Sn| , ∆ ≜ max
n∈[N ]

|Tn| , (4)

1The cost of computing powers of each basis subfunction for each server
is considered as a multiplication cost.

2We will interchangeably use Sn to describe sets of indices of subfunctions,
as well as the subfunctions themselves.

32S means the power set of S, where we here consider the cardinality of
the range of degrees for basis subfunctions belonging to sets Sn.
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Fig. 1. The K-user, N -server, T -shot setting. Each server n com-
putes the subfunctions in Sn = {fin,1 (.), fin,2 (.), . . . , fin,|Sn| (.)} and

multiplicative terms f
pin,1

−1

in,1
(.)fin,2 (.)

pin,2
−1

. . . fin,|Sn| (.)
pin,|Sn|−1

where (1, . . . , 1, pin,1 , 1, . . . , 1, pin,2 , 1, . . . 1, pin,|Sn| , 1) communicates
to users in Tn,t, under computational constraint |Sn| ≤ Γ ≤ L, communica-
tion constraint |Tn| ≤ ∆ ≤ K and multiplication constraint Λℓ ≤ Pℓ, ∀ℓ ∈
Qi, yielding a system with normalized constraints γ = Γ

L
, δ = ∆

K
, λℓ = Λℓ

Pℓ
,

where γ, δ, λℓ ∈ [0, 1].

Λℓ ≜ max
p∈Pn

pℓ − min
p∈Pn

pℓ + 1 (5)

respectively representing the maximum number of basis sub-
functions to be locally computed at any server4, the maximum
number of users that a server can communicate to, and
finally, the range of powers of basis subfunctions that must
be computed locally at each server among all multiplicative
statements in (1). After normalization, we here consider the
normalized costs

γ ≜
Γ

L
, δ ≜

∆

K
, λℓ ≜

Λℓ

Pℓ
. (6)

The above three parameters are bounded. In brief, γ is the
fraction of subfunctions that must be computed locally, δ is
the fraction of available links to be activated, and λℓ, ℓ ∈ [L]
is the normalized range of degrees of each basis subfunction
to be computed by each server. Having γ = 1 corresponds
to the centralized scenario of having to locally calculate all
subfunctions, while δ = 1 matches an extreme parallelized
scenario that activates all available communication links. From
(5), when Λℓ = Pℓ = 2, leading to λℓ = 1,∀ℓ ∈ [L], we cap-
ture the special case of multi-user linearly separable settings
of [36]. In particular, it has been shown in Proposition 2 that
the proposed scheme in this paper surpasses the performance
of the initial Tessellated Distributed computing scheme due to
better computational resource allocations.

In a system defined by K,N , and L, our goal is to find
schemes that can recover any set of desired functions without
error, with the smallest possible computation, communication,

4We highlight that the constraints Γ, ∆, and Λℓ are strict, meaning they
must be satisfied for every instance of the problem.



and multiplication loads γ, δ, and λℓ. To do so, we must
carefully decide which subfunctions each server computes, and
which combinations of computed outputs each server sends to
which users. Having to serve many users with fewer servers
naturally places a burden on the system (suggesting higher
γ, δ, and λℓ), bringing to the fore the concept of the system
rate

R ≜
K

N
(7)

and the corresponding system capacity C representing the
supremum of all rates.

B. Connection to sparse tensor factorization

Toward analysing our distributed computing problem, we
can see from (1) that the desired functions are fully repre-
sented by a tensor F̄ ∈ RK×P1×...×PL of the aforementioned
coefficients fk,p. With F̄ in place, we must decide on the
computation-assignment and communication (encoding and
decoding) protocol.

As we have seen in [42], for the error-free case, this task
is equivalent — directly from (2),(3)— to solving a (sparse)
tensor factorization problem of the form

Ē ×1 D = F̄ (8)

where, as we will specify later on, the NT × P1 × . . . × PL

computing-and-encoding tensor Ē holds the coefficients en,p,t
from (2), while the K ×NT communication matrix D holds
the decoding coefficients dk,n,t from (3). Furthermore, we aim
to decompose a given tensor F̄ as a mode-1 product of a tensor
Ē and a matrix D, satisfying sparsity constraints γ, δ, and λℓ.
Particularly, we leverage tensors as high-dimensional arrays to
precisely capture the multiplicative terms associated with each
basis subfunction in each user’s demands.

Summary of our contributions: Having made the connec-
tion between tensor factorization and distributed computing,
we here identify the fixed support tensor factorization problem
to be key in the resolution of our real-valued multi-user
distributed computing problem.

In this paper, we only focus on the lossless case. By
employing an achievable scheme using novel concepts and
algorithms introduced in [42], [43], Theorems 1 and 2 establish
the single-shot system capacity for both cases Pℓ > Λℓ and
Pℓ = Λℓ, where these general cases are interesting because
the tessellation patterns we design must accommodate tiles of
various sizes and shapes.

C. Paper Organization

The paper is organized as follows. Section II formulates the
system model for multi-user distributed computing of non-
linearly-separable functions. Section III addresses the error-
free case, presenting schemes for single-shot scenarios, leading
to Theorems 1 and 2. We compare our tensor-based solutions
with the matrix approach in [36], highlighting significant gains
in computation cost and server requirements for both cases
where Pℓ > Λℓ and Pℓ = Λℓ (cf. Propositions 1 and 2).
Finally, Section IV concludes the paper.

Notations. We define [n] ≜ {1, 2, . . . , n} and p ≜
(p1, . . . , pℓ, . . . , pL). [[a : b]] demonstrates the ordered set of
integers, ranging from a to b. For matrices A and B, [A,B]
indicates the horizontal concatenation of the two matrices. For
any matrix X ∈ Rm×n, then X(i, j), i ∈ [m], j ∈ [n], repre-
sents the entry in the ith row and jth column, while X(i, :), i ∈
[m], represents the ith row, and X(:, j), j ∈ [n] represents
the jth column of X. For two index sets I ⊂ [m],J ∈ [n],
then X(I,J ) represents the submatrix comprised of the rows
in I and columns in J . We will use supp(x⊺) to represent
the support of some vector x⊺ ∈ Rn, describing the set
of indices of non-zero elements, and supp(X) to represent
the support of some matrix X ∈ Rm×n, describing the set
of two-dimensional indices (i, j) ∈ [m] × [n] of non-zero
elements. I(X ,Y) ∈ Rm×n represents a matrix that all of its
elements are zero except the elements, I(i, j), i ∈ X , j ∈ Y .
Supp(A) ∈ {0, 1}m×n,A ∈ Rm×n, is a binary matrix
representing the locations of non-zero elements of A. All the
above matrix notations are extended to tensors. For tensors Ē1
and Ē2, [Ē1, Ē2]1 represents the mode-1 concatenation of the
two tensors. The operation ⊙ represents a Hadamard product.
For a real number x ∈ R, ⌈x⌉, ⌊x⌋, represents respectively
the ceiling and floor function of x. X̄ represents a tensor.
×n, n ∈ N is the mode-n tensor product and ×[[m]]

[[n]] represents
the generalized tensor contraction product operation. 1 is the
indicator function and 1(ℓ ∈ Q) then returns 1 if ℓ ∈ Q.
Subset([L],Γ) denotes the subsets of L subfunctions with car-
dinality Γ. stack1 stands for joining multiple tensors together
along dimension 1, creating a higher-dimensional tensor.

