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Abstract—In the non-linear hidden Markov chain (HMC)
model, commonly employed in robotics, navigation, signal pro-
cessing, and control systems, various variants of Kalman filter
(KF) like the Extended Kalman Filter (EKF) and Iterated
Extended Kalman Filter (IEKF) have been developed for dif-
ferent scenarios, with their limitations and advantages. However,
their effectiveness can diminish in the presence of non-Gaussian
noise, which is prevalent in many real-world situations. This
paper presents a novel approach to tackle non-Gaussian noise
leveraging the revisited Generalized Vector Approximate Message
Passing (ReGVAMP) within the context of EKF and IEKF.
ReGVAMP extends these KF variants to break the Gaussian
barrier, thereby enhancing the accuracy of state estimation. A
tracking simulation validated the feasibility of our proposed
algorithms.

I. INTRODUCTION

The Kalman Filter (KF) [1] is a foundational tool in state
estimation, particularly effective for linear systems with Gaus-
sian noise. However, its utility is restricted by the assumption
of linearity and Gaussianity, leading to the development of
extensions to handle nonlinearities and non-Gaussian noise
sources [2]. Key among these extensions are the Extended
Kalman Filter (EKF) [3] and Iterated Extended Kalman Filter
(IEKF) [4], which play crucial roles in various fields such as
robotics, navigation, signal processing, and control systems
[5], [6]. These algorithms expand upon the capabilities of
the conventional Kalman Filter, enabling it to effectively deal
with nonlinear systems. The EKF, an extension of the KF, ad-
dresses nonlinear systems by linearizing system dynamics and
measurement functions around the current state estimate using
first-order Taylor expansion. Despite its wide application, the
EKF has limitations. Its linearization step introduces errors,
particularly evident in highly nonlinear systems.

Further enhancing filtering accuracy, the IEKF iteratively
refines the state estimate. Unlike the EKF, which relies on
a single linearization, the IEKF iterates between prediction
and update steps, linearizing around the current best esti-
mate at each iteration. This iterative approach reduces errors
introduced by linearization, thereby improving filtering per-
formance, especially for highly nonlinear systems. However,
achieving IEKF convergence may depend on initial conditions
and could require parameter tuning for optimal performance.

Despite their effectiveness, the assumption of Gaussian
noise distributions in these filters restricts their applicability
in scenarios with non-Gaussian noise processes. While they
can be adapted for non-Gaussian noises, achieving Linear

Minimum Mean Square Error (LMMSE) performance when
precise linearization achieve.

A straightforward approach might involve calculating the
true posterior at each time index then approximate it as Gaus-
sian prior for next time index. Setting aside considerations
of their linearization accuracy and stability, they consistently
yield superior performance compared to LMMSE. However,
the solvability of MMSE integration is often challenging due
to the high-dimensional integration involved, necessitating
the use of approximate approaches for Bayesian inference.
Previous research has introduced several numerical methods
based on message passing to obtain an analytic solution to
the integration in the time update step, including generalized
approximate message passing (GAMP) [7], vector approx-
imate message passing (VAMP) [8], variational inference
(VI) [9], etc.. Nevertheless, these methods typically assume
a high system dimension, aiming to avoid complex matrix
inversions, and are sensitive to the measurement matrix, which
must be right rotationally invariant for VAMP and consist of
i.i.d. sub-Gaussian elements for GAMP. Additionally, these
algorithms only provide averaged variances. These limitations
motivated the introduction of the revisited generalized vector
approximate message passing (ReGVAMP) algorithm [10].
Leveraging the ReGVAMP algorithm [10], we approximate
the posterior p(xk|y1:k) as Gaussian q(xk) prior for next
time index. The key idea behind ReGVAMP is to approximate
the extrinsic information into Gaussian form due to central
limit theory. Consequently, the minimization of the Kullback-
Leibler divergence (KLD) between p(xk|y1:k) and q(xk) is
separated into several moment matching problems. Optimizing
the approximated posterior q(xk) via KLD(p||q) may yield
better performance than KLD(q||p) as VI does, as the for-
mer provides the exact posterior covariance matrix while the
latter only offers correct diagonal precisions even when p
is Gaussian. Moreover, while this approximated multivariate
Gaussian posterior may not be tight, it captures full second-
order moments. Hence, from one perspective, ReGVAMP
algorithm minimizes the desirable KLD(p||q) approximately,
made feasible by the asymptotic Gaussianity of the extrinsic.
In this paper, we propose combining ReGVAMP with EKF
and IEKF to handle different nonlinear and non-Gaussian
models, coining them as ReGVAMP-EKF and ReGVAMP-
IEKF. Additionally, comparison experiments is designed to
compare them to the unscented Kalman filter (UKF) [11].
Through our simulation, it is evident that when faced with



non-Gaussian noise, introducing the ReGVAMP algorithm to
handle such noise significantly enhances the performance of
both EKF and IEKF.

