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Abstract: The evolution of network technologies has significantly transformed global communication,
information sharing, and connectivity. Traditional networks, relying on static configurations and
manual interventions, face substantial challenges such as complex management, inefficiency, and
susceptibility to human error. The rise of artificial intelligence (AI) has begun to address these issues
by automating tasks like network configuration, traffic optimization, and security enhancements.
Despite their potential, integrating AI models in network engineering encounters practical obstacles
including complex configurations, heterogeneous infrastructure, unstructured data, and dynamic
environments. Generative AI, particularly large language models (LLMs), represents a promising
advancement in AI, with capabilities extending to natural language processing tasks like transla-
tion, summarization, and sentiment analysis. This paper aims to provide a comprehensive review
exploring the transformative role of LLMs in modern network engineering. In particular, it addresses
gaps in the existing literature by focusing on LLM applications in network design and planning,
implementation, analytics, and management. It also discusses current research efforts, challenges,
and future opportunities, aiming to provide a comprehensive guide for networking professionals
and researchers. The main goal is to facilitate the adoption and advancement of AI and LLMs in
networking, promoting more efficient, resilient, and intelligent network systems.

Keywords: large language models; generative AI; network intelligence; next-generation network;
networked AI systems; edge intelligence; networks

1. Introduction

The evolution of network technologies has dramatically transformed the way we
communicate, share information, and connect with the world [1–3]. Traditional networks,
which rely heavily on static configurations and manual interventions, are foundational
to modern infrastructure but come with significant challenges. These networks require
complex management and operational expertise, making them difficult for non-experts
to handle. Meanwhile, as networks increasingly grow in size and complexity, managing
them becomes even more daunting. Issues such as network configuration, optimization,
troubleshooting, and security in large-scale network environments managed through labor-
intensive processes can lead to inefficiencies and human errors [4]. As the demand for
more agile, resilient, and secure networks grows, these traditional methods fall short,
highlighting the need for more intelligent and automated solutions.

Over the past decade, artificial intelligence (AI) has profoundly reshaped the landscape
of computer technologies, driving advancements across numerous sectors [5,6]. Building
on this momentum, AI has emerged as a transformative force in addressing the limitations
of traditional network management. AI algorithms can deliver high-quality solutions
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such as automating network configuration, optimizing traffic flows, enhancing security
protocols, and predicting network failures before they occur, thereby significantly reducing
the need for manual interventions and minimizing human errors [3,7]. For instance,
machine learning techniques analyze vast amounts of network data to identify patterns and
anomalies, enabling predictive maintenance that can foresee hardware failures and trigger
preventive actions, thus minimizing downtime and maintaining network reliability [8,9].
The application of AI in networking also enhances network security by automatically
detecting and responding to threats in real time, which is especially critical in large-scale,
dynamic environments [1]. To enhance AI algorithms, mathematical optimization theory is
a common approach [10–13]. However, AI-driven solutions are often inherently complex
and unexplainable for human understanding. This lack of interpretability significantly
limits the commercial adoption of AI-based solutions in practice [14].

To address these challenges, generative AI (GenAI), the next frontier in AI, can play
a pivotal role in transforming networks. GenAI encompasses generative models capable
of creating content and understanding complex patterns across various domains. These
models can generate text, images, videos, music, and code, demonstrating a sophisticated
grasp of the data they process. Consequently, the applications of GenAI are wide-ranging,
from aiding creative industries and automating routine tasks to advancing scientific re-
search through simulation and hypothesis generation. Recently, large language models
(LLMs) have drawn considerable attention from the research community as a groundbreak-
ing technology in the field of GenAI. LLMs excel in natural language processing (NLP)
tasks, such as language translation, text summarization, and sentiment analysis. These
models can interpret and generate human-like text based on extensive datasets, making
them powerful tools for any field that involves intricate linguistic tasks. To further enhance
the capabilities of LLMs, techniques such as prompt engineering [15–18], fine-tuning [19,20],
and retrieval-augmented generation (RAG) [21,22] can be employed to develop domain-
specific LLMs [23–27]. These methods enable LLMs to effectively solve specific tasks in
various domains, including network engineering.