II. PROBLEM FORMULATION

We here describe in detail the main parameters of our model,
defining matrix D and tensors Ē , F̄ and the various metrics,
rigorously linking the distributed computing problem and the
factorization in (8) for our error-free case. Let us consider

f = [F1, F2, . . . , FK ]⊺ ∈ RK , (9)

F̄k(p) = fk,p ∈ RP1×P2×...×PL , k ∈ [K] , (10)

W̄(p) ≜ W p1−1
1 W p2−1

2 . . .W pL−1
L ∈ RP1×P2×...×PL ,

∀p ∈ [P1]× [P2]× . . .× [PL] (11)

where f represents the vector of desired function outputs Fk

from (1), F̄k represents the tensor of function coefficients fk,p
from (1) for the function requested by user k, and W̄ denotes
the tensor of multiplicative terms of the output files Wℓ = fℓ(·)
again from (1). Then recalling the encoding coefficients en,p,t
and transmitted signals zn,t from (2), as well as the decoding
coefficients dk,n,t and decoded functions F ′

k from (3), we have

ēn,t(p) ≜ en,p,t
∏
ℓ∈Sn

W pℓ−1
ℓ , ∀p ∈ Pn ,

ēn,t ∈ RP1×...×PL , n ∈ [N ], t ∈ [T ] (12)

and

zn ≜ [zn,1, . . . , zn,T ]
⊺ ∈ RT , n ∈ [N ] ,



Ēn ≜ stack1(ēn,1, . . . , ēn,T ) ∈ RT×P1×...×PL , (13)

dk,n ≜ [dk,n,1, . . . , dk,n,T ]
⊺ ∈ RT , k ∈ [K], n ∈ [N ] , (14)

dk ≜ [d⊺
k,1, . . . ,d

⊺
k,N ]⊺ ∈ RNT , k ∈ [K] (15)

and thus from (9), we have the output vector taking the form

f = stack1(F̄1, F̄2, . . . , F̄K)×[[1:L]]
[[2:L+1]] W̄ (16)

as well as the transmitted vector by server n taking the form

zn = Ēn ×[[1:L]]
[[2:L+1]] W̄ . (17)

This allows us to form the tensors

F̄ ≜ stack1(F̄1, . . . , F̄K) ∈ RK×P1×P2×...×PL , (18)

Ē ≜ [Ē1, . . . , ĒN ]1 ∈ RNT×P1×...×PL , (19)

D ≜ [d1, . . . ,dK ]⊺ ∈ RK×NT (20)

where F̄ represents the K × P1 × . . . × PL tensor of all
function coefficients across all the users, Ē represents the
aforementioned NT×P1×. . .×PL computing tensor capturing
the computing and linear encoding tasks of servers in each
shot, and D represents the K × NT communication matrix
capturing the communication protocol and the linear decoding
task done by each user. All presented results and schemes
assume our multi-user non-linearly-separable distributed com-
puting problem and assume, in their entirety, linear encoding
at the servers and linear decoding at the users.

To see the transition to the tensor factorization problem, we
first note that from (2) and (17), the overall transmitted vector
z ≜ [z⊺1 , z

⊺
2 , . . . , z

⊺
N ]⊺ ∈ RNT takes the form

z = [Ē1, . . . , ĒN ]1 ×[[1:L]]
[[2:L+1]] W̄ = Ē ×[[1:L]]

[[2:L+1]] W̄ (21)

and then that given the decoding phase from (3), each retrieved
function takes the form

F ′
k = d⊺

kz (22)

thus resulting in the vector of all retrieved functions taking the
form f ′ = [d1,d2, . . . ,dK ]⊺z. We aim to make sure that

f ′ = f . (23)

Directly from the above and as in (8), we see that for the error-
free case, we must solve the tensor factorization problem

F̄ = Ē ×1 D . (24)

In terms of the corresponding connection to the sparsity of D
and Ē , we recall from (4) our metrics Γ = maxn∈[N ] |Sn|,
∆ = maxn∈[N ] |Tn|, and Λℓ = max

p∈Pn

pℓ − min
p∈Pn

pℓ + 1,

which directly from (15)–(17) and from (18)–(20), imply the
communication constraint as

max
n∈[N ]

| ∪T
t=1 supp(D(:, (n− 1)T + t))| ≤ ∆ , (25)

and the computation constraint as

max
n∈[N ]

∑
ℓ∈Qi

|1(∪T
t=1supp(Ē((n− 1)T + t, :, . . . , :︸ ︷︷ ︸

ℓ−1 times

, [2 : Pℓ],

:, . . . , :︸ ︷︷ ︸
L−ℓ times

) ̸= ∅)| ≤ Γ (26)

and the multiplication constraint as

∥Ē(p1, p2, . . . , pℓ−1, :, pℓ+1, . . . , pL)∥0 ≤ Λℓ, ∀ℓ ∈ Qi ,

∀p ∈ [P1]× [P2]× . . .× [PL]

and thus we see how the normalized costs δ, γ, λℓ from (6)
form the upper bounds on the fraction of non-zero elements
of the columns of D, special non-zero support of subtensors
of Ē , and non-zero elements of each 1-dimensional subtensors
of Ē , respectively.

Finally, from (7), we recall the system rate R = K
N , the

corresponding system capacity C representing the supremum
of all rates for error-free function reconstruction.

III. MAIN RESULTS

We present the achievable rate results for the proposed
distributed computing settings for the simplified single-shot
cases, assuming δ, λℓ ∈ N in Theorem 1 and δ ∈ N, λℓ = 1
in Theorem 2, respectively. For the general multi-shot cases,
we refer the reader to Theorem 3 for δ, λℓ /∈ N and Theorem
4 for δ /∈ N, λℓ = 1 both in Appendix C available online
in [44]. All the results hold without any restriction on the
dimensions and under the assumption that each subtensor
of F̄ has full-rank, a condition that is easily justified in
our real-function settings. Particularly, we consider a mode-
1 matrix unfolding1 of tensor F̄ and use its rank properties
to elaborate the number of required servers as the sum of the
total number of tiles with different maximum representative
rank-one supports. Since in general we have Γ ≤ L, our tiles
have some combinatorial intersections, where we introduce
a combinatorial optimization based on a bipartite matching
approach to assign the intersecting subtitles to one of the tiles
for each Qi ∈ Subset([L],Γ), ∀i ∈ [

(
L
Γ

)
]. This procedure

results in tiles with dimensions |Xi,opt| and |X ′′
i,opt| for the

cases Λℓ|Pℓ and Λℓ ∤ Pℓ, respectively. All the results hold
under the basic disjoint support assumption on matrix D and
tensor Ē (cf. Definition 9 ).

Theorem 1. The optimal achievable rate of the lossless
K,N, T = 1, L, Pℓ > Λℓ,Γ,∆,Λℓ, ℓ ∈ Qi distributed
computing system for the broad settings in which ∆|K, Λℓ|Pℓ

takes the form C = K/Nopt, where

Nopt ≤
K

∆

(LΓ)∑
i=1

(
min

(
∆,
∏
ℓ∈Qi

Λℓ

) ∏
ℓ∈Qi

(Pℓ

Λℓ
− 1
)

+min
(
∆, |Xi,opt|

) ∏
ℓ∈Qi\Li

(Pℓ

Λℓ
− 1
))

(27)

where Li ≜ {ℓ ∈ Qi | jℓ = 1}, and jℓ is the index in tensor
F̄ corresponding to the ℓth basis subfunction.

1Unfolding, also referred to as matricization or flattening, is the process of
rearranging the elements of a multi-dimensional array into a matrix format.

https://zenodo.org/records/14721265?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6Ijc0YTliMDdmLWFmMDUtNGI0Ni04NjQyLWY3ODQwNGExYzg3NiIsImRhdGEiOnt9LCJyYW5kb20iOiJlN2Y5MjM5ODJjOTFkMDU4ZjJmNzE4ZjIyMmViYmNmOCJ9.AxPgnmZjYiflGUXamoM2jmJLhZThu4RjfVxjXTxtFTEmw8h9XGGMfveXPHBmbFbRvOM9hVC9qXsMky-ftACn2Q


Proof. Due to lack of space (partly because our proofs require
a sizable set of definitions), we choose to present the proof
in the supplementary document (cf. Appendix C available
online in [44].), which describes the achievability of the
corresponding decomposition Ē ×1 D = F̄ , and how this is
translated into our distributed computing setting while abiding
by the constraints communication cost δ, computation cost γ,
and multiplication cost λℓ. To provide some insight, we present
a proof sketch.

Sketch of the proof: The proof consists of an achievable
scheme, consisting of three main steps. In the first step,
the master node divides F̄ into properly sized hypercubic
subtensors (corresponding to ‘tiles’) where the tiles must
remain disjoint, cover all elements of F̄ , and maintain a width
limit ∆ and modal constraint Λℓ, ∀ℓ ∈ Qi for Γ modes in
subset Qi of L modes. In the second step, the master node
performs a multilinear singular value decomposition (SVD)
for each tile (for each of the aforementioned subtensors of
F̄), so that this SVD defines the way each tile is the mode-
1 product of a subtensor by a submatrix (the so-called left
factor and right factor of the multilinear SVD). Finally, in the
third step, the left and right factors are carefully positioned to
form the desired Ē and D that in turn define the computation
and communication protocol of the distributed computing
problem.

We next argue in Proposition 1 that considering a potentially
large dimension L in multi-user linearly separable settings
[36] to accommodate a greater number of basis subfunctions
results in a higher total computational load per server. In
contrast, our proposed model achieves improved efficiency
in total computation cost by fewer basis subfunctions, each
with a bounded degree, captured by the multiplication cost.
Our comparison assumes that the time of computing a basis
subfunction is the same as the time of computing one power
of its output.