A. Notations
The operator (·)T denotes the matrix transpose. We denote

the Kullback–Leibler divergence between distributions p and
q as DKL(p∥q). The notation N (x;µ,Σ) represents the
Gaussian distribution function evaluated at x with mean µ
and covariance matrix Σ. ei indicates a unit vector with only
the i th entry set to 1 and all others set to 0. δ(x) denotes the
Dirac delta distribution. In denotes the n× n identity matrix.
The notation |x| is used to denote the absolute value of x.

II. GENERALITIES ON LINEAR STATE SPACE MODEL

Consider a non-linear state space model at each time step
k:

xk = h(xk−1,uk,wk) (1a)
yk = g(xk,vk), (1b)

where xk ∈ RN , uk ∈ RO, and yk ∈ RM represent the
true unobserved state vector of the system, control vector,
and only observation (measurement) respectively. The process
noise wk ∈ RL drives the dynamic system and the observation
noise is denoted as vk ∈ RC . This entire process can be
interpreted as a hidden Markov chain (HMC) [12]. While
the standard Kalman filter is a powerful estimation tool,
its algorithm begin to break down when the system being
estimated is nonlinear. Fortunately, a version of the standard
Kalman filter, known as the extended Kalman filter (EKF), has
been extended to nonlinear systems and relies on linearization
in estimating these nonlinear systems. Linearization operates
on the principle that at a small section around a selected
operating point a nonlinear function can be approximated as a
linear function. This linearized function can be derived from
the nonlinear function using the first-order terms in a Taylor
series expansion shown in below:

h(xk−1,uk,wk) ≈ h(x̂k−1, ŵk,uk) + hxk−1 (x̂k−1, ŵk,uk)

(xk−1 − x̂k−1) + hwk (x̂k−1, ŵk,uk)(wk − ŵk), (2a)
g(xk,vk) ≈ g(x̂k, v̂k) + gxk (x̂k, v̂k)(xk − x̂k)

+ gvk (x̂k, v̂k)(vk − v̂k), (2b)

where hxk−1
(x̂k−1, ŵk,uk) and hwk

(x̂k−1, ŵk,uk) do-
nate the partial derivation with respect to (w.r.t.) xk−1 and
wk respectively at point (x̂k−1, ŵk,uk); gxk

(x̂k, v̂k) and
gvk

(x̂k, v̂k) donate the partial derivation w.r.t. xk and vk
respectively at point (x̂k, v̂k). Neglecting Taylor expansion
terms of second and higher orders in (2), we can havesimplifies
to:

xk = Hkxk−1 + Fkwk + hk, (3a)
yk = Gkxk +Bkvk + gk, (3b)

where the matrices Hk ∈ RN×N , Fk ∈ RN×O, Gk ∈ RM×N

and Bk ∈ RM×C , and vectors hk ∈ RN×1 and gk ∈ RM×1

can be expressed as

Hk = hxk−1 (x̂k−1, ŵk,uk), Fk = hwk (x̂k−1, ŵk,uk), (4a)

Gk = gxk (x̂k, v̂k), Bk = gvk (x̂k, v̂k), (4b)
hk = h(x̂k−1, ŵk,uk)−Hkx̂k−1 − Fkŵk, (4c)
gk = g(x̂k, v̂k)−Gkx̂k −Bkv̂k. (4d)

In accordance with the HMC, at each time step k, for brevity,
we omit writing y1:k−1 in the probability density function
(pdf) in the rest of paper, such as p(xk−1|y1:k−1) denoted as

p(xk−1). Here, the estimated pdf of the previous state xk−1

is represented as p(xk−1) = N (xk−1|x̂k−1,Pk−1). For the
prediction phase, leveraging Bayes’s rule, the predictive pdf
of xk given wk can be deduced as follows:

p(xk|wk) =
∫
p(xk|xk−1,wk)p(xk−1)dxk−1

=
∫
δ(Hkxk−1+Fkwk+hk−xk)N (xk−1;x̂k−1,Pk−1)dxk−1

= N (xk;Hkx̂k−1 + Fkwk + hk,HkPk−1H
T
k ).

