
Scheduling Policies for Protocol Stacks for User

Applications Requirements

K . Vijayananda, G. Berthet D. Sidou

Swiss Federal Institute of Technology Institut Eur�ecom

EPFL-LIT, IN-Ecublens Sophia Antipolis

CH-1015, Lausanne, Switzerland 06560 Valbonne, France

Abstract
This paper presents some of the scheduling issues

in a communication protocol stack and discuss it
with respect to the requirements of the user appli-
cations. We present the architecture of LITMAP 1

and discusses its salient features from the perfor-
mance point of view. In particular, the exi-
ble scheduling facility provided by LITMAP is pre-
sented in detail. Two scheduling policies are consid-
ered : First-Come First-Served (FCFS) discipline
and Fair Queuing (FQ) discipline. Experimental
results show the expected bene�ts of the FQ disci-
pline. Fair queuing policy provides relatively small
delay for short communications and stable overall
performance at high loads.

1 Introduction
The design and implementation of a communi-

cation protocol stack play an signi�cant role in the
performance of the user applications. It is essen-
tial that the services provided by the protocol stack
meet the performance requirements of the user ap-
plications. Moreover, if these requirements cannot
be satis�ed, the protocol stack should be able to
meet the user requirements in a fair manner. The
following can be considered as a fair service provided
by a server:

� Low load: The server satis�es the requests of
all the clients.

� High loads: The server enforces a fair policy
so that all the clients get an equal share of the
server.

The main requirement of user applications on top
of a protocol stack is the response time. In general,
response time can be de�ned as the time elapsed
between a request and the receipt of the response.
In a Client-Server model, response time is de�ned
as the time between sending a request to the server
and the receipt of a response by the client. Con-
sidering the protocol stack as a server that provides
services to user applications, in this paper we ad-
dress the issues related to the service time of the
protocol stack. The data transfer delays across the
network and remote processing time are not taken

1LITMAP is the implemetation of the OSI Stack at LIT-
EPFL.

into account in this study. The protocol stack pro-
vides services to many user applications simultane-
ously. The scheduling policy plays a major role in
determining the time taken by the protocol stack to
complete the service requests from the di�erent user
applications (response time of the protocol stack).

The main goal of this paper is to study the e�ect
of scheduling policies on the response time of the
protocol stack. In this paper, we present two dif-
ferent scheduling policies: First Come First Served
(FCFS) and Fair Queuing (FQ) scheduling policies.
These scheduling policies are analyzed under dif-
ferent load conditions. Experiments are performed
using the scheduler of the LITMAP [3] to study the
behaviour of the proposed scheduling policies.

This paper is organized as follows. Section 2
presents di�erent implementation techniques for
protocol stacks. The architecture of LITMAP is
also discussed in section 3 with the emphasis on its
scheduling abilities. In section 3, we discuss some of
the salient features of LITMAP, its advantages and
disadvantages. Section 4 discusses the two schedul-
ing policies that are used in LITMAP. Section 5
describes the experimental setup and methodology.
The results of the experiment are analyzed in sec-
tion 6.

2 The LITMAP Protocol Stack
In this section, we present some of the methods

of implementing protocol stacks. We then present
the implementation details of LITMAP stack and
some of its salient features, advantages, and disad-
vantages.

2.1 Protocol Stack Integration
There are many ways to integrate a proto-

col stack with a multi-user/multi-tasking environ-
ment. A survey is presented in [1]. On one hand,
there are monolithic organizations, where the en-
tire protocol stack supported by the system is im-
plemented within a single address space(kernel ad-
dress space) [5]. This is to provide robustness and
for security. On the other hand, non-monolithic
implementations (like in LITMAP) have a dedi-
cated server containing the code for di�erent parts
of the protocol stacks. At low level, the servers
interact with network device drivers through the
kernel system calls (TRAPS). At high level, user
applications communicate with the protocol stack
through Inter-Process Communication mechanisms

(IPCs) like shared memories, message queues and
semaphores. There are several factors in favor of
non-monolithic protocol implementations and espe-
cially for solutions outside of the kernel address
space. The �rst reason is the ease of prototyping,
debugging and maintenance. Second, new commu-
nication modes such as graphics and video with bulk
transfer and real-time requirements are emerging to-
day. These communication modes require special
purpose protocols and all these protocols must co-
exist in a single protocol stack. Also, exploiting
application speci�c knowledge for �ne tuning and
optimization is easy in a non-monolithic implemen-
tation.