Proposition 1. In a distributed computing system with
K,N,∆, L, Pℓ = P > 2,Λℓ = Λ, ∀ℓ ∈ [L], considering the
tensor solution in this work with a computation cost Γ = L
and the multiplication costs Λ, the total computation cost is
upper bounded by NL(Λ + 1), which linearly scales with L.
While the matrix approach of [36] with a computation cost
Γ′ results in an upper bound N

(
Γ′+

( (P−2)(P−1)
2

)L)
on the

total computation cost, which exponentially grows with L.

Proof. See Appendix E available online in [44].

Theorem 2. The optimal achievable rate of the lossless
K,N, T = 1, L, Pℓ = Λℓ,Γ,∆,Λℓ, ℓ ∈ Qi distributed
computing system for the broad settings in which ∆|K takes
the form C = K/Nopt, where

Nopt ≤
K

∆

(LΓ)∑
i=1

min
(
∆, |Xi,opt|

)
. (28)

We next discuss under which conditions our proposed tensor
approach’s performance outperforms the matrix approach’s
result in [36] for the scenario where Pℓ = Λℓ = 2,∀l ∈ [L].

Proposition 2. In a distributed computing system with K,∆ >
1, L, Pℓ = Λℓ = 2, ∀ℓ ∈ [L], letting NM and NT denote the
required number of servers using the matrix approach in [36]
and the proposed tensor approach in this work, respectively,
we have NM > NT in the following regimes:

• Asymptotic case (large L):
In this case, NM > NT happens only if ∆ grows rapidly
relative to L and Γ, i.e.,{

∆ > L
Γ when 1 < ∆ ≤ Γ ,

Γ2 > L when ∆ > Γ .
(29)

• Non-asymptotic case (small L):
In this case, NM > NT holds if and only if:

∆ >
Γ ·
(
L
Γ

)
Γ−1∑
d=1

(
L
d

) when 1 < ∆ ≤ Γ .

In the case of large L, if we set Γ = O(
√
L), our scheme

can achieve γ = O(1/
√
L), which becomes arbitrarily small

as L increases. This corresponds to a broad asymptotic regime
where κ ≜ K/L remains fixed, and L → ∞. In this
scenario, to meet (29), the parameter δ only needs to satisfy
the condition δ > O(κ/

√
L), which also captures an arbitrarily

small normalized communication cost.

Proof. See Appendix F.

IV. CONCLUSION

In this work, we investigated the fundamental limits of
lossless multi-user distributed computing of real-valued multi-
variable polynomials by making clear connections to the
problem of fixed support tensor factorization and tessellation
theory. The error-free system capacity C = K

Nopt
, as presented

in Theorems 1 and 2, identifies the minimal computational
and communication resources γ, δ needed to support a specific
number of users and subfunctions, considering a normalized
multiplication cost λℓ. The general results for arbitrary pa-
rameters T,K,L,∆,Γ,Λℓ, ℓ ∈ [L] are detailed in Theorem 3
for the case Pℓ > Λℓ, and in Theorem 4 for Pℓ = Λℓ. Both
theorems are elaborated in Appendix C available online in
[44].

Our approach achieves an exponential reduction in compu-
tation cost compared to the Tessellated Distributed Computing
approach when Pℓ > Λℓ while having equal computation
times. Additionally, it outperforms the previous scheme for
large L in the case where P = Λ = 2, leveraging a bipartite
matching algorithm for efficient resource allocation.

Our future directions include exploring the lossy case,
where the users can recover the requested functions with a
bounded error, as well as the converse bounds on the optimal
number of servers, revealing a fundamental tradeoff between
communication, computation, and multiplication costs.
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APPENDIX

A. Basic Tensor Definitions

Definition 1. An order-N tensor, X̄ ∈ RI1×···×IN , is a multi-
way array with N modes, with the n-th mode of dimensional-
ity In, for n ∈ [N ]. Special cases of tensors include matrices as
order-2 tensors (e.g., X̄ ∈ RI1×I2 ), vectors as order-1 tensors
(e.g., x ∈ RI1 ), and scalars as order-0 tensors (e.g., x ∈ R).

Definition 2. A mode-n unfolding of a tensor is the pro-
cedure of mapping the elements from a multidimensional
array to a two-dimensional array (matrix). Conventionally,
such a procedure is associated with stacking mode-n fibers
(modal vectors) as column vectors of the resulting matrix.
For instance, mode-1 unfolding of X̄ ∈ RI1×I2×···×IN is
represented as X̄(1) ∈ RI1×I2I3···IN , and given by

X̄(1)

[
i1, i2i3 . . . iN

]
= X̄ [i1, i2, . . . , iN ] . (30)

Note that the overlined subscripts refer to linear indexing (or
Little-Endian) [45], given by

i1i2 . . . iN = 1 +

N∑
n=1

[
(in − 1)

n−1∏
n′=1

In′

]
= 1 + i1 + (i2 − 1)I1 + · · ·+ (iN − 1)I1 . . . IN−1.

(31)

Definition 3. Any given vector x ∈ RI1I2...IN can be folded
into an N -th order tensor, X̄ ∈ RI1×I2×···×IN , with the
relation between their entries defined by

X̄ [i1, i2, . . . , iN ] = xi, ∀in ∈ [In] (32)

where i = 1 +
∑N

n=1(in − 1)
∏n−1

k=1 Ik.

Definition 4. Consider grouping J order-N tensor samples,
X̄ ∈ RI1×···×IN , so as to form an order-(N + 1) data tensor,
Ȳ ∈ RI1×···×IN×J . This stacking operation is denoted by

Ȳ = stackN+1

(
X̄ [1], . . . , X̄ [J ]

)
. (33)

In other words, the so combined tensor samples introduce
another dimension, the (N + 1)-th mode of Ȳ , such that the
mode-(N + 1) unfolding of Y becomes

Ȳ(N+1) =
[
vec(X̄ [1]), . . . , vec(X̄ [J ])

]
. (34)

Definition 5. The mode-n product takes as input an order-
N tensor, X̄ ∈ RI1×I2×···×IN , and a matrix, A ∈ RJ×In , to
produce another tensor, Ȳ , of the same order as the original
tensor X̄ . The operation is denoted by

Ȳ = X̄ ×n A (35)

where Ȳ ∈ RI1×···×In−1×J×In+1×···×IN . The mode-n product
is comprised of 3 consecutive steps:

X̄ → X̄(n) ,

Ȳ(n) = AX̄(n) ,

Ȳ(n) → Ȳ .

(36)

Definition 6. Tensor Contraction Product (TCP) is at the core
of tensor decompositions, an operation similar to the mode-
n product, but the arguments of which are multidimensional
arrays that can be of a different order. For instance, given an
N -th order tensor X̄ ∈ RI1×···×IN and another M -th order
tensor Ȳ ∈ RJ1×···×JM , with common modes In = Jm, then
their (n,m)-contraction denoted by ×m

n , yields a third tensor
Z̄ ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM of
order (N +M − 2), Z̄ = X̄ ×m

n Ȳ with entries

zi1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM

=
∑

in∈[In]

xi1,...,in−1,in,in+1,...,iN yj1,...,jm−1,in,jm+1,...,jM .

(37)

The overwhelming indexing associated with the TCP oper-
ation in (37) quickly becomes unmanageable for larger tensor
networks, whereby multiple TCPs are carried out across a
large number of tensors. Manipulation of such expressions is
prone to errors and prohibitive to manipulation of higher-order
tensors.

Definition 7. Generalized Tensor Contraction Product is an
operation similar to TCP, but the common modes of two
tensors are considered as the ordered sets of integers. For
instance, given an N -th order tensor X̄ ∈ RI1×···×IN and
another M -th order tensor Ȳ ∈ RJ1×···×JM , with common
modes Ip = Jq, ∀p ∈ [[n : N ]], q ∈ [[m : M ]], then
their ([[n : N ]], [[m : M ]])-contraction denoted by ×[[m:M ]]

[[n:N ]] ,
yields a third tensor Z̄ ∈ RI1×···×In−1×J1×···×Jm−1 of order
(n+m− 2), Z̄ = X̄ ×[[m:M ]]

[[n:N ]] Ȳ with entries

zi1,...,in−1,j1,...,jm−1 =
∑

ip∈[Ip]

xi1,...,in−1,ipyj1,...,jm−1,ip

where ip = [[in : iN ]] and Ip = [[In : IN ]].

Quickly recall that for a L+ 1 dimensional tensor Ā, then
Ā(:, . . . , n) represents a L dimensional subtensor and B(:, n)
for a matrix B is its nth column, Supp(A)(Supp(Ā)) is the
binary matrix (tensor) indicating the support of A (Ā). Also,
when we refer to a support constraint, this will be in the
form of a binary matrix (tensor) that indicates the support
(the position of the allowed non-zero elements) of a matrix
(tensor) of interest [36].