(5)

Combining this with the prior of wk, the predictive prior of
xk can be articulated as:

p(xk) =
∫
p(xk|wk)

∏L
i=1 p(wki)dwk =

∫
p(xk,wk)dwk. (6)

In the measurement phase, the likelihood pdf p(yk|xk) can be
computed as:

p(yk|xk) =
∫
p(yk|xk,vk)p(vk)dvk

=
∫
δ(yk −Gkxk −Bkvk − gk)

∏C
j=1 p(vkj)dvk.

(7)

With (6) and (7), in the update step, the posterior of xk given
yk can be calculated as:

p(xk|yk) =
p(yk|xk)p(xk)∫
p(yk|xk)p(xk)dxk

(8a)

=

∫∫
p(yk|vk,xk)p(xk|wk)p(wk)p(vk)dvkdwk∫∫∫

p(yk|vk,xk)p(xk|wk)p(wk)p(vk)dvkdwkdxk
(8b)

=

∫∫
p(yk,xk,wk,vk)dwkdvk∫∫∫

p(yk,xk,wk,vk)dwkdvkdxk
. (8c)

When both measurement and process noises follow Gaussian
distributions, (8a) remains Gaussian, facilitating straightfor-
ward calculation and leading to the Kalman filter. However,
if either the measurement noise vk or process noise wk

deviates from Gaussianity, exhibiting non-Gaussian distribu-
tions like Gaussian mixture model (GMM) distributions, the
integration in (6) and (7) might become intractable or involve
costly computational complexity. Therefore, we introduce the
ReGVAMP-EKF algorithm in the next section.

III. DERIVATION OF THE REGVAMP-EKF

This iterative approach reduces errors introduced by lin-
earization, thereby improving filtering performance, espe-
cially for highly nonlinear systems. In the ReGVAMP-
EKF algorithm framework, the primary objective is to ap-
proximate p(xk,yk,wk,vk) in (8c) using a Gaussian pdf
q(xk,y

′
k,wk,vk) with y′

k = yk − gk such that:

p(xk,yk,wk,vk) ≈ q(xk,y
′
k,wk,vk)

= p(xk|wk)δ(y
′
k−Gkxk−Bkvk)

∏L
i=1 f(wki)

∏C
j=1 f(vkj).

(9)

All f(wki) and f(vkj) in (9) are assumed to be Gaussian
factors, expressed as:

f(wki)=N (wki; ŵki,τwki ), f(wk)=N (wk; ŵk,Twk ); (10a)
f(vkj) = N (vkj ; v̂kj , τvkj ), f(vk) = N (vk; v̂k,Tvk ), (10b)

where the ith entry of ŵk ∈ RL and the jth entry of v̂k ∈ RC

are denoted as ŵki and v̂kj respectively. Moreover, Twk
∈

RL×L and Tvk
∈ RC×C are diagonal matrices with the ith and

jth diagonal entries represented as τwki
and τvkj

respectively.
The ReGVAMP-EKF algorithm for each time index, de-

tailed in Algorithm 1, will be explained as below.



Algorithm 1 ReGVAMP-EKF Algorithm at time index k

Input: p(xk−1) and yk

1: Initialization: All f(wki), f(vkj), Hk, Fk, Gk, Bk, hk,
gk and y′

k

2: repeat
3: Initilization of index i← 0 and j ← 0
4: Update q(y′

k|wk) in (11)
5: repeat
6: i← i+ 1
7: Update extrinsic m(wki) of wki in (15)
8: Update approximated posterior b̂i(wki) of wki via KL

divergence in (18)
9: Update f(wki) in (20)

10: until i = L
11: Update q(y′

k|vk) in (22)
12: repeat
13: j ← j + 1
14: Update extrinsic m(vkj) of vkj in (26)
15: Update approximated posterior b̂j(vkj) of vkj via KL

divergence in (29)
16: Update f(vkj) in (31)
17: until j = C
18: until All f(wki) and f(zkj) converge or maximum itera-

tion times
19: Calculate approximated posterior q(xk|y′

k) in (34)
Output: Treat q(xk|y′

k) as a prior p(xk) of xk for k + 1
index

A. Initialization

If we know the prior distributions of the noises, we can
initialize the parameters in (10a) and (10b) with the actual
mean and variance of each process noise p(wki) and measure-
ment noise p(vkj) respectively. However, when all parameters
are unknown, combining ReGVAMP-EKF with Expectation
Maximization (EM) [13] allows for a feasible solution. In such
cases, initializing all means to 0 and all variances to 1 serves
as a pragmatic approach. Nonetheless, addressing this scenario
is considered beyond the current scope of our contribution. For
the Taylor expansion, we choose the expanding point around
the posterior mean of the process noise, measurement noise,
and previous state mean. For initialization, we use the prior
means.