Prioritised Queues
 (Mailboxes)

POSTMASTER
 (Scheduler)

Low

Normal

High

Urgent

loop

 choose(aleaf) ;

 case aleaf.dest is

 when tp4 =>

 tp4.process(aleaf) ;

 end case ;

end loop ;

post (aleaf)

process (aleaf)

ACSE

ROSE

CMISE

MMS

ss(kernel)

pn(kernel)

Transport (TP4)

Network (CLNP)

LLC (Type 1)

MAC (IEEE802.3/4)

Figure 1: Communication Architecture of
LITMAP.

2.2 The LITMAP Architecture
As shown in Figure 1, the communication archi-

tecture of LITMAP [3] is based on a scheduler (post-
master) managing prioritized queues (mailboxes).
The postmaster supports four levels of priority in
the following order with Low having the lowest pri-
ority: Low, Normal, High and Urgent. The mail-
boxes are used to store service requests from users.
Entities are service providers and users make use of
the services provided by the Entities. Examples of
entities and users are Transport, Session, Network
layer,etc. and they are represented as a pair (entity-
id, process). The entity-id enables the postmaster
to uniquely identify the entity. The process rep-
resents the protocol machine corresponding to the
services provided by the entity.

Users request the services of an entity by post-
ing a service request (aleaf in Figure 1) to one of
the mailboxes in the postmaster. The words service
request and task mean the same thing in this pa-
per. The service request contains separate �elds for
entity-id of the requested entity, priority of the re-

quest, service request identi�er, parameters for the
service request and user data. When the postmaster
receives a service request in one of the mailboxes, it
calls the process corresponding to the entity, that
is speci�ed in the destination �eld of aleaf. In
this architecture, inter-layer communication is asyn-
chronous and is achieved through the postmaster.
There is no direct interaction between entities. All
communication between entities is achieved through
the postmaster.

3 Features of LITMAP architecture
3.1 Scheduler

The postmaster is a non-preemptive priority-
based scheduler. Currently, four levels of priority
are available on the LITMAP. Separate queues are
maintained for each level of priority. Service re-
quests are placed in the queue corresponding to the
priority level indicated by the priority �eld of the
aleaf. The choose function selects a service request
from the non-empty queue with the highest prior-
ity. A service request which is being processed by
the scheduler, cannot be preempted by another re-
quest with higher priority. Interrupts due to Timer
and Network activity (e.g. receipt of a packet) can
interrupt the current service request.

3.2 Association
Associations are referenced through associa-

tion ids. This structure contains the address infor-
mation which consists of local and remote Service
Access Points (SAPs) and the path of connection ids
for each connection oriented layer involved in the
association. The user applications views the asso-
ciation id as a communication end point reference
that is used whenever an exchange occurs between
the user application and the protocol stack (send-
ing a request and receiving a response). For the
layer entities themselves, address �elds of the asso-
ciation enable them to identify which layer entities
are above and below them.

3.3 Constraints
The postmaster imposes a few constraints on the

scheduling policy. Constraints imposed by the post-
master scheduling algorithm are : Priority levels are
respected, i.e. at each cycle, an aleaf with higher
priority is selected �rst. Another constraint is the
order in which the service requests from the same
association are scheduled. The postmaster cannot
invert the order in which two consecutive service re-
quests from a given association are processed. Thus,
strict FCFS discipline has to be observed within an
association. If this constraint is violated, a user ap-
plication making two consecutive service requests
will have no guarantee about the order of receipt of
the corresponding responses. This may result in an
unacceptable behavior.

