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Abstract | We consider a multiaccess Gaussian

block fading channel where transmitters have causal

state information. Variable-rate coding with input

power constraint enforced on a per-codeword basis is

examined. We �nd the average capacity region and

average capacity region per unit energy. Moreover,

we study the wideband slope of spectral eÆciency

vs. (Eb=N0)dB, and we quantify the bandwidth ex-

pansion factor of TDMA over superposition coding in

the wideband regime.

I. Introduction and motivations

The literature on the capacity of fading channels has fol-
lowed two distinct approaches to characterize power con-
straints: A) Power constraint on a per-symbol basis (averaged
over the codebook); B) Power constraint on a per-codeword
basis (averaged over the length of the codeword and the code-
book).

Basic information theory results [1, 2] have shown that the
laxer constraint B o�ers no advantage in unfaded channels
or in fading channels where the transmitter does not know
the channel. However, when the transmitter has instanta-
neous knowledge of the channel fading coeÆcients, constraint
B leads to strictly larger capacity than A because it enables
the use of \power control" which avoids wasting power at sym-
bols where the channel undergoes deep fades. Under B, the
optimum strategy as shown in [3] is water-�lling in time. In
this setting, the fading process is assumed to be stationary
and ergodic and the codewords are long enough for the fading
distribution to be revealed within the span of one codeword.
If the fading dynamics are slow, this leads to intolerably long
blocklength, and consequently delay. Furthermore, water�ll-
ing power control leads to very large peak-to-average ratio of
the transmitted waveform, in the low-SNR (or \wideband")
regime.

In the high Eb=N0 high spectral eÆciency regime, con-
straints A and B, although leading to di�erent optimum trans-
mission strategies, achieve very similar single-user capacity.
Only in conjunction with multiaccess and multiuser detection
do optimum power control strategies lead to noticeable ad-
vantages in the high SNR regime [4]. On the other hand, in
the low spectral eÆciency regime, constraint B enables (for
fading distributions with in�nite support) reliable communi-
cation with energy per bit as small as desired, in stark contrast
to constraint A which requires a minimum transmitted energy
per bit that is bounded away from zero. Therefore, it is nat-
ural to focus the analysis of capacity under delay constraints
in the wideband regime.

Incorporating delay constraints in Shannon theoretic set-
tings is a perennial challenge. In fading channels, it is essen-
tial to specify: 1) the duration of a codeword with respect

to the fading process coherence time, and 2) the time inter-
val on which the average input power constraint is enforced.
Although vanishing error probability is unattainable unless
the number of degrees of freedom grows without bound, that
number grows with the product of time duration and band-
width. Thus, in the wideband regime, an asymptotic analysis
is feasible even in a setting of �xed duration codebooks.

In [5] the concept of \delay-limited" capacity region for a
multiaccess fading channel is introduced. In this setting, each
codeword spans a single fading state (i.e., the fading coherence
time is much longer than the codeword duration) but the input
power constraint is even laxer than B given above: it is de�ned
over an arbitrarily long sequence of codewords (we shall refer
to such constraint as long-term). The delay-limited capacity
region is the set of rates which can be achieved for all fading
states (up to a set of measure zero), subject to the long-term
input constraint. In other words: the coding rates are �xed
while the transmit power uctuates.

In this paper we take a somewhat complementary point of
view: we assume a block fading model where a codeword spans
a �nite number of slots, with fading constant over each slot
and varying independently from slot to slot, and the power
constraint is enforced on a per-codeword basis (constraint B
above). However, we allow variable rate coding so that users
can coordinate their rates in order to be always inside the
fading-dependent capacity region. Here, the transmit power
is �xed while the coding rates are random. Consequently, we
de�ne the long-term average capacity region as the set of all
achievable rates averaged over an arbitrarily long sequence
of codewords. Finally, we assume that the fading states are
revealed causally to the transmitters [6, 7].