B. Update q(y′
k|wk)

With initialized f(zkj), according to Bayes’ rule, the ap-
proximated likelihood q(y′

k|wk) can be expressed as:

q(y′
k|wk) =

∫∫
p(xk|wk)δ(y

′
k−Gkxk−Bkvk)f(vk)dxk

= N (y′
k;GkFkwk +GkHkx̂k−1 +Gkhk +Bkv̂k,

GkHkPk−1H
T
k GT

k +BkTvkB
T
k ).

(11)C. Update all f(wki)

1) Update extrinsic m(wki) of wki: Since both q(wk) and
f(wkn) are Gaussian pdfs, we can define an approximate
posterior q̃(wk) of wk as follows:

q̃(wk) = N (wk;mwk ,Cwk ) =
q(y′

k|wk)
∏L

i=1 f(wki)∫
q(y′

k
|wk)

∏L
i=1 f(wki)dwk

, (12)

where

Cwk = (T−1
wk

+ F T
k GT

k (GkHkPk−1H
T
k GT

k +BkTvkB
T
k )−1GkFk)

−1;
(13)

mwk =Cwk [G
T
k HT

k (Tzk+F T
k GT

k (GkHkPk−1H
T
k GT

k +BkTvkB
T
k )−1

(y′
k − (GkHkx̂k−1 +Gkhk +Bkv̂k)) + T−1

wk
ŵk].

(14)
Removing f(wki), the extrinsic m(wki) can be calculated as:

m(wki)=

∫
q̃(wk)dwk\i/f(wki)∫∫

q̃(wk)dwk\i/f(wki)dwki
= N (wki;µwki , ξwki ), (15)

where
ξwki =

τwki
eT
i Cwk

ei

τwki
−eT

i Cwk
ei

;

µwki = ξwki

(
eT
i mwk

eT
i Cwk

ei
− ŵki

τwki

) (16)

2) Update approximated posterior (belief) b̂i(wki) of wki

via KL divergence: Firstly, defining b̂i(wki) as a Gaussian
pdf:

b̂i(wki) = N (wki;αwki , βwki ), (17)

then combining the extrinsic m(wki) from (15) with the
actual prior p(wki) and minimizing the Kullback–Leibler (KL)
divergence to obtain an approximate marginal posterior (belief)
b̂i(wki):

b̂i(wki)=arg min
bi(wki)

DKL

[
m(wki)p(wki)∫

m(wki)p(wki)dwki

∥∥∥∥bi(wki)

]
. (18)

With some mathematical algebra, the solution to (18) can be
provided as:

αwki =
∫
wkim(wki)p(wki)dwki∫

m(wki)p(wki)dwki
= gwki (µwki , ξwki ); (19a)

βwki =

∫
(αwki

−wki)
2m(wki)p(wki)dwki∫

m(wki)p(wki)dwki
= ξwki

∂gwki
(µwki

,ξwki
)

∂µwki
.

(19b)

3) Update f(wki): Once we obtain b̂i(wki), removing the
extrinsic m(wki), we can update f(wki) as:

f(wki) =
b̂i(wki)/m(wki)∫

b̂i(wki)/m(wki)dwki
= N (wki; ŵki, τwki ), (20)

where the updated variance τwki
and updated mean ŵki can

be expressed as:
τwki =

ξwki
βwki

ξwki
−βwki

,

ŵki = τwki (
βwki
αwki

− µwki
ξwki

).
(21)

D. Update q(y′
k|vk)

Similar to III-B, with f(wk), the approximated likelihood
q(y′

k|vk) can be expressed as:

q(y′
k|vk) =

∫∫
p(xk|wk)δ(y

′
k−Gkxk−Bkvk)f(wk)dxkdwk

= N (y′
k;Bkvk +GkHkx̂k−1 +GkFkwk +Gkhk,

GkHkPk−1H
T
k GT

k +GkFkTwkF
T
k GT

k ).
(22)

E. Update all f(vkj)
1) Update extrinsic m(vkj) of vkj: Since both q(y′

k|vk)
and f(vkj) are Gaussian pdfs, we can define an approximated
posterior q̃(vk) of vk as follows:

q̃(vk) = N (vk;mvk ,Cvk ) =
q(y′

k|vk)
∏C

j=1 f(vkj)∫
q(y′

k|vk)
∏C

j=1 f(vkj)dvk

, (23)

where
Cvk = (T−1

vk
+BT

k (GkHkPk−1H
T
k GT

k
+GkFkTwkF

T
k GT

k )−1Bk)
−1;

(24)



mvk = Cvk [B
T
k (GkHkPk−1H

T
k GT

k GkFkTwkF
T
k GT

k )−1

(y′
k − (GkHkx̂k−1 +GkFkwk +Gkhk)) + T−1

vk
v̂k].