Before proceeding with the scheme, we here also give a
very brief reminder on the basic concepts regarding SVD
decompositions.

B. A Primer on Multilinear SVD

The multilinear singular value decomposition (MLSVD)
extends the concept of the matrix singular value decomposition
(SVD) into the multilinear domain [42]. This decomposition



provides a powerful tool for analyzing tensors and obtaining
low-rank multilinear approximations.

For matrices, the SVD is well-known and expressed as

M = UΣV⊺ , (38)

where M ∈ RJ1×J2 is an arbitrary real-valued matrix, Σ ∈
RI1×I2 is a diagonal matrix with the entries σ1 ≥ σ2 ≥ . . . ≥
σmin(I1,I2) ≥ 0 in descending order, and U ∈ RJ1×I1 and
V ∈ RJ2×I2 are orthogonal matrices.

Using mode-n tensor-matrix products, we have:

M = Σ×1 U×2 V
⊺ . (39)

The MLSVD generalizes this decomposition to higher-order
tensors. In the literature [42], it is also referred to as the
higher-order SVD or Tucker decomposition, though “Tucker
decomposition” has evolved into a broader term. The MLSVD
of a N th order tensor is represented as

T̄ = S̄ ×1 U
(1) ×2 U

(2) . . .×N U(N) , (40)

where T̄ ∈ RJ1×J2×...×JN , S̄ ∈ RI1×I2×...×IN , and U(n) ∈
RJn×In , ∀n ∈ [N ].

Similar to the matrix case, where U and V serve as
orthonormal bases for the column and row spaces, the MLSVD
computes N orthonormal bases U(n) ∈ RJn×In , ∀n ∈ [N ] for
the N subspaces of mode-n vectors. These bases are analogous
to those in the matrix SVD. The MLSVD essentially interprets
a tensor as a collection of mode-n vectors and performs the
matrix SVD for each mode. The subtensors S̄in=α of S̄ are
obtained by fixing the nth index to α with the following
properties:

• All-orthogonality1: Subtensors S̄in=α and S̄in=β are or-
thogonal for all possible n, α, β if

⟨S̄in=α, S̄in=β⟩ = 0 when α ̸= β , (41)

where the scalar product of two tensors T̄ , S̄ ∈
RI1×...×IN is defined as

⟨T̄ , S̄⟩ ≜
∑
i1

. . .
∑
iN

ti1...iN si1...iN , (42)

where t and s represent the elements of tensors T̄ and
S̄, respectively.

• Ordering:

σ
(n)
1 ≥ σ

(n)
2 ≥ . . . ≥ σ

(n)
In

≥ 0 , (43)

where symbols σ(n)
i represent the n-mode singular values

of S̄, and are equal to the Frobenius-norms ∥S̄in=i∥, ∀i ∈
[In], where the Frobenius-norm of tensor T̄ is described
by

∥T̄ ∥ ≜ ⟨T̄ , T̄ ⟩ . (44)

The n-rank of a tensor can be examined using matrix-based
methods. The rank of a higher-order tensor follows the fact
that a rank-n matrix can be decomposed as a sum of n rank-1

1Arrays with a scalar product of zero are considered orthogonal.

elements. The n-mode vectors of T̄ are the column vectors of
the matrix unfolding T̄(n). We thus have:

rankn(T̄ ) = rank(T̄(n)) . (45)

C. Scheme for Lossless Reconstruction and Achievability
Proof for Theorem 3

We proceed to describe the design of the communication
matrix D and the computing tensor Ē that yield Ē ×1D = F̄ ,
while maintaining N,T as well as a maximum of ∆ non-zero
elements in any column of D and a maximum of Λℓ non-zero
elements in any row of subtensors of Ē for any subset of L
subfunctions with cardinality Γ. These constraints guarantee
that each of the N servers can locally calculate up to a range
Λℓ of Γ subfunctions and can engage in communication with
at most ∆ users. The design borrows concepts and definitions
from the blockwise SVD approach of [43], generalized to the
tensor scenario in [42].

In this proof we first in Part C1 begin with defining the n-th
rank-one contribution support, representative rank-one support,
or tile and their related parameters. These tiles are actually
classes of rank-one contribution supports which shows how
any support constraint on D, Ē contributes to the supports on
Ē ×1 D. The aforementioned correspondence is shown via
Lemma 1. Then in Part C2, we show how to design the tiles
for the product matrix Ē×1D, create and fill the non-zero tiles
in D and Ē and place the filled tiles in D and in Ē for both
single-shot. The number of servers required for the single-shot
required the rank of each tile to the servers and then summing
the ranks over all tiles. Example 1 illustrates the performance
of our scheme in the cases where ∆|K,Λℓ|Pℓ, and T = 1.

1) Basic Concepts and Definitions: We first present the
following definitions2.

Definition 8 ( [43]). Given two support constraints I ∈
{0, 1}K×NT and J̄ ∈ {0, 1}NT×P1×P2×...×PL , then for any
n ∈ [NT ], we refer to S̄n(I, J̄ ) ≜ J̄ (n, :, . . . , :)×1 I(:, n) as
the n-th rank-one contribution support.

We note that when the supports are implied, we may
shorten S̄n(I, J̄ ) to just S̄n. The aforementioned I and J̄
will generally represent the support of D and Ē respectively,
while S̄n(I, J̄ ) will generally capture some of the support of
Ē ×1D and thus of F̄ . We have the following lemma for this.

Lemma 1. For I ≜ supp(D) and J̄ ≜ supp(Ē), then

∪NT
n=1S̄n(I, J̄ ) = ∪NT

n=1J̄ (n, :, . . . , :)×1 I(:, n)

⊇ supp(Ē ×1 D) . (46)

Proof. The above follows from Definition 8 and from the fact
that Ē ×1 D =

∑NT
n=1 Ē(n, :, . . . , :)×1 D(:, n).

We also need the following definitions.

2We quickly recall that for a matrix A, A(:, n) represents its n-th column,
and for a Tensor T̄ , T̄ (n, :, . . . , :) demonstrates its n-th row, supp(A) the
binary matrix indicating the support of A, while for a vector a, then supp(a)
represents the set of indices of a with non-zero elements.



Definition 9. (Disjoint Support Assumption.) We say that
matrix D ∈ RK×NT and tensor Ē ∈ RNT×P1...×PL , ac-
cept the disjoint support assumption if and only if for any
two columns D(:, i),D(:, i′), i, i′ ∈ [NT ] of D and the
respective two subtensors Ē(i, :, . . . , :︸ ︷︷ ︸

L times

), Ē(i′, :, . . . , :︸ ︷︷ ︸
L times

) of Ē , then

supp(Ē(i, :, . . . , :)×1D(:, i)) = supp(Ē(i′, :, . . . , :)×1D(:, i′))
or supp(Ē(i, :, . . . , :) ×1 D(:, i)) ∩ supp(Ē(i′, :, . . . , :) ×1 D(:
, i′)) = ∅.

Definition 10. Given two supports I ∈ {0, 1}K×NT and J̄ ∈
{0, 1}NT×P1×P2×...×PL , the equivalence classes of rank-one
supports are defined by the equivalence relation i ∼ j on
[NT ], which holds if and only if S̄i = S̄j , as represented in
Figure 2.

The above splits the columns of D (and correspondingly
the rows of Ē) into equivalence classes such that i ∼ j holds
if and only if J̄ (i, :, . . . , :)×1 I(:, i) = J̄ (j, :, . . . , :)×1 I(:, j).

Definition 11. For two supports I ∈ {0, 1}K×NT , J̄ ∈
{0, 1}NT×P1×P2×...×PL , and for C being the collection of
equivalence classes as in Definition 10, then for each class
P ∈ C, we call S̄P to be the representative rank-one support
of class P , which will also be called the tile labeled1 by
P . Furthermore for each tile S̄P , let rP ≜ I(:, n), n ∈ P
(resp. cP ≜ J̄ (n, :, . . . , :), n ∈ P) be the corresponding
component column (resp. component row) of the representative
rank-one support. Finally, RP ≜ supp(rP) ⊂ [K] describes
the set of the indices of the non-zero elements in rP , while
CP ≜ supp(cP) ⊂ [P1]×. . .×[PL] describes the set of indices
of the non-zero elements in cP . This is illustrated in Figure 3.

Definition 12. For every set C′ ⊆ C of equivalence classes,
let us define the union of the representative rank-one supports
SC′ ≜ ∪P∈C′ S̄P to be the point-wise logical OR of the
corresponding S̄P .