LLMs are currently a highly popular research area, with the technology still in its
early stages of development, offering numerous potential avenues for exploration and
innovation. Meanwhile, network engineering remains a critical and long-established field
facing numerous complex challenges. Given the growing trend of using natural language
to address networking issues, exploring the convergence of the emerging fields of LLMs
and network engineering presents significant potential. Therefore, conducting a compre-
hensive exploration to understand how LLMs can revolutionize network management
and operations is essential. While most existing reviews focus broadly on traditional AI
applications in networks, there is a noticeable gap in the literature specifically focusing
on the role of LLMs in this domain. Although some recent reviews discuss LLMs and
networks, they focus solely on a specific network area, which may not be comprehensive.
The rapid evolution of LLMs, with new models continually emerging and offering more
advanced features and capabilities, underscores the pressing need for a comprehensive
review that covers more critical areas of network topics. More importantly, such a review
can highlight current advancements and serve to provide insights into the most recent
and sophisticated developments in LLMs for networking. Table 1 summarizes the highly
cited or recently published review papers on AI for networks from 2018 to 2024, marking
the period since the introduction of the first Generative Pre-trained Transformer (GPT) in
2018 [28].

The purpose of this review paper is to address the identified gap in two stages. First,
we explore the applications of AI and LLMs in modern networking and discuss current
research efforts to interpret AI and LLMs for networks. Second, we outline the open
challenges and prospects in this area. In essence, our goal is to provide a practical guide
on AI and LLMs for professionals and researchers in the networking community and to
promote the continued advancement of AI and LLMs in networking.
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Table 1. A comparison of related reviews on AI in networking.

Reference Year
Technological Aspect

Application Field
AI LLMs

Mata et al. [29] 2018 ✓ ✗ Optical Networks

Kibria et al. [30] 2018 ✓ ✗ Next-Generation Wireless Networks

Xie et al. [31] 2018 ✓ ✗ Software-Defined Networking

Cayamcela et al. [32] 2018 ✓ ✗ 5G Mobile and Wireless Networks

Zhao et al. [33] 2019 ✓ ✗ Software-Defined Networking

Elsayed et al. [34] 2019 ✓ ✗ Future Wireless Networks

Chen et al. [35] 2019 ✓ ✗ Edge Computing

Zhang et al. [36] 2019 ✓ ✗ Mobile and Wireless Networking

Sun et al. [37] 2019 ✓ ✗ Wireless Networks

Wang et al. [38] 2020 ✓ ✗ 5G Wireless Networks

Nguyen et al. [39] 2020 ✓ ✗ Wireless Networks

Semong et al. [40] 2020 ✓ ✗ Software-Defined Networking

Zeydan et al. [41] 2020 ✓ ✗ Intent-Based Networking

Mukhopadhyay et al. [42] 2021 ✓ ✗ Internet of Things

Chang et al. [43] 2021 ✓ ✗ Edge Computing

Letaief et al. [44] 2021 ✓ ✗ 6G Networks

Murshed et al. [45] 2021 ✓ ✗ Edge Computing

Song et al. [46] 2022 ✓ ✗ Networking Systems

Gupta et al. [47] 2022 ✓ ✗ Mobile Networks

Macas et al. [48] 2022 ✓ ✗ Cybersecurity

Salau et al. [49] 2022 ✓ ✗ Wireless Networks

Singh et al. [50] 2023 ✓ ✗ Edge Computing

Zuo et al. [51] 2023 ✓ ✗ 6G Networks

Bourechak et al. [52] 2023 ✓ ✗ Edge Computing

Gao [53] 2023 ✓ ✓ Cybersecurity

Tarkoma et al. [54] 2023 ✓ ✓ 6G Systems

Gill et al. [55] 2024 ✓ ✗ Edge Computing

Alhammadi et al. [56] 2024 ✓ ✗ 6G Wireless Networks

Ospina Cifuentes et al. [57] 2024 ✓ ✗ Software-Defined Networking

Chen et al. [58] 2024 ✓ ✗ 6G Wireless Networks

Ozkan-Ozay et al. [59] 2024 ✓ ✓ Cybersecurity

Celik et al. [60] 2024 ✓ ✓ 6G Networks

Khoramnejad et al. [61] 2024 ✓ ✓ Next-Generation Wireless Networks

Bhardwaj et al. [62] 2024 ✓ ✓ Edge Computing

Karapantelakis et al. [63] 2024 ✓ ✓ Mobile Networks

Zhou et al. [64] 2024 ✓ ✓ Telecommunications

This Study 2024 ✓ ✓ Next-Generation Network
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To summarize, the contributions of this paper are as follows:

• We provide a comprehensive review of the potential applications of LLMs across the
four key stages of network engineering: Network Design and Planning, Network
Implementation, Network Analytics, and Network Management.

• We present strategies for enhancing network performance and management using
network intelligence, highlighting the limitations of current AI-driven methods. Ad-
ditionally, we demonstrate how LLMs can address these limitations and improve
existing network intelligence.

• We identify key challenges in integrating LLMs into network engineering and, based
on recent developments, provide future research directions to further optimize net-
work functionality and efficiency through the use of LLMs and AI.

This paper is organized as follows. In Section 2, we provide a background on network
intelligence and LLMs, detailing how LLMs can be applied to networking. In Section 3,
we explore application domains where LLMs can be beneficial for networks. Section 4
discusses the current open research challenges and suggests future research opportunities
related to LLMs in networking. We conclude the paper in Section 5.

2. Background
2.1. Network Intelligence

Traditional network development and infrastructure management present signifi-
cant challenges due to their complexity and the intensive knowledge and labor required.
These tasks demand substantial expertise and manual effort, as they involve continu-
ous adaptation to evolving technical standards and protocols. The shift from 5G to 6G,
for instance, necessitates updating numerous protocols, posing a significant burden on
network engineers. Additionally, critical tasks such as network performance monitoring
and fault diagnosis are formidable technical obstacles. In complex network environments,
effectively monitoring performance, as well as detecting and locating faults promptly, is
a substantial challenge, requiring sophisticated tools and strategies. To overcome these
issues, network intelligence leverages advanced computational techniques to enhance the
management and optimization of network systems. Network intelligence refers to the
application of intelligent methodologies to automate and improve various aspects of net-
work operations [65–67]. Common advanced technologies include deep learning [68,69],
machine learning [70,71], transfer learning [72,73], and reinforcement learning [74,75].
Each of these models can be tailored to specific environments and tasks. For example,
adaptive routing algorithms can improve quality of service (QoS), edge intelligence can
optimize high-performance computing [76,77], automated configuration synthesis modules
can reduce manual errors, and intelligent assistants can enhance customer service. These
intelligence-driven approaches enable more efficient, responsive, and resilient network
management, paving the way for smarter and more adaptable networking solutions.

In the realm of network engineering, there are primarily four stages: network design
and planning, network implementation, network analytics, and network management.
As illustrated in Figure 1, these stages encompass a comprehensive lifecycle of network
systems, from initial design to ongoing management. Network intelligence offers transfor-
mative potential in addressing the limitations of traditional approaches across these stages
in network engineering. We provide an overview below of how network intelligence can
be incorporated to enhance network engineering:

• Network Design and Planning: Efficient network design and planning are essential
for ensuring optimal network performance and resource utilization. This process
involves developing the network architecture, such as capacity planning, resource
scheduling, and load balancing. Typically, these tasks are labor-intensive, demanding
considerable expertise and manual intervention, and they require ongoing adaptation
to emerging standards and protocols. AI algorithms can enhance these tasks by
automating the design process, increasing precision, and minimizing the dependence
on manual expertise.
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• Network Implementation: Successful network implementation is essential for the de-
ployment of robust and efficient network infrastructures. This task involves the
deployment, configuration, and documentation of network infrastructure. Manual
implementation can be error-prone and time-consuming, requiring extensive coordi-
nation and detailed configuration. AI-driven tools can streamline deployment and
configuration processes, ensuring precise execution and significantly reducing setup
time and effort.