In the rest of this paper, we borrow some terminology from
current wireless cellular systems. A block-fading model (ad-
mittedly, highly idealized) is assumed [8], with L� 1 dimen-
sions per fading state. Blocks of L input symbols spanning
the same fading state are referred to as \slots". Codewords
span groups of N slots, referred to as \frames". The model
under investigation has several interesting features: by relax-
ing the frame-by-frame coding and decoding requirement, (but
still enforcing the per-frame power constraint), the long-term
average capacity region coincides with the standard ergodic
capacity region under the per-frame power constraint. Fur-
thermore, the parameter N governs the peak-to-average ratio
of transmit power. For N ! 1 the model is equivalent to
the conventional setting B, where transmitters are allowed to
blast power on good fading states and spend no power on
bad fading states. For N = 1 constant power transmission is
enforced and transmitter channel state information plays no
role.

As shown recently in [9], information theoretic performance
in the wideband regime is not only characterized by the min-
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imum energy per bit but also by the "wideband slope" of
the spectral-eÆciency curve as a function of Eb=N0 (dB)
(b/s/Hz/3 dB). Minimum energy per bit alone is unable to
give any indication about bandwidth requirements. Accord-
ingly, our analysis focuses on both fundamental limits. We
show that a \one-shot" power allocation policy that concen-
trates the whole transmit energy over one out of N slots, is
optimal in terms of minimum energy per bit. In the single-
user case, the same policy is also optimal with respect to the
wideband slope. Since such slot must be chosen on the basis
of causal feedback, the transmitter cannot simply choose the
most favorable slot. Rather, the solution is obtained through
dynamic programming and has the structure of a comparison
with a decreasing threshold [6].

In the multiaccess setting, where users are subject to in-
dependent fading coeÆcients, we make use of the framework
developed in [10] for the capacity-per-unit cost region for mul-
tiaccess channels as well as results on the region of achievable
wideband slope we have obtained in [11]. The one-shot power
allocation policy is decentralized: i.e., each user needs the
knowledge of its own fading state sequence only. This policy
in conjunction with TDMA suÆces to achieve the capacity re-
gion per unit energy. However, we show that if the same power
allocation policy is used in conjunction with superposition
signaling and a successive interference cancellation receiver,
wideband slopes generally larger than TDMA are achievable.

II. System model and basic definitions

We consider a block-fading Gaussian Multi-Access Chan-
nel (MAC) where K transmitters must deliver their message
within N slots to the receiver by spending a �xed maxi-
mum energy. The number of complex dimensions per slot is
L = bWT c, where T is the slot duration andW is the channel
bandwidth. The baseband complex received vector in slot n
is

yn =

KX
k=1

ck;nxk;n + zn (1)

where zn � NC (0; IL)
1 is an i.i.d. Gaussian noise vector

with normalized unit variance per component, xk;n 2 C
L
is

the signal of user k transmitted in slot n, ck;n is the complex

fading coeÆcient for user k with power gain �k;n
�
= jck;nj

2,
assumed i.i.d. with continuous cdf F�(x).

The receiver has perfect (non-causal) Channel State In-
formation (CSI) while the transmitters have perfect causal
CSI [6, 7], i.e., in slot n the transmitters know the channel
state up to time n, de�ned by

Sn
�
= fck;i : k = 1; � � � ; K; i = 1; � � � ; ng (2)

Each transmitter k is subject to the per-codeword input con-
straint (referred to as \short-term" power constraint).

1

NL

NX
n=1

jxk;nj
2 � k (3)

where k is the transmitted energy per symbol, and because
of the noise variance normalization adopted here it has the

1The notation a � NC (�;R) indicates that a is a proper complex
Gaussian random vector with mean E[a] = � and covariance E[(a�
�)(a��)H ] = R. IL denotes the identity matrix of dimension L�L.

meaning of transmit Signal-to-Noise Ratio (SNR). In the fol-
lowing we will use the notation

�k;n
�
=

1

L
jxk;nj

2 (4)

for the instantaneous SNR of transmitter k in slot n.
For �nite N and L no positive rate is achievable. However,

we can consider a sequence of channels indexed by the slot
length L and study the achievable rates in the limit for L!1
and �xed N . This is a standard mathematical abstraction in
the study of the limit performance of block-fading channels [8]
and it is motivated by the fact that, in many practical appli-
cations, the product WT is large and T is much smaller than
the fading coherence time. Even in the limit of large L, the
rate K-tuple at which reliable communication is possible over
a frame of N slots is a random vector, because only a �xed
number KN of fading coeÆcients a�ect each frame.