(25)
Removing f(vkj), the extrinsic m(vkj) can be calculated as
follows:

m(vkj) =

∫
q̃(vk)dvk\j/f(vkj)∫∫

q̃(vk)dvk\j/f(vkj)dvkj
= N (vkj ;µvkj , ξvkj ), (26)

where
ξvkj =

τvkj
eT
j Cvk

ej

τvkj
−eT

j Cvk
ej

; (27a)

µvkj = ξvkj

(
eT
j mvk

eT
j Cvk

ej
− v̂kj

τvkj

)
. (27b)

2) Update approximated posterior (belief) b̂j(vkj) of vkj
via KL divergence: Defining b̂j(vkj) as a Gaussian pdf:

b̂j(vkj) = N (vkj ;αvkj , βvkj ). (28)

We combine the extrinsic m(vkj) with the real prior p(vkj)
and minimize the KL divergence to obtain an approximate
marginal posterior (belief) b̂j(vkj).

b̂j(vkj)=arg min
bj(vkj)

DKL

[
m(vkj)p(vkj)∫

m(vkj)p(vkj)dvkj

∥∥∥∥bj(vkj)]. (29)

Following the approach used for (18), we can derive the
solution for (29) as:

αvkj =
∫
vkjm(vkj)p(vkj)dvkj∫
m(vkj)p(vkj)dvkj

= gvkj (µvkj , ξvkj ); (30a)

βvkj =

∫
(αvkj

−vkj)
2m(vkj)p(vkj)dzkj∫

m(vkj)p(vkj)dvkj
= ξvkj

∂gvkj
(µvkj

,ξvkj
)

∂µvkj
.

(30b)

3) Update f(vkj): Removing the extrinsic m(vkj) from
belief b̂j(vkj), the approximated factor f(vkj) can be updated
as

f(vkj) =
b̂j(vkj)/m(vkj)∫

b̂j(vkj)/m(vkj)dvkj
= N (vkj ; v̂kj , τvkj ), (31)

where the updated variance τvkj
and mean v̂kj can be ex-

pressed as

τvkj =
ξvkjβvkj

ξvkj − βvkj

, (32a)

v̂kj = τvkj (
βvkj

αvkj

−
µvkj

ξvkj

). (32b)

F. Convergence judgment criteria
Convergence is not assured with the ReGVAMP. In the

majority of cases, however, convergence is assured with the
ReGVAMP algorithm within simulations. As for the conver-
gence judgment criteria, we choose:∑L

i=1 ∥ŵnew
ki − ŵki∥22 +

∑C
j=1 ∥v̂new

kj − v̂kj∥22 < ϵ, (33)

where ŵnew
ki and v̂newkj indicate the updated mean of wki

and vkj , respectively. ϵ is set to be 10−3 in our numerical
simulation, and the maximum iteration time is set to be 10.

G. Calculate approximated posterior q(xk|y′
k)

With the approximated f(wk) and f(zk), q(xk|y′
k) can be

calculated as follows:

q(xk|y′
k) =

∫∫
p(xk|wk)δ(y

′
k−Gkxk−Bkvk)f(wk)f(vk)dvkdwk∫∫∫

p(xk|wk)δ(y
′
k
−Gkxk−Bkvk)f(wk)f(vk)dvkdwkdxk

= N (xk|x̂k,Pk),
(34)

where

Pk = [GT
k (BkTvkB

T
k )−1Gk + (HkPk−1H

T
k + FkTwkF

T
k )−1]−1.

(35a)

x̂k = Pk[G
T
k (BkTvkB

T
k )−1(y′

k −Bkv̂k) + (HkPk−1H
T
k

+FkTwkF
T
k )−1(Hkx̂k−1 + Fkŵk + hk)].

(35b)

For the next time step k + 1, q(xk|y′
k) is set as the approxi-

mated pdf of time step xk.