• Network Analytics: Continuous network analytics are vital for maintaining network
health and performance. This process focuses on monitoring and analyzing network
performance through traffic analysis, log analysis, and behavior analysis. Effective
monitoring and fault diagnosis are challenging due to the complexity of modern
networks, leading to potential delays in issue detection and resolution. Advanced AI
models can continuously analyze network data, predict potential issues, and provide
proactive maintenance insights, enhancing reliability and efficiency.

• Network Management: Efficient network management is critical for the ongoing opera-
tion and security of a network. This process involves ongoing monitoring, optimiza-
tion, and security protection of the network. Manual management can be inefficient,
with a high risk of human error, and it requires constant adaptation to changing
network conditions. Intelligent systems can autonomously manage monitoring, opti-
mization, and security tasks, adapting in real time to network changes and reducing
the need for manual interventions. For example, AI-driven systems can enhance
network security by automatically detecting and responding to threats, allowing for
proactive threat mitigation. Additionally, AI models can continuously adapt security
protocols by learning from past incidents, improving its ability to prevent and counter
new, evolving threats, thus ensuring more robust and adaptive network protection.

AI methods are often viewed as a black box by application developers and network
administrators. However, deploying AI models to address networking issues involves
numerous practical challenges. We identify four main practical problems associated with
implementing AI models in real-world network intelligence:

• Complex Network Configurations: AI models can help automate and simplify the con-
figuration of complex networks, but accurately translating high-level management
policies into network commands can still be a challenge.

• Heterogeneous Infrastructure Management: Network provisioning often involves intri-
cate configurations and updates tightly coupled with underlying heterogeneous and
diverse infrastructure, necessitating an abstraction layer for network operators to
manage network parameters independently of the underlying infrastructure [41]. Tra-
ditional AI algorithms struggle to navigate and integrate with such diverse systems,
making effective management challenging.

• Unstructured Log and Network Data: Networks generate vast amounts of unstructured
log and operational data, making it difficult to extract actionable insights. These
unstructured data complicate troubleshooting, diagnostics, and overall network man-
agement, presenting a significant challenge for traditional AI techniques that rely on
clear, structured inputs to function effectively.

• Dynamic Network Environment: Conventional AI systems often rely on static, rule-
based learning models, which do not adapt well to dynamic network environments.
These systems struggle to continuously interpret and adjust to changes in network
intents, such as user complaints or system alerts. This limitation results in less accurate
and effective responses, preventing the network from staying aligned with evolving
objectives and conditions.
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Figure 1. The comprehensive life cycle of network systems, highlighting the four primary stages
in network engineering: Network Design and Planning, Network Implementation, Network Ana-
lytics, and Network Management. Each stage involves critical tasks such as resource scheduling,
deployment, traffic analysis, and security protection. These four network engineering stages are
interconnected, ensuring seamless management of the network from initial planning to ongoing
optimization and protection. Network intelligence is pivotal in automating processes and improving
the efficiency, accuracy, and reliability of network tasks across all stages.

2.2. Large Language Models

A large language model (LLM) is an advanced computational model renowned for its
ability to perform a wide range of NLP tasks such as general-purpose language generation,
text classification, and sentiment analysis. LLMs are built upon sophisticated language
models and acquire their capabilities by learning intricate statistical relationships from
extensive corpora of text. The training process for LLMs is both computationally intensive
and data-rich, involving self-supervised and semi-supervised learning techniques. Dur-
ing this process, the models are exposed to vast datasets, enabling them to learn diverse
linguistic patterns and contextual nuances. LLMs are particularly effective in text genera-
tion, a prominent application of GenAI. They operate by taking an initial input text and
recursively predicting the next word or token, thereby constructing coherent and contex-
tually appropriate sentences and paragraphs. This predictive mechanism enables LLMs
to generate human-like text that is not only grammatically correct but also contextually
relevant and nuanced. The versatility of LLMs extends to various NLP applications such
as machine translation, which is converting text from one language to another, and text
summarization, which is condensing long documents into concise summaries. The impact
of LLMs has been profound, especially after being incorporated as a chat tool that can un-
derstand and respond to inquiries with high accuracy. This integration allows for real-time
interactions, promptly addressing problems and significantly reducing the time and effort
required by humans.