Consider a long sequence of frames, each composed of N
slots. In this setting, it is meaningful to study the largest
achievable long-term average rate region, subject to the short-
term power constraint (3). Moreover, in the energy-limited
case investigated here, a meaningful system design criterion is
to look for the largest achievable long-term average capacity
per unit energy (bit/joule). Next, in analogy with [12, 10],
we characterize the long-term average capacity region and the
long-term average capacity per unit energy for our system.

Variable-rate coding in our setting is essentially di�erent
from variable-rate coding in an ergodic setting, such as in [12,
3]. Here, we assume that each transmitter has an in�nite
\bit-reservoir" and, depending on the fading instantaneous
realization, transmits a variable number of bits per frame. We
model this setting by letting the message set size depend on
the fading state. Because of space limitation, we omit formal
de�nitions of variable-rate coding scheme, long-term average
capacity region and long-term average capacity region per unit
energy (see [13]).

III. Long-term average capacity region

We have the following:

Theorem 1. The long-term average capacity region is
given by

CK;N () =
[

�2�K;N ()

CK;N (;�) (5)

where

CK;N (;�)
�
=
n
R 2 R

K
+ :

P
k2ARk �

� E
h
1
N

PN
n=1 log

�
1 +

P
k2A �k;n�k;n(Sn)

�i
;

8A � f1; � � � ; Kgg (6)

where expectation is with respect to the channel state SN and
where �K;N () is the set of feasible causal power allocation
policies � = f�k;n : k = 1; � � � ; K; n = 1; � � � ; Ng de�ned as

�K;N ()
�
=

(
� 2 R

KN
+ :

1

N

NX
n=1

�k;n � k; �k;n = �k;n(Sn)

)
(7)

(�k;n = �k;n(Sn) indicates the causality constraint, i.e., that
�k;n is a function of the channel state at time n). �

The explicit characterization of the boundary of the long-
term capacity region CK;N () can be done by following the
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approach of [12]. The boundary surface of CK;N () is the

closure of all K-tuples R 2 R
K
+ that solve

max
R2CK;N()

KX
k=1

�k Rk (8)

for some � = (�1; � � � ; �K) 2 R
K
+ . A closed form solution

of (8) seems infeasible. In [6], the single-user long-term av-
erage capacity that, with a slight abuse of notation, will be
denoted by

C1;N ()
�
= sup
�2�1;N ()

E

"
1

N

NX
n=1

log (1 + �n�n(Sn))

#
(9)

was computed numerically by showing that the optimal power
allocation policy

b� �
= arg sup

�2�1;N()

E

"
1

N

NX
n=1

log (1 + �n�n(Sn))

#
(10)

is the solution of a dynamic programming problem:

Theorem 2[6]. De�ne the recursion

Sn(P ) = E
�

"
sup

p2[0;P ]

flog(1 + �p) + Sn�1(P � p)g

#
(11)

for n = 1; : : : ; N , with initial condition S0(P ) = 0. The single
user long-term average capacity is given by

C1;N () =
1

N
SN (N) (12)

�

Although we cannot characterize explicitly the boundary
surface of CK;N () for every �nite N , we can prove the fol-
lowing limit theorem:

Theorem 3. In the limit for large N , the long-term aver-
age capacity region CK;N () tends to C

(erg)
K () ,the ergodic

capacity region given in [12]. �

IV. Long-term average capacity region per

unit energy

A byproduct of the proof of Theorem 1 (see [13]) is that
the long-term average capacity region coincides with the stan-
dard \ergodic" capacity region of the N -slot extension chan-
nel, which is frame-wise memoryless. The following theorem
is an immediate consequence of this fact and of the general
theory of capacity per unit cost [10]:

Theorem 4. The long-term average capacity region per
unit energy is given by

UK;N =
[

2R
K

+

n
r 2 R

K
+ : (1 r1; � � � ; K rK) 2 CK;N ()

o
(13)
�

In analogy with [10], it is easy to show the following:

Theorem 5. The long-term average capacity region per
unit energy is the hyper-cube

UK;N =
n
r 2 R

K
+ : rk � U1;N

o
(14)

where (with a slight abuse of notation)

U1;N = lim
!0

1


sup

�2�1;N ()

E

"
1

N

NX
n=1

�k;n�k;n(Sn)

#
(15)

�

Theorem 6 [6]. De�ne the recursion

sn = E
�
[maxfsn�1; �g] (16)

for n = 1; : : : ; N , with initial condition s0 = 0. The single-user
long-term average capacity per unit energy is given by U1;N =
sN and it is achieved by the \one-shot" power allocation policy
de�ned by

�?n =

�
N if n = n?(�)
0 otherwise

(17)

where we de�ne the \level-crossing" time

n?(�) = min fn 2 f1; : : : ; Ng : �n � sN�ng (18)

�

The behavior of U1;N when N grows to in�nity is given by
the following:

Theorem 7. For large N , U1;N tends to the ergodic capac-
ity region per unit energy de�ned in [10] and given explicitly
by

lim
N!1

U1;N = lim
!0

dC
(erg)
1 ()

d
= supf�g (19)

(supf�g denotes the supremum of the support of the proba-
bility distribution of �). �

V. Wideband performance

V.A Background

The optimality of a coding scheme in the wideband regime
is de�ned and studied for several input-constrained additive
noise channels in [9]. Let C(SNR) be the capacity expressed
in nat/dimension as a function of the (transmit) SNR, and
let C(Eb=N0) denote the corresponding spectral eÆciency in
bit/s/Hz as a function of the energy per bit vs. noise power
spectral density, Eb=N0, given implicitly by the parametric
equation ( Eb

N0
= SNR log 2

C(SNR)

C

�
Eb
N0

�
= C(SNR)= log 2

(20)

The value (Eb=N0)min for which C(Eb=N0) > 0 , Eb=N0 >
(Eb=N0)min, is given by [9]�

Eb

N0

�
min

= lim
SNR#0

SNR log 2

C(SNR)
=

log 2
_C(0)

(21)

where _C(0) is the derivative of the capacity function at
SNR = 0. From [10], we see immediately that the recipro-
cal of (Eb=N0)min is the capacity per unit energy (expressed
in bit/joule) of the channel.

In the wideband (i.e., vanishing SNR) regime, the behavior
of spectral eÆciency in a (right) neighborhood of (Eb=N0)min

is of great importance, as it is able to quantify the bandwidth
requirement for a given desired data rate (see the detailed
discussion in [9]). This behavior is captured by the slope of
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spectral eÆciency in bit/s/Hz/(3 dB), at (Eb=N0)min, given
by (see [9, Theorem 6])

S0 =
2
�
_C(0)

�2
� �C(0)

(22)

where �C(0) denotes the second derivative of the capacity func-
tion at SNR = 0. A signaling strategy is said to be �rst-order
optimal if it achieves (Eb=N0)min and second-order optimal is
it achieves S0 [9].

In a multiple-access channel, the individual user energy

per bit over N0 are de�ned by Ek=N0
�
= k log 2=Rk, where

k is the transmit SNR (energy/symbol) and Rk is the rate
(in nat/symbol) of user k. In [11], the achievable slope re-
gion for the standard 2-user Gaussian MAC is studied and its
boundary is explicitly parameterized with respect to the ratio
� = R1=R2.

In Section IV we have shown that the one-shot power al-
location �? (in conjunction with Gaussian variable-rate cod-
ing) achieves the capacity region per unit energy, i.e., achieves
(Eb=N0)min for all users for the block-fading MAC with causal
transmitter CSI considered in this paper. Then, we conclude
that the one-shot policy is �rst-order optimal for any number
of users K. From the proof of Theorem 5 [13] it follows that
�rst-order optimality can be obtained either by using super-
position coding or by using TDMA inside each slot. Next, we
shall study the wideband slope performance of �?.

