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Abstract— In this letter, we propose an O-RAN-based framework
for Reconfigurable Intelligent Surfaces (RIS) control in 6G. The key
objective is to enable the development of RIS control algorithms
as xApps running at the Real-time Intelligent Controller (RIC)
of Open RAN (O-RAN). To validate the proposed framework, we
developed a Golang-based RIS simulator, GoSimRIS, intended to
mimic and examine RIS behavior in various environmental scenar-
ios. The simulator is linked with the RIC via a specialized Service
Model (SM) devised in this work, namely E2SM RIS, which allows
the design of xApps that dynamically optimize RIS coefficients by
computing the ideal phase shifts and applying them in real-time to
maximize network performance using channel information that is
retrieved from the GoSimRIS environment. Finally, we introduce
an ML-based RIS control mechanism that runs as an xApp using
only the positions of the transmitter (Tx) and receiver (Rx) and the
presence of Line-of-Sight (LOS) conditions, which corresponds to a
realistic indoor scenario in 6G such industry 4.0

Index Terms—O-RAN, RIC, xApp, RIS, 6G Networks, ML.

I. INTRODUCTION

The demand for extreme connectivity and ultra-low latency de-
fines the shift toward 6G networks exploiting for the first time the
Terahertz (THz) frequency spectrum ( [1]). However, operating
in these bands introduces significant challenges due to inherent
propagation characteristics, such as high free-space path loss
and extreme sensitivity to physical obstructions. Reconfigurable
Intelligent Surfaces (RIS) have emerged as a transformative tech-
nology to address these issues by providing dynamic control
over the propagation environment. By intelligently manipulating
electromagnetic waves, RIS can enhance signal quality, mitigate
interference, and optimize coverage, offering a powerful tool
for next-generation wireless communication. However, to effec-
tively implement RIS in real-world deployments, sophisticated
control mechanisms capable of efficiently managing the com-
plex interactions within a highly dynamic wireless environment
are required. Although numerous research activities have been
conducted to devise advanced control algorithms, whether based
on optimization, control theory, or Machine Learning (ML) [2],
most have been validated only theoretically. This highlights a
gap in having a common and open framework to test and validate
these algorithms using real RIS or high-fidelity simulated RIS.
In this work, we address these challenges by proposing an O-
RAN-based framework that enables the development and de-
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ployment of RIS control algorithms as xApps running on the
Real-time Intelligent Controller (RIC) of O-RAN. To validate the
proposed framework, we developed a Golang-based RIS simula-
tor, GoSimRIS, designed to mimic and analyze RIS behavior in
various environmental scenarios. The simulator is connected to
the RIC (in our implementation, we used OAI FlexRIC [3]) via
a specialized Service Model (SM) devised in this work, namely
E2SM RIS. This setup allows for the design of xApps that dy-
namically optimize RIS coefficients by calculating the ideal
phase shifts and applying them in real-time to maximize network
performance, using channel information (channel information
between the nodes, RIS-UE-gNB) obtained from the GoSimRIS
environment.
Acknowledging the shortcomings of traditional optimization
techniques and the practical difficulty of achieving precise chan-
nel information in real-world situations, where the transmitter
(Tx) and receiver (Rx) positions are usually the only information
available, we have devised a novel xApp that relies on a ML
model. This model, trained on a dataset generated by GoSimRIS,
predicts optimal RIS coefficients based solely on Tx/Rx coordi-
nates and the presence of Line-of-Sight (LOS) conditions. This
approach provides a scalable and efficient solution to RIS control
by eliminating the reliance on explicit channel measurements,
making it particularly suited for scenarios where channel infor-
mation is difficult or costly to obtain. It also holds the potential
for future extrapolation into real-world applications
The contributions of this work are as follows: (i) an E2SM proxy
that facilitates the integration of any RIS hardware into the O-
RAN architecture, specifically allowing connection to the RIC;
(ii) an E2SM RIS that conveys the essential information required
by an xApp to control the RIS; (iii) GoSimRIS, a Golang-based
high-fidelity RIS simulator that enables the simulation of RIS
and Tx/Rx using the FR2 frequency band (millimeter waves),
and generates the channel information necessary for an xApp
to configure the RIS; (iv) an ML-based xApp that relies solely
on the Tx/Rx positions and the presence of LOS conditions to
compute the RIS coefficients.