LLMs are advanced artificial neural networks that employ the transformer architecture,
a revolutionary development in deep learning. Originally introduced in [78], the trans-
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former model uses an encoder–decoder structure designed to handle sequence-to-sequence
tasks efficiently. The transformer model architecture is shown in Figure 2. The encoder
processes the input sequence, capturing relevant information, while the decoder generates
the output sequence by attending to the output of the encoder and previously generated
tokens. This dual structure enables the transformer to excel in NLP tasks, where under-
standing and generating sequences of text are critical. The mathematical foundation of this
architecture involves self-attention mechanisms, which allow the model to dynamically
weigh the importance of different words in a sentence. The encoder–decoder structure
works by first passing the input sequence through the encoder layers, which consist of
multi-head self-attention and feed-forward neural networks. The self-attention mechanism
can be mathematically represented as follows:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V,

where Q, K, and V are the query, key, and value matrices derived from the input embed-
dings, and dk is the dimension of the keys. This mechanism allows the model to focus on
different parts of the input sequence, capturing long-range dependencies and contextual
relationships. In the decoder, a similar self-attention mechanism is used, but with an
additional encoder–decoder attention layer that attends to the output of the encoder. This
allows the decoder to generate the output sequence while considering the entire input
sequence, enhancing the coherence and relevance of the generated text.

Figure 2. The traditional encoder–decoder transformer model architecture.

In recent years, the development of LLMs has accelerated, leading to the creation of
numerous innovative models [28,79–126]. Notably, the largest and most capable LLMs
today (as of June 2024) are built using a decoder-only transformer-based architecture.
For instance, the GPT series from OpenAI and the LLaMA models from Meta AI are
notable examples of decoder-only transformer models that have pushed the boundaries
of what LLMs can achieve. The streamlined design of this architecture focuses solely on
the generative aspect, making it particularly effective for tasks involving large-scale text
generation. The decoder-only model omits the encoder, relying instead on self-attention to
handle both the input context and the generation process. This architecture simplifies the
model, allowing for more efficient processing and the handling of extensive datasets, which
is crucial for training models with billions of parameters. In Figure 3, we show the timeline
of the development of LLMs since the introduction of the GPT-1 model, highlighting the
rapid evolution and advancements in LLMs.

The remarkable generalization power of LLMs allows them to perform a wide range
of tasks. However, this strength also introduces a notable limitation: LLMs often produce
responses that are too general when applied to domain-specific tasks. Their broad training
on extensive datasets means they may lack the precision required for specialized fields.
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Traditionally, fine-tuning has been the primary method for adapting LLMs to specific tasks.
This process involves retraining the model on a smaller, domain-specific dataset to improve
its performance in particular areas. More recently, the advent of larger models has shown
that similar or even superior results can be achieved through prompt engineering. This
technique involves crafting specific input prompts to guide the responses of the model,
effectively steering the general-purpose capabilities of the LLM towards more targeted
outputs. To address the hallucination problem, where models generate plausible but
incorrect or nonsensical information, and the issue of inheriting inaccuracies and biases
from training datasets, retrieval-augmented generation (RAG) has been developed. RAG
incorporates external retrieval mechanisms into LLMs to access domain-specific knowledge
bases, enhancing the ability of the model to generate accurate, up-to-date, and relevant
responses in specialized fields [127,128]. Various applications have been developed using
these three approaches to enhance LLMs for domain-specific purposes. Despite these
advancements, ensuring that LLMs provide precise and reliable information for domain-
specific tasks remains an ongoing area of research. This study explores the application of
LLMs in solving problems within the network domain. We examine the potential of LLMs
to enhance network engineering, highlighting both the capabilities and the challenges that
need to be addressed to fully realize the potential of LLMs in this field.

Figure 3. The timeline of the development of LLMs from 2018 to 2024 (June), showcasing key
advancements and notable models.