V.B Second-order optimality for K = 1

Even if we cannot give a closed form for either C1;N () or

the corresponding optimal power allocation policy b� given in
(10), the characterization of C1;N () in the wideband regime
and the second-order optimality of the one-shot policy �? are
given by the following:

Theorem 8. (Eb=N0)min and S0 for the single-user block
fading channel with causal transmitter CSI are given by�

Eb

N0

�
min

=
log 2

sN

S0 =
2 (sN )

2

�N �SN (0)
(23)

where sN is given in (16), where the function SN(P ) is de-
�ned in (11) and where �SN (0) denotes the second derivative
of SN (P ) at P = 0, given by the recursion

� �Sn(0) = Pr(� � sn�1)E[�
2j� � sn�1]

� �Sn�1(0) Pr(� < sn�1) (24)

for n = 1; : : : ; N , with �S0(0) = 0. Furthermore, the one-shot
power allocation policy �? also achieves (Eb=N0)min and S0.
�

V.C An achievable slope region and comparison with TDMA

We investigate the slopes of the user rates as functions of
the individual Ek=N0 for the particular choice of the one-shot
power allocation policy �? de�ned in Theorem 6. Our ap-
proach follows that of [11]. We have the following:

Theorem 9. Fix a vectors � 2 R
K
+ such that

PK
k=1 �k = 1.

For vanishing user rates while keeping �xed user rate ratios

Rk=Rj = �k=�j , under the one-shot policy and superposition
coding the achievable slope region is given by the parametric
form

[
�

KY
k=1

8<:0 � S
(k)
0 �

S0

1 +K0

P
� ��

P
j<��1(k)

��j
�k

9=; (25)

where S0 is the single-user slope given in (23), where

K0 =
2
PN

n=1 (E[�n1fn
?(�) = ng])2PN

n=1 E [�2n1fn?(�) = ng]
(26)

where
P
� denotes the sum over all permutations of

f1; : : : ; Kg and where � = f��g are non-negative \time-
sharing" coeÆcients (indexed by the permutations �) such
that

P
� �� = 1. �

As a corollary of Theorem 9 we get that if the user rates are
very imbalanced, more precisely, if ��j=�k is vanishing for all
k = 1; : : : ; K and j < ��1(k), for some permutation �, then
all users can achieve single user slopes. In fact, it is suÆcient
to choose the vertex corresponding to � and the denominator
in (25) becomes 1 for all k. The condition for achieving single-
user slopes for all users is that there exist a permutation �

such that R�k�1 = o(R�k) for all k = 2; : : : ; K.

As far as TDMA is concerned, because of second-order op-
timality of �? in the single-user case, the same one-shot policy
achieves the maximum possible slopes under TDMA. This is
given by the following:

Theorem 10. For any arbitrary rate ratios Rk=Rj , as the
rates vanish, the best achievable slope region under TDMA is
given by [

�

KY
k=1

n
0 � S

(k)
0;tdma � �kS0

o
(27)

where � = f�kg are non-negative \time-sharing" coeÆcients
such that

PK
k=1 �k = 1. �

We can use Theorems 9 and 10 to determine the max-
min slope of an equal-rate wideband system. For equal rates,
�j=�k = 1 for all k; j, and the denominator of (25) becomes

1 +K0

X
�

��
X

j<��1(k)

1 = 1 +K0

X
�

�
���

�1(k)� 1
�

= 1�K0 +K0

X
�

���
�1(k)

As � varies over all K! permutations, ��1(k) takes on each
value 1; : : : ; K exactly (K � 1)! times. Because of symmetry,

maximizing the minimum slope is achieved by letting S
(k)
0 =

const:, i.e., �� = 1=K! for all �. This yields to the max-min
slope

maxmin
k
S
(k)
0 =

S0

1 +K0(K � 1)=2

For TDMA, the max-min slope is obtained by letting �k =
1=K, i.e., maxmink S

(k)
0;tdma = S0=K. For a desired user rate

Rb (in bit/s) common to all users, and assuming that all users
transmit with equal power, i.e., they have the same Eb=N0

such that (Eb=N0)dB� ((Eb=N0)min)dB = �, the system band-
width is given approximately by [9]