II. RIS CONTROL FRAMEWORK: AN O-RAN ORIENTED
APPROACH

A. Architecture design

The O-RAN Alliance is an industry collaboration aimed at
transforming the traditional RAN by promoting open, disaggre-
gated, and software-driven architectures [4]. The key objectives
of O-RAN include fostering vendor interoperability, increas-
ing flexibility, and reducing deployment costs by decoupling
hardware and software components. By establishing a unified
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Figure 1: RIS Control Framework.

set of standards and interfaces, O-RAN enables network opera-
tors to integrate hardware and software from multiple vendors,
thus reducing reliance on proprietary solutions and fostering
innovation. O-RAN promotes the use of standardized, open in-
terfaces, enabling more flexible and efficient deployment and
management of RAN infrastructure. A key component of the
O-RAN architecture is the RIC, which is designed to optimize
the performance and flexibility of the RAN by enabling real-time,
intelligent control over network functions. The RIC is divided
into two layers: the near-real-time RIC and the non-real-time
RIC. The near-real-time RIC operates with low latency (typically
within 10 milliseconds) and manages dynamic functions such as
handovers, interference management, and resource allocation, en-
suring optimal performance and user experience. In contrast, the
non-real-time RIC works at a higher latency, handling functions
that require data aggregation and machine learning algorithms,
such as long-term network optimization, traffic forecasting, and
policy management. O-RAN defines the E2 interface, which
allows the RIC to control the logic exposed by the E2 nodes
(i.e., gNB, DU, and CU). The E2 interface is a logical interface
composed of two protocols: (i) E2 Application Protocol (E2AP)
and (ii) E2 Service Model (E2SM). The E2AP is a basic proce-
dural protocol that coordinates how the near-real-time RIC and
the E2 nodes communicate with each other and provides a basic
set of services. E2AP messages can embed different E2SMs,
which implement specific functionalities, such as the reporting
of RAN metrics or the control of RAN parameters. Each E2
node exposes a number of RAN functions, i.e., the services or
capabilities it supports. Last but not least, xApps are applications
that run on top of the RIC, which acts as a relay between the
xApps and the E2 nodes. Messages from xApps to E2 nodes are
called E2 control messages, while those from E2 nodes to xApps
are called E2 indication messages. These messages incorporate
the SMs available at the RIC and the E2 nodes. Several SM
models are standardized by O-RAN, including two key models:
E2SM-KPM (Key Performance Measurement) and E2SM-RC
(RAN Control). The E2SM-KPM model is used for monitor-
ing and reporting KPIs, such as throughput, latency, and cell
load, providing insights into network performance. Meanwhile,
E2SM-RC allows the RIC to control specific RAN functions,
including beamforming, scheduling, and handover management,
to optimize resource utilization.

Figure 1 illustrates our approach to integrating RIS control within
the O-RAN architecture. To achieve this objective, we devised
a new component called the E2SM proxy, which serves as an
interface between the RIS hardware and the RIC, onboarding
the xApp that integrates the logic to control the RIS. The E2SM
proxy, on one hand, uses the standardized E2 interface to com-
municate with the RIC, carrying the RIS SM messages used by
the xApp to control the RIS. In this work, we propose a new SM
model, namely E2SM RIS, dedicated to controlling the RIS. On
the other hand, the E2SM proxy connects to the RIS via a dedi-
cated interface to translate E2SM RIS messages into commands
that follow the RIS hardware specifications, which are typically
proprietary. The figure also depicts the proposed framework
interfacing with both a real RIS and the simulated RIS. Although
the proposed framework has been validated using GoSimRIS, it
can interface with real RIS by adapting the E2SM proxy to the
control logic of the hardware RIS.

B. E2SM Proxy

As indicated earlier, one of the key innovations of our work
is the definition of the E2SM Proxy to integrate the RIS and its
control into the O-RAN architecture. The E2SM RIS defines
two types of information: (1) read information (or E2 indication
messages in O-RAN terminology) and (2) write information (or
E2 control messages in O-RAN terminology). Read information
is twofold: (i) the RIS properties from each RIS E2 node, in-
cluding the RIS dimensions (length and height), number of RIS
elements, spacing between elements, number of RIS element
states, position of the RIS, the supported frequency, and the list
of available beams (angles). The xApp receives this information
from each E2 node and forms a catalogue; (ii) UE’s channel
metrics: The channel between the RIS and the UE is a cascade
channel (i.e., composed of a channel between the RIS and UE, a
channel between the RIS and gNB, and a direct channel between
the RIS and UE). The E2 indication message can contain one or
many metrics. On the other hand, write information consists of
the RIS configuration (i.e., the RIS elements’ coefficients) sent
from the xApp to the RIS’s E2SM proxy. The configuration can
have two abstraction levels: (i) High-level configuration: the
angle of the beam in a 2D plane (an integer value) or two angles
in a 3D plane (two integers); (ii) Low-level configuration: the
phase distribution for all the RIS elements (list of bytes). Figure
2 illustrates the envisioned workflow for RIS control using the
O-RAN architecture.
The RIS E2SM proxy reads the RIS configuration from a con-