3.4 Advantages
The main advantages of this architecture are its

exibility to schedule service requests and priority
handling.

Priority mechanism is supported by providing
separate queue (mailbox) for each priority in the
postmaster and by providing priorities to service
requests from each entity. These priorities may be
mapped directly to the priority handling mechanism
at the MAC level. The priority mechanism can also

be used to compensate the lack of priority support
in some networks (Ethernet IEEE 802.3 etc). Prior-
ity is a powerful feature of this architecture, and it
can be used to convey urgent network management
tra�c or any out-of-band data needed for real-time
applications (manufacturing applications).

The architecture of the postmaster permits to
schedule the service requests based on their prior-
ity. In Figure 1 the function choose selects the next
service request from the mailboxes. This makes it
easy to have di�erent scheduling algorithms based
on the requirements of applications. This facility
can be used to schedule real-time applications to
meet their deadlines.

3.5 Disadvantages
The implementation of the protocol machinery

inside entities can be very complex, particularly for
the error handling mechanisms. In the synchronous
case, when an error occurs (for e.g. non-availability
of a resource), the calling entity is immediately in-
formed and the corresponding procedure is canceled.
In the asynchronous case, the error handling is much
more complex. Returning an error primitive to the
upper entity may not be correct because in the mean
time many other events may have occurred prevent-
ing any possible recovery procedure.

4 Scheduling Policies
In this section we discuss two di�erent scheduling

algorithms: FCFS and Fair Queuing. On a given
priority level, strict FCFS has to be observed for
each association. However, it is not necessary to ob-
serve global FCFS discipline among all associations
and for a given priority level. This enables one to
think about a more elaborate scheduling discipline
like the Fair Queuing.

4.1 FCFS Discipline
The FCFS discipline is used as the primary

scheduling policy in the LITMAP . The corre-
sponding queuing model for each priority level is
a simple server as shown in Figure 2. There is a
single queue for each class of customer. Inspite of
being a popular scheduling policy, the simple FCFS
scheduling policy often results in some class of users
hogging the resources and starvation for other class
of users.

µ
λ = λ

1
+λ

2

....+ λ
n

Figure 2: FCFS Discipline.

4.2 Fair Queuing Discipline
Fair Queuing (FQ) is an attempt to provide

a service discipline emulating Processor Sharing
(PS) discipline [4, 2]. FQ provides an interesting
paradigm for the fair sharing of a server. As shown
in Figure 3, a queue corresponding to a given pri-
ority level is now split in n queues corresponding
to the maximum number of associations/customers
admissible into the system. The protocol stack is
the single server and the n job arrival streams are

the n potential associations, each joining a di�erent
�rst-come, �rst-served queue.

In theory, PS disciplines serve the associations at
a rate proportional to 1=k when there are k > 0
non empty queues. Maintaining a separate queue
for each association results in �rewalls, which pro-
tects well-behaved associations from associations
that might saturate the server and result in un-
acceptable delays. If appropriately emulated, a
mechanism like FQ/PS provides relatively small
queuing delays for short communications like re-
quest/response communications (for e.g. telnet ses-
sions). It provides protection against associations
that would otherwise swamp the server with lots
of service requests and saturate the server. It also
provides stable overall performance, especially when
the load is high. This is an important feature, be-
cause when the load is high, a robust and powerful
policy is necessary to ensure stable overall perfor-
mance.

λ
n

λ
1

λ
2

µ
λ

n−1

Figure 3: Fair Queuing Discipline.