2.3. From Natural Language to Network Configuration Language

Natural language and network configuration language differ significantly in structure
and complexity, presenting unique challenges in bridging the two for effective network
operations. Natural language is inherently flexible, context-rich, and user-friendly, designed
to accommodate human communication in a fluid and dynamic manner. In contrast,
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network configuration language is highly technical, consisting of non-standardized formats,
symbols, and domain-specific terminologies. It encompasses a wide range of elements
from high-level management policies to low-level technical specifics such as the command
line interface and the network access control list. Traditional methods for translating
natural language into network commands are limited to formalized approaches such as
entity abstraction and template filling. These methods can only provide standardized
translations, which are often insufficient for the nuanced and complex requirements of
network operations. Network configuration language includes not only specialized nouns
and protocols but also strict rules and mathematical constraints that govern its functionality.
This complexity makes it challenging for non-experts to interact with network systems
effectively using conventional translation methods.

Existing modern network paradigms such as intent-based networking (IBD), software-
defined networking (SDN), and goal-oriented (GO) communication for networking are
essential techniques that leverage natural language for network operations. IBD allows
users to specify their network requirements in natural language terms, which are then
automatically translated into technical configurations. SDN separates the control plane
from the data plane, enabling more flexible and dynamic management of network resources
through high-level commands. GO communication focuses on achieving specific network
objectives defined in natural language, streamlining the process of network configuration
and management. By leveraging advanced techniques and frameworks, we can effectively
interchange natural language and network configuration language, creating more intuitive
and efficient network management systems. This approach enables even non-experts
to perform complex network tasks with ease and confidence. In Table 2, we illustrate
how natural language commands can be translated into specific network operations using
various features and examples. By translating high-level natural language inputs into
detailed network configuration tasks, we can simplify complex network management,
making it accessible to users without deep technical expertise.

Table 2. The examples of translating natural language commands into specific network operations
using GPT-4.

Natural Language Prompt Network Operation Features Example

Distribute incoming traffic
evenly across three servers to
ensure optimal performance.

Load Balancing
Configuration

Distribute traffic using a
4-tuple (source Internet

Protocol (IP), destination IP,
source port, destination port)
and utilize unique identifiers
to avoid traffic polarization,
supporting both IPv4 and

IPv6 headers.

ip cef load-sharing algorithm
include-ports source destination

gtp

Configure the router to
prioritize voice traffic over

other types of traffic.

QoS Configuration Prioritize specific types of
traffic by applying pre-defined
policies to network interfaces.

interface GigabitEthernet0/1
service-policy output

PRIORITIZE-VOICE

Analyze the firewall logs to
identify any failed login

attempts.

Log Analysis Filter and search through log
entries based on criteria.

grep “Failed login”
/var/log/firewall.log

Block all external traffic from
accessing the internal server

located at 198.168.100.2 to
enhance security.

Firewall Rule
Configuration

Establish access control by
defining rules to block

unauthorized external traffic
to specific internal server

IP addresses.

deny ip any host 198.168.100.2
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The disparity between the conversational nature of natural language and the precise,
rule-bound nature of network configuration language necessitates advanced solutions to
seamlessly bridge these two forms of communication, translating user intents into accurate
network commands. LLMs have the potential to significantly enhance network quality
of experience (QoE) by offering customized responses to specific natural language inputs
from users. These models can interpret the nuanced requirements conveyed through
natural language and convert them into precise network operations. Techniques such as
fine-tuning, prompt engineering, and RAG play crucial roles in this process. For example,
LLMs can collaborate with IBN by fine-tuning to align with specific network policies and
protocols, enabling the accurate translation of high-level user intents into precise network
configurations. In SDN, prompt engineering can be used to create specific input prompts
that help LLMs generate dynamic control commands, adjusting network resources in real
time based on user requirements. For GO communication, RAG can integrate external
knowledge bases, allowing LLMs to access the latest domain-specific information and
optimize network performance to meet specific objectives, such as minimizing latency or
maximizing throughput. These advanced techniques, which translate natural language
into network configuration language, collectively enhance the precision, responsiveness,
and adaptability of network management systems.