figuration file that contains the following RIS properties: RIS
dimensions (length and height), number of RIS elements, spac-
ing between elements, number of RIS element states, position
of the RIS, supported frequency, and the list of available beams
(angles). It then creates an E2 message, following the RIS SM
description, and sends it to the RIC controller. The RIC con-
troller forwards the message to all the xApps connected to the
RIS. The RIS E2SM proxy listens for control messages from
the RIC. Each time the proxy receives an E2 control message, it
decodes the content using the RIS SM to obtain the RIS config-
uration. At this point, there are two options: if it is a low-level
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Figure 2: Systematic View of RIS Control Mechanism.

configuration, the proxy sends it directly to the RIS hardware,
which is connected via a serial port to the E2SM proxy; if it
is a high-level configuration, the proxy first derives the phase
distribution of the RIS associated with the received angle(s). The
phase distribution for all beams has been precomputed by the
RIS provider and listed in a file. The proxy reads this file to
locate the correct phase distribution associated with the angle(s).
Finally, it sends the phase distribution to the RIS hardware via
the serial port.

C. GoSimRIS: A Golang-Based RIS Simulator

To validate the envisioned O-RAN-based RIS control archi-
tecture, we developed a RIS simulator called GoSimRIS. This
Golang-based simulation environment mirrors the functionality
of the well-established SimRIS toolbox originally developed
in MATLAB [5]. The decision to mimic SimRIS in Golang
was driven by several critical factors: First, Golang was cho-
sen for its superior concurrency model, which is essential for
handling the parallelism required in large-scale wireless simula-
tions. Golang’s goroutines and channels provide a lightweight
and efficient means of managing multiple simultaneous opera-
tions, a capability that is particularly advantageous in simulating
dynamic environments with mobile user equipment (UEs) and
varying channel conditions. Additionally, Golang’s performance
is close to that of lower-level languages like C, while offering
the productivity benefits of higher-level languages, making it
ideal for real-time systems. GoSimRIS extends SimRIS’s com-
plex indoor scenarios by incorporating advanced features that
are critical for realistic RIS simulations in 6G networks. No-
tably, our contributions with GoSimRIS include developing a
RIS simulator in GO language to overcome Matlab’s limita-
tions in real-time communication with remote systems such as
xApp/FlexRIC using an E2 agent enclosed in the simulator. Fur-
thermore, GoSimRIS allows for the simulation of mobility of
the Tx and Rx, which was not possible with the original SimRIS.
The simulator is highly configurable, leveraging a JSON-based
configuration file to define various aspects of the simulation

environment, such as the positions and orientations of the Tx,
Rx, and RIS elements, antenna array configurations, frequency
settings, and environmental dimensions. GoSimRIS generates
the necessary channel matrices—H (Tx-to-RIS path), G (RIS-
to-Rx path), and D (direct path)—which are essential for RIS
coefficient optimization. By simulating these channels, GoSim-
RIS can provide critical data needed to compute the phase shifts
that maximize the achievable rate at the receiver. These shifts
are essential for computing the optimal coefficients (done at the
xApp in our approach). This capability allows for comprehensive
testing and validation of RIS control algorithms under various en-
vironmental conditions and network configurations. We leverage
GoSimRIS with the E2SM Proxy to interact in real-time with the
RIC, allowing the xApp to control the RIS by deriving optimal
coefficients based on the simulated wireless environment. The
integration of the RIS with the RIC facilitates the building of a
closed-loop feedback system that continuously updates the RIS
coefficients based on live network conditions. Besides validating
our approach that adapts the O-RAN architecture to control the
RIS, we believe GoSimRIS can help the community simulate
and validate different RIS control algorithms

III. ML-BASED XAPP FOR RIS CONTROL

In this section, we will detail the xApp that utilizes our frame-
work to run a ML algorithm for periodically computing the
optimal RIS configuration based on user positions and LOS
conditions. First, we will introduce our optimization algorithm,
which computes the optimal RIS coefficients using the chan-
nel matrices H, G, and D. However, obtaining these values in
real-life deployments is highly challenging. Therefore, we intro-
duce an ML-based approach that uses only the positions of user
equipment (UEs) to determine the optimal configuration. For
this approach, we focus on an indoor deployment of mmWave
gNB and RIS, where the room dimensions are known in advance,
such as in smart factories and Industry 4.0 environments.