4.3 Implementation of Fair Queuing in
LITMAP

A simple and classical method to implement fair
queuing is to use Round Robin (RR) schedul-
ing. Service-requests from the non-empty queues
are processed in a cyclic manner. Processing a ser-
vice request consists of executing the process pro-
cedure corresponding to the entity speci�ed in the
destination �eld of the A Leaf at the head of the
selected queue. Round robin scheduling is not a
perfect scheme with respect to fairness especially
when the associations are not homogeneous. First,
variable PDU (Protocol Data Unit) lengths will rule
out emulating FQ/PS by serving associations in a
round robin manner. Second, at lower layers (up
to transport layer), the association id for incoming
frames is not known. A common default, value is
assumed, resulting in a single queue. Thus, an ill-
behaved remote source can swamp the local protocol
stack, and prevent the enforcement of the fair pol-
icy. Third, a malicious application process may also
open several associations to convey its tra�c, in-
creasing proportionally its scheduling rate. In spite
of this problems, FQ/PS emulation has been imple-
mented using round robin scheduling, leaving the
postmaster as simple as possible to limit the over-

head introduced. The cost of achieving strong fair-
ness among associations is the increased overhead
of the postmaster. However, comparing the ben-
e�ts of achieving strong fairness with the increase
in the overheads of the postmaster will have to be
investigated in detail in a a separate study. Han-
dling, variable PDU lengths is possible with the use
of mechanisms introduced and well stated in [2]. For
more details the readers can refer to [2]. Frames
without association id, a simple and pragmatic ap-
proach would be to distribute them, again \fairly"
among all other associations. This would prevent
frames belonging to other associations being blocked
in the association-less queue, thus solving the main
problem of an ill-behaved remote source swamping
the local protocol stack.

4.4 Expected Bene�ts for User Applica-
tions

The expected bene�ts resulting from the intro-
duction of a fair queuing discipline as the protocol
stack scheduling policy are in favor of short com-
munication associations. Suppose we have two user
applications, one �le transfer or download applica-
tion (long communication) and another with spo-
radic tra�c or request/response application (short
communication). In the case of the FCFS disci-
pline, all of the remaining service requests already
in the postmaster queues have to be processed �rst
before a request from a short communication ap-
plication can be processed. This results in a large
response time for the short communication applica-
tion (which requires short response time).

In the case of the FQ discipline, the response time
of the short communication application will not be
a�ected by the large number of service requests from
other long communication applications. The two
application are serviced alternatively, layer by layer.
Moreover, the long communication application does
not su�er at all and even does not notice the small
delay introduced by the insertion of the sporadic
tra�c. Obviously, the same goal could have been
achieved by using di�erent priority levels for each
application. The problem with priority mechanisms
is that they are subject to the correct setup of the
administrative policy of assigning priorities to dif-
ferent application. Fair queuing achieves this goal
implicitly in a self-organized fashion. That is the
reason why it is a powerful mechanism which can
be of great usefulness to user applications.

5 Experimental Setup
The experimental setup is shown in Figure 4. It

is based on the Network Management protocols and
applications of the LITMAP environment :

1. A constant tra�c ow, based on CMIS M Get
service primitive is generated between pairs (<
MASHi; ASHi >) of connected MAnagement
and Agent SHells. This constant tra�c ow
is implemented as an in�nite loop whose body
gets an integer attribute value.

2. A sporadic tra�c ow is implicitly gen-
erated thanks to a counter and its as-
sociated threshold. The counter is the
DMI::octetsSentCounter and the threshold
is the DMI::octetsSentCounterThreshold of

the Transport layer (TP4) entity. This
threshold is con�gured so that each time the
DMI::octetsSentCounter counter is increased
by more that a �xed amount of octets (e.g.
10 kilo bytes), a noti�cation is signaled to the
stack agent. Then the stack agent sends an ac-
tual M EventReport to any management party
which is registered to receive such a noti�ca-
tion, e.g. NOSH the NOti�cation SHell in our
case.

Note well that since we are interested only by the
processing time of the stack itself, all the involved
processes are run on a single host2. The stack itself,
including the agent entity are running inside a single
process. Each MAnagement SHell (MASHi) and
Agent SHell (ASHi) pair are running as two di�er-
ent processes communicatingwith the stack through
IPCs (i.e. shared memories). Finally, the NOti�ca-
tion SHell (NOSH) also runs as a separate process
which establishes upon initialization a connection
with the stack agent entity.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

N
o
t
i
f
i
c
a
t
i
o
n

d
e
l
a
y

(
m
s
)
.