3. Large Language Models for Networking

In this section, we discuss research focused on the applications of LLMs across the four
primary stages of network engineering. Table 3 summarizes the discussed works. Note
that some works may pertain to more than one stage of network engineering. Therefore,
we categorize each work based on the primary keywords and key objectives, although they
may relate to multiple stages.

3.1. Network Design and Planning

The stage of network design and planning involves developing efficient and robust
network architectures tailored to specific performance, security, and scalability needs. This
process includes tasks such as topology design, resource allocation, and capacity plan-
ning. Incorporating LLMs into network design and planning can streamline these tasks by
utilizing their advanced language comprehension and inference capabilities to generate
innovative and optimized solutions. For example, NetLLM in [129] leverages pre-trained
knowledge and powerful inference abilities to solve various networking tasks, achieving
better performance and generalization than traditional methods. In [130], the authors
propose using multi-agent generative LLMs in wireless networks to develop intelligent,
self-governed networks that facilitate collaborative decision-making at the edge. Similarly,
an LLM-based resource scheduling system using three LLM agents is proposed in [131] to
translate user voice requests into resource allocation vectors for personalized optimization
in wireless and digitalized energy networks, aiming to enhance user-centric approaches
through natural language interfaces. llmQoS [132] utilizes LLMs to extract information
from natural language descriptions of web users and services, which is then combined with
historical QoS data to enhance web service recommendations and QoS predictions. A cloud
load balancing framework in [133] integrates reinforcement learning, LLMs, and edge
intelligence to enhance performance, security, scalability, and operational efficiency for dy-
namic cloud environments. NetGPT [134], a collaborative cloud–edge framework, enhances
personalized generative services and intelligent network management by combining LLMs
with location-based information at the edge.
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Table 3. A summary of selected works on LLMs for networking.

Network Process Work Year Baseline Model(s) Network Application(s)

Network Design and Planning

Desai et al. [133] 2023 GPT-4 Load Balancing, Capacity Planning

Zou et al. [130] 2023 GPT-4 Intent-Based Networking,
Telecommunications, 6G, Network

Energy Saving

NetLLM [129] 2024 LLaMA 2 QoE, Bandwidth Management, Job
Scheduling, Adaptive

Bitrate Streaming

NetGPT [134] 2024 GPT-2, LLaMA QoS, Network Provisioning,
Cloud-Edge Resource Allocation

and Scheduling

llmQoS [132] 2024 RoBERTa, Phi-3 QoS, Network Service
Recommendation

Mongaillard et al. [131] 2024 LLaMA 3, GPT-4,
Gemini 1.5

QoE, Power Scheduling, Resource
Allocation

Network Implementation

VPP [135] 2023 GPT-4 Router Configuration

Ciri [136] 2023 GPT-4, GPT-3.5,
Claude 3, Code Llama,

DeepSeek

Configuration Validation

NETBUDDY [137] 2023 GPT-4 Network Configuration

Emergence [138] 2023 GPT-4, GPT-3.5 Intent-Based Networking, Virtual
Network Function, Network Policy

GPT-FL [139] 2023 GPT-3 Federated Learning

LP-FL [140] 2023 BERT Federated Learning

ChatAFL [141] 2024 GPT-3.5 Cybersecurity, Network Protocol

Mekrache et al. [142] 2024 Code Llama Network Configuration, Intent-Based
Networking, Next Generation

Network, Network Service Descriptor

GeNet [143] 2024 GPT-4 Network Configuration, Network
Topology, Intent-Based Networking

S-Witch [144] 2024 GPT-3.5 Network Configuration, Intent-Based
Networking, Network Digital Twin

Mekrache et al. [145] 2024 Code Llama Network Configuration, Intent-Based
Networking, Next

Generation Network

Fuad et al. [146] 2024 GPT-4, GPT-3.5,
LLaMA 2, Mistral 7B

Network Configuration,
Intent-Based Networking

Network Analytics

NetBERT [147] 2020 BERT Networking Text Classification and
Networking Information Retrieval

GPT-2C [148] 2021 GPT-2 Log Analysis, Intrusion Detection

NTT [149] 2022 Vanilla Transformer Network Dynamics, Network Traffic

LogGPT [150] 2023 GPT-3.5 Log Analysis, Anomaly Detection

LAnoBERT [151] 2023 BERT Log Analysis, Anomaly Detection

NetLM [152] 2023 GPT-4 Telecommunication, Network Traffic,
Intent-Based Networking
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Table 3. Cont.