A. Optimization Algorithms for RIS Coefficient Calculation

The core functionality of the xApp lies in its ability to com-
pute optimal RIS coefficients through advanced optimization
algorithms. We envision a system model that considers a single-
input, single-output (SISO) communication system enhanced by
a RIS. We assume that the RIS is composed of N reconfigurable
elements. The primary objective is to maximize the achievable
rate R at the user equipment (UE) by optimizing the phase shifts
θi of the RIS elements.

1) System Model: The received signal y at the UE can be
expressed as:

y =
(
hd + hT

r Θg
)
x+ n, (1)

where hd represents the direct channel between the base station
(BS) and the UE, hr ∈ CN and g ∈ CN denote the channel
vectors from the RIS to the UE and from the BS to the RIS,
respectively. The matrix Θ = diag(θ1, θ2, . . . , θN ) is a diagonal
matrix whose elements θi are the phase shifts introduced by the
RIS elements. The term x is the transmitted signal from the BS,
and n is the additive white Gaussian noise (AWGN) at the UE.
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1) Optimization Objective: The goal of the optimization is to
maximize the achievable rate R at the UE, given by:

R = log2

(
1 +

Pt|hd + hT
r Θg|2

N0

)
, (2)

where Pt denotes the transmit power of the BS and N0 represents
the noise power. The optimization problem can be formulated
as:

max
Θ

R subject to |θi| = 1,∀i ∈ {1, 2, . . . , N}. (3)

This non-convex optimization problem is challenging due to the
unit-modulus constraint on each θi.

1) Optimization Algorithm: To address the optimization prob-
lem, we propose a hybrid approach that combines Simulated
Annealing (SA) with Gradient Descent (GD). Simulated Anneal-
ing is utilized for the global exploration of the solution space,
enabling the algorithm to avoid local minima. Gradient Descent
is then applied for fine-tuning, allowing for precise adjustments
to the phase shifts. The operation of this hybrid algorithm is
detailed in Algorithm 1. This hybrid approach ensures a balance
between exploration and exploitation, providing an effective
solution for the optimization problem inherent in RIS configura-
tion.

Algorithm 1 Simulated Annealing with Gradient Descent for
RIS Optimization

1: Initialize θ randomly
2: Set initial temperature T
3: while T > Tfinal do
4: for iteration = 1 to max_iterations do
5: Compute gradient∇R(θ)
6: Propose new θ′ = θ + α∇R(θ)
7: Perturb θ′ with noise N (0, T )
8: Compute new achievable rate R(θ′)
9: if R(θ′) > R(θ) or exp((R(θ′)−R(θ))/T ) > rand()

then
10: θ ← θ′

11: end if
12: end for
13: Decrease temperature T ← T · cooling_rate
14: end while

B. ML-based RIS Control

The ML-based approach for RIS coefficient prediction builds
upon the foundation of the optimization-based control strategy
discussed earlier. In controlled simulation environments, achiev-
ing high performance with optimization algorithms relies on the
availability of detailed channel information (i.e., H, G and D),
a luxury rarely feasible in practical deployments. In real-world
scenarios, acquiring comprehensive channel information is not
only costly and time-consuming but also often impractical due
to rapid environmental changes and the high mobility expected
in 6G networks. Our ML-based approach addresses this criti-
cal gap by leveraging spatial data—specifically, the positions

of the transmitter and receiver—rather than relying on explicit
channel information. This shift allows for a scalable and adapt-
able solution that can predict effective RIS configurations in
real-time, even when only positional information is available.
By developing this neural model, we provide a novel frame-
work that extrapolates the insights gained from simulation-based
optimization to real-world conditions where dynamic and un-
predictable factors come into play. To construct a high-fidelity
model capable of generalizing across diverse network conditions,
particularly in an indoor environment, we generated an extensive
dataset using GoSimRIS. The dataset spans a wide range of Tx
and Rx positions, constrained within an x-axis of 75 meters and
a y-axis of 50 meters. Each Tx and Rx position was incremented
by 2.5 meters for each fixed point corresponding to the scene
dimensions modeled in GoSimRIS. To capture the multifaceted
nature of wireless environments, two LOS conditions—clear and
obstructed—were simulated for each Tx/Rx pair. This deliberate
variation ensures that the dataset reflects a wide range of real-
istic propagation conditions, providing a solid foundation for
training the neural network. For each combination of Tx/Rx po-
sitions and LOS conditions, the optimized RIS coefficients were
computed using the advanced optimization algorithms presented
in Algorithm 1, representing the best achievable configuration
for given scenarios, and were then meticulously included in the
dataset. In total, the dataset contains nearly 850,000 samples,
each entry correlating spatial positions, LOS conditions, and
their corresponding optimized coefficients. The neural network
architecture was carefully designed to balance depth and regular-
ization, allowing it to model the complex non-linear relationships
between input positions and optimal RIS coefficients. For the
ML model, we adopted a deep neural networks (DNN) approach.
After extensive hyperparameter tuning, the final architecture con-
sists of six hidden layers with varying units and dropout rates,
optimized for accurate and reliable predictions. The trained
model was rigorously evaluated on a hold-out test set to quantify
its predictive accuracy. The evaluation metrics—Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and R-squared
(R2)—are reported in Table 1. These metrics reflect the model’s
capability to generalize well beyond the training data, which is
crucial for practical deployment scenarios.