In the above, SC′ is simply the area of the product tensor
covered by all the tiles P in C′. Furthermore, we have the
following definition.

Definition 13 ([43]). The maximum rank of a representative
rank-one support of class P ⊂ C is

rP ≜ min(|CP |, |RP |) . (47)

The above simply says that for the case of I = supp(D)
and J̄ = supp(Ē), then the part of tensor Ē ×1 D covered by
tile S̄P can have rank which is at most rP .

With the above in place, we proceed to describe the method
used to design the matrix D and the tensor Ē .

2) Construction of D, Ē: The steps will involve
• Designing the sizes of the tiles for the product tensor

Ē ×1 D, and placing them.
• Creating and filling the non-zero tiles in D and Ē .
• Placing the filled tiles in D and in Ē

1Note that S̄n = S̄P for any n ∈ P . Furthermore, the term tile will be
used interchangeably to represent both S̄P and P .

Fig. 2. The figure on the left illustrates the support constraints I and J̄ on
D and Ē respectively. The constraints I(:, 1) and J̄ (1, :, :) on the columns
and rows of D and Ē respectively are colored green, I(:, 2) and J̄ (2, :, :)
are colored cyan and I(:, 3) and J̄ (3, :, :) are colored red. The product of
a column with a row of the same color, yields the corresponding rank-one
contribution support S̄n(I, J̄ ), n = 1, 2, 3, as described in Definition 8, and
as illustrated on the right side of the figure.

Fig. 3. This figure illustrates three different rank-one contribution supports
S̄1, S̄2, S̄3, where the first two fall into the same equivalence class S̄P1 =
S̄1 = S̄2, while S̄P2 = S̄3.

We first address the case of T = 1, which we then generalize
to larger T . There will also be a clarifying example that
follows the description of the design.

3) Designing D, Ē for the case of T = 1:
a) Step 1: Designing the sizes of the tiles for the

K × P1 × . . . × PL product tensor Ē ×1 D, and placing the
tiles: We initially partition the set of equivalent classes C (cf.
Definition 10) into the following set of equivalence classes

C ≜ {PQi
|RPQi

= [1 + (k − 1)∆ : min(k∆,K)],

CPQi
=

∏
ℓ∈[L]

[1] ∪ (1(ℓ ∈ Qi)× [1 + (jℓ − 1)Λℓ :

min(jℓΛℓ, Pℓ)]),

∀(k, j1, . . . , jL) ∈ [⌈K
∆
⌉]× [⌈P1

Λ1
⌉]× . . .× [⌈PL

ΛL
⌉],

Qi = {i1, . . . , iΓ} ⊆ [L], |Qi| = Γ, ∀i ∈ [

(
L

Γ

)
]} (48)

where RPQi
are the indices of the corresponding columns of

I, CPQi
are the indices of the corresponding rows of J̄ , which

are defined in Definition 11, and jℓ is the corresponding index
to the ℓth subfunction in tensor F̄ . To cover all the possibilities
for our tensor-based tiling problem, we first consider the
broader scenario where Pℓ > Λℓ, ∀ℓ ∈ [L] and find the general
form for the required number of servers Nopt as the sum of the
total number of tiles with different maximum representative
rank-one supports. We then consider the special case where
Pℓ = Λℓ and evaluate the required number of servers similarly.



To decompose the high-dimensional tiles in this problem,
we consider the multilinear SVD approach, detailed in Ap-
pendix B, which is based on the matrix SVD on mode-1
unfolding of tensor F̄ = Ē ×1 D, described as

F̄(1) ∈ RK×(P1...PL) .

We then use the rank properties of the matrix unfolding of a
tensor, where we have

rank(F̄) = rank(F̄(1)) .

Despite having L subfunctions, the computation cost Γ re-
stricts the servers to compute up to Γ subfunctions, which
is equivalent to having Γ-dimensional tiles with some com-
binatorial intersections, described as subtiles. We, therefore,
need to find such subtiles and assign them to only one of
the existing tiles with the corresponding indices CPQi

in
different hyperplanes corresponding to each Qi to ensure
disjoint support assumption for SVD-decomposition. To that
end, we consider two disjoint sets of tiles P ′ and P ′′ such that

CPQi
= CP′Qi

∪ CP′′Qi

and
CP′Qi

∩ CP′′Qi
= ∅

where we first consider tiles P ′ with no combinatorial inter-
section and represent their corresponding column indices as

CP′Qi
= {CPQi

| jℓ > 1, ∀ℓ ∈ Qi} .

The maximum rank of each representative rank-one support
for such tiles (i.e. of each tile P ′ of Ē ×1 D) from (47) and
Definition 13 therefore takes the form

rP′ = (49)

min
(
∆,

∏
ℓ∈Qi

Λℓ

)
, P ′ ∈ C′

1 ,

(k, j1, j2, . . . , jL) ∈ [⌊K
∆ ⌋]×

∏
ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)×

[2 : ⌊Pℓ

Λℓ
⌋]
)
,

min
(

mod(K,∆),
∏

ℓ∈Qi

Λℓ

)
, P ′ ∈ C′

2 ,

(k, j1, j2, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪ (1(ℓ ∈ Qi)× [2 : ⌊Pℓ

Λℓ
⌋]) ,

min
(
∆,
∏

ℓ Λℓ

∏
ℓ′ mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
, P ′ ∈ C′

3 ,

(k, j1, j2, . . . , jL) ∈ [⌊K
∆ ⌋]×

∏
ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)×(

{[2 : ⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [2 : ⌊Pℓ

Λℓ
⌋]}
))

,

min
(

mod(K,∆),
∏

ℓ Λℓ

∏
ℓ′ mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
, P ′ ∈ C′

4 ,

(k, j1, j2, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)×(

{[2 : ⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [2 : ⌊Pℓ

Λℓ
⌋]}
))

where the equivalence classes C′
i, i ∈ [4] follow Definition

10 for all possible scenarios where ∆|K, Λℓ|Pℓ, ∆ ∤ K, and
Λℓ ∤ Pℓ. We note that for the case Λℓ|Pℓ, we divide each
Γ-dimensional space corresponding to each Qi, ∀i ∈ [

(
L
Γ

)
] to∏

ℓ∈Qi

Pℓ

Λℓ
tiles with dimensions Λi1 × . . .×ΛiΓ . We do the same

for the residual space for the general case Λℓ ∤ Pℓ.
The number of representative rank-one supports for tiles P ′

in each equivalence class is therefore

|C′
1| = ⌊K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi

(
⌊Pℓ

Λℓ
⌋ − 1

)
,

|C′
2| =

(LΓ)∑
i=1

∏
ℓ∈Qi

(
⌊Pℓ

Λℓ
⌋ − 1

)
,

|C′
3| = ⌊K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

)
∏

ℓ′∈Qi: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)
,

|C′
4| =

(LΓ)∑
i=1

∏
ℓ∈Qi: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

)
∏

ℓ′∈Qi: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)
. (50)

We then consider tiles P ′′ with combinatorial intersections,
representing their corresponding column indices as

CP′′Qi
= {CPQi

| ∃jℓ = 1, ∀ℓ ∈ Qi} .

To capture the number of intersecting subtiles in each
hyperplane, we define the following set.

Li ≜ {ℓ ∈ Qi | jℓ = 1} . (51)

The number of intersecting subtiles in each hyperplane is
then equal to |Li|.

There are two variants of tiles in the family of tiles P ′′, for
the simple case with the assumption Λℓ|Pℓ (corresponding to
equivalence classes C′′

1 and C′′
2), as follows.

1) Tiles P ′′
main with dimensions

|Xi| ≜
∏
ℓ∈Qi

(
Λℓ − 1(ℓ ∈ Li)

)
, (52)

where Qi ∈ Subset([L],Γ), ∀i ∈ [
(
L
Γ

)
].

2) Subtiles P ′′
int with dimensions

|xid| ≜
∏

ℓ∈Kid

(
Λℓ − 1(ℓ ∈ Li)

)
, (53)

where Kid ∈ Subset(Qi, d) ,∀i ∈ [
(
L
Γ

)
].

To utilize the disjoint support assumption for SVD-
decomposition of tiles P ′′

Qi
, we need to make these tiles,

which naturally have combinatorial intersections, disjoint. To
that end, we need to decide how to aggregate the intersections
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Fig. 4. The schematic for the assignment graph G(U∪V ), where d ∈ [Γ−1]
for each subset |x−

nd| of vertices in V . In this figure, we assume that each
pair of consecutive subsets of vertices in U share the same subsets of V .

of such tiles, denoted by subtiles P ′′
int to some of their adja-

cent tiles P ′′
main to construct disjoint tiles with the minimum

possible sum rank. To that end, we devise a combinatorial
optimization for tile assignment based on a bipartite matching
approach as follows.