W �
Rb

mink S
(k)
0 �
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Therefore, the bandwidth expansion factor of TDMA with
respect to superposition coding is given by

� =
K

1 +K0(K � 1)=2
(28)

From (26) we have immediately that K0 < 2 (i.e., TDMA is
strictly wideband-suboptimal) for any non-degenerate fading
distribution. Notice also that the case of equal Eb=N0 for all
users is the most favorable for TDMA [11]. As already noticed,
for a very imbalanced system the bandwidth expansion factor
can be much larger than (28).

Next, we study in more detail the case K = 2. For super-
position coding, by letting � = �1=�2, we have

S
(1)
0 =

S0

1 +K0(1� �) 1
�

S
(2)
0 =

S0

1 +K0��
(29)

By eliminating the time sharing parameter � we obtain the
slope region boundary as 

1

S
(1)
0

�
1

S0

!
� +

 
1

S
(2)
0

�
1

S0

!
1

�
=
K0

S0
; 0 � S

(k)
0 � S0

(30)

With TDMA we obtain the boundary S
(1)
0;tdma + S

(2)
0;tdma = S0.

We might wonder if for some � TDMA achieves the same
slope trade-o� of superposition coding, i.e., if the two bound-
aries of the slope regions intersects at some point (S

(1)
0 ; S

(2)
0 ).

By substituting in (30) S
(1)
0 = �S0 and S

(2)
0 = (1 � � )S0 for

� 2 [0; 1], we �nd�
1

�
� 1

�
� +

�
1

1� �
� 1

�
1

�
= K0

which yields

� =
�

2

2� +K0 �
p
K2

0 � 4

�2 +K0� + 1

Again, for K0 < 2 (non-constant fading), TDMA is strictly
suboptimal, for any choice of the rate ratio �.

VI. Example with Rayleigh fading

In order to illustrate the results of previous sections we
consider the case of i.i.d. Rayleigh fading. The channels gain
law is F�(x) = 1� e�x for x � 0. The one-shot policy is given
by the threshold

sn = sn�1 + e�sn�1 ; n = 1; : : : ; N (31)

with s0 = 0.

If we allow the input to depend on the whole CSI SN in
a non-causal way, the optimal power allocation would be wa-
ter�lling over the gains � = (�1; : : : ; �N ). It is immediate to
show that, under the noncausal policy,

_C
(noncausal)
1;N (0) =

NX
n=1

�
N
n

�
(�1)n+1 1

n

� �C
(noncausal)
1;N (0) = N

NX
n=1

�
N
n

�
(�1)n+1 2!

n2

0 10 20 30
−7.6

−5.6

−3.6

−1.6

N

(E
b
/N

0
) m

in

causal    
non causal

Figure 1: (Eb=N0)min (dB) vs. N for the Rayleigh fading
channel.

Hence, the capacity per unit energy with noncausal transmit-
ter CSI is

U
(noncausal)
1;N =

NX
n=1

�
N
n

�
(�1)n+1 1

n
(32)

and the spectral eÆciency slope is

S
(noncausal)
0 =

2

�PN
n=1

�
N
n

�
(�1)n+1 1

n

�2

N
PN

n=1

�
N
n

�
(�1)n+1 2!

n2

(33)

Figs. 1 and 2 show (Eb=N0)min and S0 vs. N and for both
the causal and noncausal knowledge of the channel.

Fig. 3 shows the bandwidth expansion factor � vs. K of
TDMA with respect to superposition coding, for several values
of N , for an equal-rate equal Eb=N0 system. Finally, Fig. 4
shows the 2-user achievable slope region with the one-shot
policy and superposition coding, for di�erent rate ratios. The
optimal region achievable by TDMA is shown for compari-
son. This �gure clearly illustrates that even though TDMA
achieves the capacity per unit energy, it is actually very subop-
timal in the wideband regime, especially in a fading scenario.
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