Table 1: Model Performance Metrics on Test Set

Metric MAE RMSE R-squared
Value 0.4448 0.8391 0.5803

IV. PERFORMANCE EVALUATION OF NEURAL-DRIVEN
CONFIGURATION

A. Analysis of Achievable Rates for Dynamic LOS Conditions

Building on the dataset generation and rigorous model eval-
uation presented earlier, this section focuses on the practical
application of the neural-driven configuration under dynamic
network conditions. Traditional optimization methods are al-
ready validated in scenarios where full channel information is ac-
cessible, allowing this study to concentrate on the neural-driven
approach, which aims to achieve superior performance over base-
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Figure 3: Dynamic LOS condition transitions over Rx position steps.

Figure 4: Achievable rate distribution per LOS interval (aggregating Rx position steps) for
different configurations (see LOS intervals in Fig. 3).

line configurations even without explicit channel information.
For this analysis, we extracted a subset of nearly 700 distinct Rx
positions from the broader dataset of 850,000 samples, keeping
the Tx position fixed. The selected positions provide a repre-
sentative overview of changing line-of-sight (LOS) scenarios
and spatial configurations, offering a focused validation of the
neural-driven model’s adaptability within this subset, while also
demonstrating its scalability across the larger dataset. The subset
used in this analysis encompasses a variety of LOS intervals,
each representing continuous Rx positions where LOS condi-
tions remain constant. Figure 3 illustrates these dynamic LOS
transitions, simulating real-world scenarios where obstacles in-
termittently obstruct the communication path. In Figure 4, the
achievable rates are averaged over each LOS interval (20 as il-
lustrated in Figure 3), providing a comprehensive evaluation of
the model’s performance under both clear and obstructed condi-
tions. The neural-driven configuration demonstrates a decisive
performance advantage over baseline methods (Random and
No RIS), achieving a 25% higher achievable rate than Random
and a 29% improvement over No RIS. Additionally, it consis-
tently maintains higher median achievable rates and exhibits a
narrower interquartile range, indicating greater reliability across
LOS intervals. By leveraging spatial and LOS data without ex-
plicit channel information, the neural model dynamically adjusts
phase shifts, enhancing achievable rates across varying propaga-
tion environments. This adaptability underscores the robustness
of the neural-driven approach in handling the complex dynamics
of real-world 6G networks. From these results, we can conclude
that the ability of the neural network to predict RIS coefficients
using only Tx/Rx positions and LOS conditions represents a
significant advancement. By eschewing the need for explicit
channel information, the model offers a scalable solution that

can be deployed in real-world scenarios where acquiring compre-
hensive channel information is either costly or infeasible. The
generalization capability of the model is further underscored
by its consistent performance across a broad range of Tx/Rx
positions and LOS conditions. This robustness suggests that the
model can adapt to various environmental contexts, making it a
versatile tool for future 6G networks.

V. CONCLUSION

This paper presented a dual-component framework for the
control of RIS in 6G networks. The first component, GoSim-
RIS, provided a scalable and efficient simulation environment
for generating realistic channel data, which was then leveraged
by an xApp within FlexRIC for real-time RIS control using ad-
vanced optimization algorithms. Using xApp for RIS control
is a groundbreaking achievement, marking the first instance of
such an integration, and lays the foundation for future research in
RIS control. The second component introduced a deep learning
model designed to predict RIS coefficients based on transmit-
ter and receiver positions and LOS conditions. The evaluation
demonstrated that the neural model delivered near-optimal per-
formance with reduced complexity, highlighting its potential for
scalable and adaptive RIS control. Future works will include
testing with hardware prototypes and field experiments, which
will be essential for assessing its adaptability and reliability in
diverse scenarios and extend its applicability beyond controlled
settings.
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