Considering different possibilities for the rank of tiles in
each hyperplane corresponding to each Qi and assuming ∆|K
(corresponding to equivalence classes C′′

1 and C′′
3), we have

the following steps:

1) We first consider tiles X+
n ∈ X+ ≜ {Xi | |Xi| ≥ ∆}

with the corresponding subsets Q+
n ∈ Q+ ⊆ [L]. Since

the rank of these tiles equals min(∆, |X+
n |) = ∆, we

assign x+
nd, ∀d ∈ [Γ − 1] to the nth tile in X+, where

x+
nd corresponds to the subsets of Q+

n with cardinality
d. We store the corresponding indices to set T of the
accumulated assigned subtiles to tile X+

n in a set P+
n .

We then continue doing this procedure with excluding
∪n−1
m=1P+

m from set T for other nth tiles in X+, ∀n ∈
[|X+|]. We finally have

P+ ≜ ∪|X+|
n=1 P+

n

to utilize in the next phase.
2) We next consider tiles X−

n ∈ X− ≜ {Xi | |Xi| < ∆}
with the corresponding subsets Q−

n ∈ Q− ⊆ [L].
The tile assignment procedure for these tiles is done by
matching in a bipartite graph as follows.

Definition 14. (Assignment graph.) We devise a bipartite
graph G(U ∪ V ), demonstrated in Figure 4, comprising the
set of vertices

U = {(∆− |X−
n |), ∀n ∈ [|X−|]} ,

and
V = {|x−

nd|, ∀n ∈ [|X−|], d ∈ [Γ− 1]} .

The edges of this bipartite graph are described by a family of
sets A, including An,d, ∀n ∈ [|X−|], d ∈ [Γ− 1].

Our goal is to find the maximal matching, and perfect
matching in the above-mentioned assignment graph if it satis-
fies Hall’s marriage theorem, described in (58). To that end, we
need to determine a system of distinct representative (SDR) for
the sets (a1,1, . . . , a1,Γ−1, . . . , a|X−|,1, . . . , a|X−|,Γ−1) with

the following properties:

1) Representative Property:

an,d ∈ An,d, ∀n ∈ [|X−|], d ∈ [Γ− 1] . (54)

2) Distinct Property:

an1,d1
̸= an2,d2

, ∀(n1, d1) ̸= (n2, d2) . (55)

For any set

D ⊆ {(n, d) | n ∈ [|X−|], d ∈ [Γ− 1]} (56)

of indices, we have:

A(D) = ∪e∈DAe . (57)

Hall’s marriage theorem is then expressed as follows.

Lemma 2. (Hall’s marriage theorem [46].) A family of finite
sets A has an SDR if and only if it meets the condition

|A(D)| ≥ |D| . (58)

We next check the matching condition in (58). If it holds,
there exists a perfect matching and we can use the Hopcroft-
Corp algorithm [47], which is a graph matching algorithm
that efficiently finds the maximum matching in a bipartite
graph G by identifying a maximum cardinality matching,
i.e., a collection of edges with the maximum possible size,
where no two edges share a common endpoint. Otherwise,
we first sort |X−

n |s from max to min, or equivalently from
min(∆ − |X−

n |) to max(∆ − |X−
n |), ∀n ∈ [|X−|]. We then

assign the remaining subtiles x−
nd, ∀d ∈ [Γ− 1], successively

to the corresponding tiles X−
n ∈ X−, where x−

nd corresponds
to the subsets T \P+ of Q−

n . We then continue checking
Hall’s marriage theorem and repeating this procedure until it
is verified. We denote the result of the matching procedure by
Xn,opt for each hyperplane corresponding to Q−

n .
It is worth mentioning that the set of indices CP′′ is updated

in each step of the tile assignment.
Similar to the equivalence classes C′ in 50, for the gen-

eral case ∆ ∤ K (corresponding to equivalence classes C′′
2

and C′′
4), we simply substitute ∆ in the above steps with

mod(K,∆) for the residual tiles.
We next consider the general case Λℓ ∤ Pℓ (corresponding to

equivalence classes C′′
3 and C′′

4), where we have two variants
of tiles P ′′ as follows.

1) Tiles P ′′
main with dimensions

|X ′′
i | ≜

∏
ℓ∈Qi: Λℓ|Pℓ

(
Λℓ − 1(ℓ ∈ Li)

)
∏

ℓ′∈Qi: Λℓ′ ∤Pℓ′

mod(Pℓ′ ,Λℓ′) , (59)

where Qi ∈ Subset([L],Γ), ∀i ∈ [
(
L
Γ

)
].

2) Subtiles P ′′
int with dimensions

|x′′
id| ≜

∏
ℓ∈Kid: Λℓ|Pℓ

(
Λℓ − 1(ℓ ∈ Li)

)



∏
ℓ′∈Kid: Λℓ′ ∤Pℓ′

mod(Pℓ′ ,Λℓ′) , (60)

where Kid ∈ Subset(Qi, d) ,∀i ∈ [
(
L
Γ

)
].

A similar procedure for matching in a bipartite graph is
done with the above definitions of |X ′′

i | and |x′′
id|. We denote

the result of the matching approach for this case by |X ′′
i,opt|.

The maximum rank of each representative rank-one support
for such tiles (i.e. of each tile P ′′ of Ē ×1 D) from (47) and
Definition 13 therefore takes the form

rP′′ = (61)

min
(
∆, |Xi,opt|

)
, P ′′ ∈ C′′

1 ,

(k, j1, j2, . . . , jL) ∈ [⌊K
∆ ⌋]×

∏
ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi\Li)×

[2 : ⌊Pℓ

Λℓ
⌋]
)
,

min
(

mod(K,∆), |Xi,opt|
)
, P ′′ ∈ C′′

2 ,

(k, j1, j2, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪ (1(ℓ ∈ Qi\Li)× [2 : ⌊Pℓ

Λℓ
⌋]) ,

min
(
∆, |X ′′

i,opt|
)
, P ′′ ∈ C′′

3 ,

(k, j1, j2, . . . , jL) ∈ [⌊K
∆ ⌋]×

∏
ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi\Li)×(

{[2 : ⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [2 : ⌊Pℓ

Λℓ
⌋]}
))

,

min
(

mod(K,∆), |X ′′
i,opt|

)
, P ′′ ∈ C′′

4 ,

(k, j1, j2, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi\Li)×(

{[2 : ⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [2 : ⌊Pℓ

Λℓ
⌋]}
))

.

The number of representative rank-one supports for tiles P ′′

in each class is then

|C′′
1| = ⌊K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi\Li

(
⌊Pℓ

Λℓ
⌋ − 1

)
,

|C′′
2| =

(LΓ)∑
i=1

∏
ℓ∈Qi\Li

(
⌊Pℓ

Λℓ
⌋ − 1

)
,

|C′′
3| = ⌊K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi\Li: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

)
∏

ℓ′∈Qi\Li: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)
,

|C′′
4| =

(LΓ)∑
i=1

∏
ℓ∈Qi\Li: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

)
∏

ℓ′∈Qi\Li: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)
. (62)

Having established the classes and the corresponding (position
of the) tiles of F̄ , we proceed to fill (and crop) the F̄ tiles, as

follows:

F̄P ≜ (F̄ ⊙ S̄P)(RP , CP), ∀P ∈ ∪4
i=1C′

i ∪ C′′
i . (63)

The first step F̄⊙S̄P simply fills up S̄P with the corresponding
entries of F̄ , and the second step (F̄ ⊙ S̄P)(RP , CP) crops
these1.

b) Step 2: Creating and filling the non-zero tiles in D and
Ē: This step starts with the SVD decomposition as (described
in Section B) of the cropped tile F̄P where this decomposition
takes the form

F̄P = ĒP ×1 DP , (64)

where DP ∈ R|RP |×rP , ĒP ∈ RrP×|CP |. In particular, F̄ ,D,
and Ē are associated to T̄ , U(1), and S̄ in all complete SVD
decomposition of (40). Naturally, rank(F̄P) ≤ rP .

c) Step 3: Placing the filled cropped tiles DP and ĒP in
D and Ē: Let

∪4
i=1C′

i ∪ C′′
i = {P1,P2, . . . ,Pm}, m ∈ N (65)

describe the enumeration we give to each tile. Then the
position that each cropped tile takes inside D, is given by

RPj , [

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], ∀Pj ∈ ∪4

i=1C′
i ∪ C′′

i,

(66)

and the position of each cropped tile in Ē is given by

[

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], CPj , ∀Pj ∈ ∪4

i=1C′
i ∪ C′′

i.