Number of associations.

fq
fcfs

Figure 5: Average stack traversal time for
sporadic tra�c.

This example is quite interesting, because it is
also realistic. In e�ect, being able to handle short
communications, like event reports or alarms, in an
e�cient way, and above all without having to wait
for non-urgent tra�c to be processed is very impor-
tant and is perfectly illustrated by this small exper-
imental setup.

The results are presented in Figure 5, showing
the average time for the processing inside the stack
for the event report communications between the
Stack Agent and the noti�cation shell. As claimed
before, the experiments con�rm the fair policy en-
forcement by the fair queuing scheduling. With the
FQ discipline, the delay increases smoothly since
one more association corresponds only to one more

2The experimentwere made on a Sun SparcStation 2 run-
ning SunOS 4.1.3 (32Mb RAM, 40 MHz).

CMISE

ACSE ROSE

Presentation
 (kernel)

Session (kernel)

Transport (TP4)

Network (CLNP)

Stack
Agent

Measurement

MASH : MAnagement SHell
ASH : Agent SHell
NOSH : NOtification SHell
IPC : Shared Memory
 Inter-Process Communication

IPC
IPCIPC

MASHi ASHi

NOSH

Figure 4: Experimental Setup.

service request to be processed before the alarm no-
ti�cation request from the short communication is
processed. With the FCFS discipline, the delay in-
creases more rapidly with each new association. In
e�ect, each new association increases signi�cantly
the mean number of service requests to be serviced
by the postmaster before the alarm noti�cation can
be serviced.

6 Conclusion

In this paper, we have discussed the issues related
to scheduling in a communicationprotocol stack and
how they are related to the requirements of the user
applications. The LITMAP protocol stack which is
a non-monolithic implementation, is used to study
two scheduling policies. The �rst scheduling policy
is the simple �rst-come, �rst-served (FCFS) disci-
pline. The fair queuing (FQ) discipline is then con-
sidered and compared with FCFS. A Network Man-
agement experimental setup is used as an user appli-
cation to compare the two scheduling policies. The
expected bene�ts of using FQ are relative small de-
lays guaranteed for short communications and sta-
ble overall performance when tra�c is heavy. More-
over, FQ is a very exible and powerful mechanism
in the sense it is a self-organizing policy processing
maximum user service requests at low loads, and
providing only the fair share at high loads.

Our current implementation of FQ is based on a
simple round-robin scheduling policy. This work can
be extended to implement a fair queuing discipline
using other mechanisms and in particular, taking
into account heterogeneous associations and evalu-
ating the corresponding overhead of the scheduler.

Acknowledgments

We are grateful to the MAP team at LIT for their
support in implementing the LITMAP stack and our
colleagues at LIT for their valuable comments

References
[1] Evelyn Moy Chandramohan A. Thekkath, Thu

D. Nguyen and Edward D. Lazowska. Implementing
network protocols at user level. In Conference Pro-
ceedings, Communication Architectures, Protocols
and Applications, pages 13{17. ACM SIGCOMM'93,
September 1993.

[2] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queuing algorithm.
Internetworking: Research and Experience, 1:3{26,
1990.

[3] D.Sidou, K.Vijayananda, and G.Berthet. An archi-
tecture for the implementation of osi protocols: Sup-
port packages, tools and performance issues. In Pro-
ceedings of the IEEE SICON/ICIE'93, pages 6{11.
IEEE Singapore, September 1993.

[4] Albert G. Greenberg and Neal Madras. How fair is
fair queuing? Journal of the Association for Com-
puting Machinery (ACM), 39(3):568{598, July 1992.

[5] Samuel J. Le�er, Marshall Kirk McKusick,
Michael J. Karels, and John S. Quatterman. The De-
sign and Implementation of the 4.3BSD UNIX Oper-
ating System. Addison-Wesley Publishing Company,
Inc, 1989.