IV. DERIVATION OF THE REGVAMP-IEKF
Further enhancing filtering accuracy, the IEKF iteratively

refines the state estimate. Unlike the EKF, which relies on
a single linearization, the IEKF iterates between prediction
and update steps, linearizing around the current best estimate
at each iteration. The ReGVAMP-EKF is extended to the
ReGVAMP-IEKF by incorporating iterative updates at each
time step, where the state estimate is refined through repeated
linearization around the updated estimate until convergence.
This approach enhances the accuracy of state estimation in
highly nonlinear systems. The ReGVAMP-IEKF can be found
in Algorithm 2.

Algorithm 2 ReGVAMP-IEKF Algorithm at time index k

Input: p(xk−1) and yk

1: Initialization: All f(wki), f(vkj), Hk, Fk, Gk, Bk, hk,
gk and y′

k

2: repeat
3: Update f(wki), f(vkj) and q(xk|y′

k) via ReGVAMP-
EKF algorithm until converge.

4: Update Hk, Fk, Gk, Bk, hk, gk and y′
k

5: until Until f(wki), f(vkj), q(xk|y′
k) converged

6: Output the approximate posterior q(xk|y′
k)

Output: Treat q(xk|y′
k) as a prior p(xk) of xk for k + 1

index

V. NUMERICAL SIMULATION

We have designed a fully nonlinear state-space model to
describe the motion trajectory of an object. The state vari-
ables include position px, py , and velocity vx, vy . Both the
state transition and observation equations are nonlinear. The
specific equations are as follows: The state vector xk =
[px,k, py,k, vx,k, vy,k]

T represents the combination of position
and velocity. The nonlinear state transition equation is:

xk =

px,k−1 + T · sin(vx,k−1)
py,k−1 + T · cos(vy,k−1)
vx,k−1 + T · sin(px,k−1)
vy,k−1 + T · cos(py,k−1)

+wk (36)

where T is the sampling time which is set to be 0.05 in
our simulation and wk represents process noise. The initial-
ized state x0 is set to in Gaussian distribution with means
[1 1 0.1 0.1]T and covariance matrix I4. The observation
vector consists of the measured distance and angle, modeled
by the following nonlinear observation equation:

yk =

√
p2x,k + p2y,k

arctan
(

py,k

px,k

)+ vk (37)



where vk represents observation noise. To simulate a complex
noise environment, both process noise wk and observation
noise vk are modeled as the GMM noise. The GMM is repre-
sented as a weighted sum of multiple Gaussian distributions,
described as: Process Noise wk:

wk ∼ 0.3N (0, I4) + 0.7N (0, 0.09I4); (38a)
vk ∼ 0.3N (0, I2) + 0.7N (0, 0.09I2). (38b)

The Averaged Cumulative Mean Error (ACME) is a metric
used to evaluate the performance of an estimated vector x̂
compared to its ground truth counterpart x over multiple time
steps. The ACME of x̂T (i)is defined as:

ACMExT (i) =
1

T

T∑
t=1

|xt(i)− x̂t(i)|, (39)

where T is the total number of time steps. In our simulation,
we assume both of them are known during simulations. Fig. 1
illustrates the true positions, velocities, and their estimations
and Fig 2 shows the ACME rsults. It can be seen that the
performance of EKF and IEKF is improved by combining the
ReGVAMP algorithm. Although the UKF demonstrates similar
performance, it frequently crashes in our simulations due to
arithmetic precision issues. The simulation codes can be found
in https://github.com/FqXIAO/ReGVAMP-EKF-IEKF.git.
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Fig. 1. Estimation Results of Each State

VI. CONCLUSION

This paper introduces the ReGVAMP-EKF filter to address
the filtering problem in stochastic systems characterized by
nonlinear system models and non-Gaussian noise. Unlike
traditional methods that rely on MMSE, the ReGVAMP al-
gorithm is utilized in this filter to approximate the poste-
rior of each state vector xk as Gaussian. This capability
allows the filter to effectively handle non-Gaussian noise while
maintaining computational complexity similar to that of the
Extended Kalman Filter (EKF). Numerical examples demon-
strate that the ReGVAMP-EKF and ReGVAMP-IEKF achieves
high performance, especially compared to the EKF and IEKF.
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Fig. 2. Averaged Cumulative Mean Error Comparison

However, future research should include more comprehensive
comparisons with other state-of-the-art methods. Additionally,
further investigation is needed to analyze the performance and
convergence of the ReGVAMP-EKF and ReGVAMP-IEFK,
particularly in larger systems and with unknown hyperparam-
eters, through extensive simulations.
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