(67)

In particular, for T = 1 this yields

D(RPj
, [

j−1∑
i=1

rPi
+ 1,

j∑
i=1

rPi
]) = DPj

(68)

and

Ē([
j−1∑
i=1

rPi
+ 1,

j∑
i=1

rPi
], CPj

) = ĒPj
(69)

while naturally the remaining non-assigned elements of D and
Ē are zero. Finally, as one can readily verify, the above design
corresponds to

N =
∑
i∈[4]

∑
P′∈C′

i

rP′ |C′
i|+

∑
i∈[4]

∑
P′′∈C′′

i

rP′′ |C′′
i|

= ⌊K
∆
⌋
(LΓ)∑
i=1

min
(
∆,
∏
ℓ∈Qi

Λℓ

) ∏
ℓ∈Qi

(
⌊Pℓ

Λℓ
⌋ − 1

)

+

(LΓ)∑
i=1

min
(

mod(K,∆),
∏
ℓ∈Qi

Λℓ

) ∏
ℓ∈Qi

(
⌊Pℓ

Λℓ
⌋ − 1

)
1We here see a small distinction between the previously uncropped tiles, and

the tiles that are cropped here. These cropped tiles will be the outcomes of an
SVD decomposition of subtensors of F̄ , yielding our SVD-based factorization.



+ ⌊K
∆
⌋
(LΓ)∑
i=1

min
(
∆,
∏
ℓ

Λℓ

∏
ℓ′

mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
∏

ℓ∈Qi: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

) ∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)

+

(LΓ)∑
i=1

min
(

mod(K,∆),
∏
ℓ

Λℓ

∏
ℓ′

mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
∏

ℓ∈Qi: Λℓ|Pℓ

(
⌊Pℓ

Λℓ
⌋ − 1

) ∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

(
⌈Pℓ′

Λℓ′
⌉ − 1

)

+ ⌊K
∆
⌋
(LΓ)∑
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min
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) ∏
ℓ∈Qi\Li

(
⌊Pℓ

Λℓ
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)

+

(LΓ)∑
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min
(
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ℓ∈Qi\Li
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)
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∆
⌋
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(
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(
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Λℓ′
⌉ − 1

)
. (70)

corresponding to Theorem 3 for the case of T = 1.
Similarly, when Pℓ = Λℓ, which means containing only one

tile P ′′ with |C ′′
i | = 1 in each hyperplane including Qi, we

have:

N =
∑
i∈[4]

∑
P′′∈C′′

i

rP′′ |C′′
i|

= ⌊K
∆
⌋
(LΓ)∑
i=1

min
(
∆, |Xi,opt|

)

+

(LΓ)∑
i=1
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(

mod(K,∆), |Xi,opt|
)

+ ⌊K
∆
⌋
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(
∆, |X ′′

i,opt|
)

+

(LΓ)∑
i=1

min
(

mod(K,∆), |X ′′
i,opt|

)
. (71)

For the general multi-shot case, we have the following
results.

Theorem 3. The optimal achievable rate of the lossless

K,N, T, L, Pℓ > Λℓ,Γ,∆,Λℓ, ℓ ∈ Qi distributed computing
system for the general settings in which ∆ ∤ K, Λℓ ∤ Pℓ takes
the form C = K/Nopt, where

Nopt ≤ ⌊K
∆
⌋
(LΓ)∑
i=1

⌈min
(
∆,

∏
ℓ∈Qi

Λℓ

)
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⌋ − 1
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)
T
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)
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∆
⌋
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ℓ Λℓ

∏
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)
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(
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(
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)

+
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∏
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∏
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)
(72)

where Li ≜ {ℓ ∈ Qi | jℓ = 1}, and jℓ is the index in tensor
F̄ corresponding to the ℓth basis subfunction.

Theorem 4. The optimal achievable rate of the lossless
K,N, T, L, Pℓ = Λℓ,Γ,∆,Λℓ, ℓ ∈ Qi distributed computing
system for the general settings in which ∆ ∤ K takes the form
C = K/Nopt, where

Nopt ≤ ⌊K
∆
⌋
(LΓ)∑
i=1

⌈min
(
∆, |Xi,opt|

)
T

⌉

+

(LΓ)∑
i=1

⌈min
(

mod(K,∆), |Xi,opt|
)

T

⌉



Fig. 5. Corresponding to Example 1, this figure illustrates the partitioning of
F̄1 into two dimensional tiles with some combinatorially intersecting parts.

+ ⌊K
∆
⌋
(LΓ)∑
i=1

⌈min
(
∆, |X ′′

i,opt|
)

T

⌉

+

(LΓ)∑
i=1

⌈min
(

mod(K,∆), |X ′′
i,opt|

)
T

⌉
. (73)

D. Example

We provide a simple yet nontrivial example to clarify
the protocol for the multi-user distributed computing settings
proposed in this work.

Example 1. Let consider a distributed settings in which K =
6,∆ = 6, L = 3,Γ = 2, Pℓ = 6,Λℓ = 3,∀ℓ ∈ [L]. The
demanded tensor of user 1 denoted by F̄1 reveals the following
details, as demonstrated in Figure 5. Following the protocol
detailed in Appendix C, we have the following subsets of
subfunctions with cardinality Γ = 2:

• Q1 = {1, 2}.
• Q2 = {1, 3}.
• Q3 = {2, 3}.
We next divide each Γ-dimensional space corresponding to

each Qi, ∀i ∈ [3] to
∏

ℓ∈Qi

Pℓ

Λℓ
= 4 areas with dimensions 3×3.

We first consider the nonintersecting tiles with dimensions∏
ℓ∈Qi

[1 + Λℓ : 2Λℓ] = [4 : 6]× [4 : 6] in each hyperplane as

• Q1: Corresponding to j1 = j2 = 2.
• Q2: Corresponding to j1 = j3 = 2.
• Q3: Corresponding to j2 = j3 = 2.
For the intersecting tiles, because we could assign the

multiplicative terms including powers of one of Wℓs, to more
than one Qi, we have the following possibilities:

• Q1, Q2, and Q3, (j1, j2, j3) = (1, 1, 1):
We have a main tile X1 : [2 : Λ1] × [2 : Λ2] in Q1, a
main tile X2 : [2 : Λ1]× [2 : Λ3] in Q2, and a main tile
X3 : [2 : Λ2]× [2 : Λ3] in Q3.

1) (j1, j2) = (1, 1) and (j1, j3) = (1, 1):
There is an intersecting subtile x11 : [2 : Λ1] × [1],

where we need to decide to assign it to one of main
tiles X1 and X2.

2) (j1, j2) = (1, 1) and (j2, j3) = (1, 1):
There is an intersecting subtile x21 : [1] × [2 : Λ2],
where we need to decide to assign it to one of main
tiles X1 and X3.

3) (j1, j3) = (1, 1) and (j2, j3) = (1, 1):
There is an intersecting subtile x31 : [1] × [2 : Λ3],
where we need to decide to assign it to one of main
tiles X2 and X3.

Since |X1| = |X2| = |X3| = 4 < ∆, we directly use
the bipartite matching procedure with a bipartite graph
G = (U ∪ V ), where U = {∆− |Xi|} and V = {|xid|},
∀i ∈ [3], d ∈ [1], which is depicted in Figure 6. As we
can see, there are four possible edges for each node in
V , meaning that Hall’s marriage theorem is satisfied and
there exists a perfect matching. We consider a possible
solution as follows.
We denote the tiles with Xi,opt after the
matching procedure. We will then have tiles
X1,opt : [2 : Λ1] × [1 : Λ2], X2,opt : [1 : Λ1] × [2 : Λ3],
X3,opt : [2 : Λ2]× [1 : Λ3].

• Q1 and Q2, (j1, j2) = (2, 1) and (j1, j3) = (2, 1):
We have a main tile X1 : [1+Λ1 : 2Λ1]× [2 : Λ2] in Q1

and a main tile X2 : [1+Λ1 : 2Λ1]×[2 : Λ3] in Q2. There
is also an intersecting subtile x11 : [1 + Λ1 : 2Λ1]× [1],
where we need to decide to assign it to one of main tiles
X1 and X2.
Since |X1| = |X2| = 6 = ∆, we could assign x11 to any
of X1 and X2. We choose to assign it to X1. We then
will have tile X1,opt : [1 : Λ1]× [1 : Λ2].

• Q1 and Q3, (j1, j2) = (1, 2) and (j2, j3) = (2, 1):
We have a main tile X1 : [2 : Λ1]× [1+Λ2 : 2Λ2] in Q1

and a main tile X3 : [1+Λ2 : 2Λ2]×[2 : Λ3] in Q2. There
is also an intersecting subtile x11 : [1]× [1 + Λ2 : 2Λ2]
in Q1 or equivalently [1 + Λ2 : 2Λ2]× [1] in Q3, where
we need to decide to assign it to one of main tiles X1

and X3.
Since |X1| = |X3| = 6 = ∆, we could assign x11 to any
of X1 and X3. We choose to assign it to X1. We then
will have tile X1,opt : [1 : Λ1]× [1 + Λ2 : 2Λ2].

• Q2 and Q3, (j1, j3) = (1, 2) and (j2, j3) = (1, 2):
We have a main tile X2 : [2 : Λ1]× [1+Λ3 : 2Λ3] in Q2

and a main tile X3 : [2 : Λ2]×[1+Λ3 : 2Λ3] in Q3. There
is also an intersecting subtile x11 : [1]× [1 + Λ3 : 2Λ3],
where we need to decide to assign it to one of main tiles
X2 and X3.
Since |X2| = |X3| = 6 = ∆, we could assign x11 to any
of X2 and X3. We choose to assign it to X2. We then
will have tile X2,opt : [1 : Λ1]× [1 + Λ3 : 2Λ3].

We also note that the tiles built after the assignment and



Fig. 6. Corresponding to Example 1, this figure illustrates the bipartite graph
used for the assignment of intersecting subtiles to the tiles.

Fig. 7. The tiling result for Example 1. The same colors represent the tiles
in the same plane, corresponding to the same subset Qi of L subfunctions
with cardinality Γ, ∀i ∈ [

(L
Γ

)
].

matching process are disjoint and we could easily apply the
multilinear SVD approach described in Appendix B to F̄ .
Finally, the tiles in F̄1 are shaped as shown in Figure 7.

Considering the above steps for all 6 users, the total number
of required servers for this problem based on Corollary 1 is

N =
K

∆

3∑
i=1

(
min

(
∆,
∏
ℓ∈Qi

Λℓ

) ∏
ℓ∈Qi

(Pℓ

Λℓ
− 1
)

+min
(
∆, |Xi,opt|

) ∏
ℓ∈Qi\Li

(Pℓ

Λℓ
− 1
))

= 3min(6, 9) + 3min(6, 6) + 3min(6, 6) + 3min(6, 9)

= 4× 3× 6 = 72 . (74)

E. Proof of Proposition 1

The total computation cost of non-linearly separable settings
proposed in this work is obtained as

Θ1

(a)

≤ N
(
Γ + Λ1 + . . .+ ΛL

) (b)
= N

(
L(Λ + 1)

)
where (a) holds because we have N servers each computing
a basis subfunction with a computation cost Γ as well as the
powers of all L basis subfunctions each with a multiplication
cost Λℓ and and (b) holds because of the assumptions Γ = L
and Λℓ = Λ.

The total computation cost of linearly separable settings
proposed in [33] is obtained as

Θ2

(c)

≤ N
(
Γ′ +

∑
p∈[P1−2]×...×[Pℓ−2]

p1 . . . pL
)

(d)
= N

(
Γ′ +

∑
p1∈[P1−2]

p1 × . . .×
∑

pL∈[PL−2]

pL
)

(e)
= N

(
Γ′ +

( (P − 2)(P − 1)

2

)L)
where (c) holds because we have N servers each computing
a basis subfunction with a computation cost Γ′ as well as the
number of multiplications for powers of each basis subfunction
ℓ ∈ [L], ranging from 1 to Pℓ−2, i.e., [1 : Pℓ−2], (d) follows
some algebraic manipulations, and (e) follows 1 + . . .+ n =
n(n+1)

2 , assuming n = P − 2.

F. Proof of Proposition 2

Considering the tensor solution in this work with a com-
putation cost Γ and the multiplication cost Λ, the number
of required servers for our non-linearly separable scheme,
assuming ∆ > (Λ− 1)Γ, takes the form

NT

(a)

≤ K

∆

(LΓ)∑
i=1

min
(
∆, |Xi,opt|

)
(b)
=

K

∆

[((
L

Γ

)
−

Γ−1∑
d=1

mod
((L

d

)
,

(
L

Γ

)))

×min
(
∆, (Λ− 1)Γ +

Γ−1∑
d=1

⌊(L
d

)(
L
Γ

)⌋(Λ− 1)d
)

+

(
Γ−1∑
d=1

mod
((L

d

)
,

(
L

Γ

)))

×min

(
∆, (Λ− 1)Γ +

Γ−1∑
d=1

(Λ− 1)d
(⌊(L

d

)(
L
Γ

)⌋
+ mod

((L
d

)
,

(
L

Γ

))))]
. (75)

where (a) holds because of Theorem 2 and (b) follows the
fact that after proceeding with matching in the bipartite graph
with the set of nodes ui = {∆ − (Λ − 1)Γ}, ∀i ∈

(
L
Γ

)
and

vid = {(Λ− 1)d}, ∀i ∈
(
L
Γ

)
, d ∈ [Γ− 1], where depending on

the ratio (Ld)
(LΓ)

, we will have the following possibilities:

• Case I. There are

((
L
Γ

)
−

Γ−1∑
d=1

mod
((

L
d

)
,
(
L
Γ

)))
tiles with

|Xi,opt| = (Λ− 1)Γ +
Γ−1∑
d=1

⌊
(Ld)
(LΓ)

⌋
(Λ− 1)d

• Case II. There exist
Γ−1∑
d=1

mod
((

L
d

)
,
(
L
Γ

))
tiles with

|Xi,opt| = (Λ− 1)Γ +

Γ−1∑
d=1

(Λ− 1)d
(⌊(L

d

)(
L
Γ

)⌋



+ mod
((L

d

)
,

(
L

Γ

)))
.

Summing the total number of tiles above with different
maximum representative rank-one supports results in (75).

Plugging in Λ = 2 into (75), we have:

NT ≤ K

∆

[((
L

Γ

)
−

Γ−1∑
d=1

mod
((L

d

)
,

(
L

Γ

)))

×min
(
∆, 1 +

Γ−1∑
d=1

⌊(L
d

)(
L
Γ

)⌋)+( Γ−1∑
d=1

mod
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d

)
,

(
L

Γ

)))

×min

(
∆, 1 +

Γ−1∑
d=1

⌊(L
d

)(
L
Γ

)⌋+ mod
((L

d

)
,

(
L

Γ

)))]
.

(76)

While the matrix approach to multi-user linearly separable
scheme in [36] results in

NM ≤ K

∆
×

Γ−1∑
d=1

(
L
d

)
Γ

×min(∆,Γ) . (77)

We first compare the approximate expressions for NM and
NT for the asymptotic case (large L) and analyze when NM >
NT as follows.

NM ∼ K

∆
· LΓ−1

Γ · (Γ− 1)!
·min(∆,Γ) .

NT ∼ K

∆
· L

Γ

Γ!
·min(∆, 1) .

Considering NM > NT, we have:

K

∆
· LΓ−1

Γ · (Γ− 1)!
·min(∆,Γ) >

K

∆
· L

Γ

Γ!
·min(∆, 1)

Using the relation Γ! = Γ · (Γ− 1)!, we have:

LΓ−1

LΓ
·min(∆,Γ) >

1

Γ
·min(∆, 1) . (78)

Because ∆ > 1, the relation in (78) simplifies to:

min(∆,Γ) >
L

Γ
. (79)

Considering the possible ranges for ∆, we have:

• Case I. Small ∆ where 1 < ∆ ≤ Γ:

min(∆,Γ) = ∆ .

The inequality (79) then takes the form

∆ >
L

Γ
.

This condition holds if ∆ grows faster than L
Γ .

• Case II. Large ∆ where ∆ > Γ:

min(∆,Γ) = Γ .

The inequality (79) then takes the form

Γ2 > L .

This condition holds only if Γ >
√
L.

We next compare the approximate expressions for NM and
NT for the non-asymptotic case (small L) and analyze when
NM > NT as follows.

For small L, we consider the dominant term in N2 as

NT ∼ K

∆
·
(
L

Γ

)
·min(∆, 1) =

K

∆
·
(
L

Γ

)
.

The ratio of NM to N2 is then approximated as

NM

NT
∼

∑Γ−1
d=1 (

L
d)

Γ ·min(∆,Γ)(
L
Γ

) .

Under the condition 1 < ∆ ≤ Γ, because min(∆,Γ) = ∆,
the condition NM

NT
> 1 holds if and only if

∆ >
Γ ·
(
L
Γ

)∑Γ−1
d=1

(
L
d

) .
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