Network Process Work Year Baseline Model(s) Network Application(s)

Network Analytics

BERTOps [153] 2023 BERT Log Analysis

LogGPT [154] 2023 GPT-2 Log Analysis, Anomaly Detection

Szabó et al. [155] 2023 GPT-3.5, GPT-4 Cybersecurity, Vulnerability Detection

Piovesan et al. [156] 2024 Phi-2 Telecommunication

LILAC [157] 2024 GPT-3.5 Log Parsing, Log Analysis

Mobile-LLaMA [158] 2024 LLaMA 2 Network Data Analytic Function,
Telecommunications, 5G

Network Management

Wong et al. [159] 2020 DistilBERT Cybersecurity, Man-in-the-Middle
Attack, Internet of Things

CyBERT [160] 2021 BERT Cybersecurity

MalBERT [161] 2021 BERT Cybersecurity, Malware Detection

SecureBERT [162] 2022 BERT Cybersecurity, Cyber
Threat Intelligence

Demırcı et al. [163] 2022 GPT-2 Cybersecurity, Malware Detection

NorBERT [164] 2022 BERT Network Monitoring, Fully Qualified
Domain Name

PAC-GPT [165] 2023 GPT-3 Cybersecurity, Network Traffic

Hamadanian et al. [166] 2023 GPT-4 Network Incident Management

Owl [167] 2023 Vanilla Transformer Information Security, Log Parsing,
Anomaly Detection

Mani et al. [168] 2023 GPT-4, GPT-3,
Text-davinci-003,

Google Bard

Network Lifecycle Management,
Network Traffic, Program Synthesis

Bariah et al. [169] 2023 GPT-2, BERT,
DistilBERT, RoBERTa

QoS, Telecommunication

Tann et al. [170] 2023 GPT-3.5, PaLM 2,
Prometheus

Cybersecurity

Cyber Sentinel [171] 2023 GPT-4 Cybersecurity

Moskal et al. [172] 2023 GPT-3.5 Cybersecurity

Net-GPT [173] 2023 LLaMA 2, DistilGPT-2 Cybersecurity, Network Protocol,
Man-in-the-Middle Attack

Sarabi et al. [174] 2023 RoBERTa Network Measurement, Internet
of Things

HuntGPT [175] 2023 GPT-3.5 Cybersecurity, Anomaly Detection,
Intrusion Detection

Zhang et al. [176] 2023 GPT-2 Cybersecurity

ShieldGPT [177] 2024 GPT-4 Cybersecurity, Network Traffic,
Distributed Denial of Service Attack

SecurityBERT [178] 2024 BERT Cybersecurity, Cyber Threat Detection,
Internet of Things

Habib et al. [179] 2024 ALBERT Network Optimization,
Intent-Based Networking

DoLLM [180] 2024 LLaMA 2 Cybersecurity, Distributed Denial of
Service Attack
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3.2. Network Implementation

Network implementation focuses on the deployment and configuration of network
infrastructure, ensuring that network policies and designs are accurately executed. LLMs
can enhance this phase by automating configuration tasks, translating high-level policies
into actionable commands, and providing robust validation mechanisms. This leads to
more precise and efficient implementation processes. For configuration, several innovative
frameworks have been introduced. Verified Prompt Programming (VPP) in [135] com-
bines GPT-4 with verifiers to automatically correct errors in router configurations. S-Witch
in [144] uses a LLM combined with a network digital twin to generate and verify command
line interface commands for commercial switches based on natural language requests.
NETBUDDY in [137] utilizes LLMs to translate high-level network policies into low-level
network configurations. Ciri [136], a generic LLM-based configuration validation frame-
work, employs effective prompt engineering and few-shot learning to address hallucination
and nondeterminism in LLMs during configuration validation. Additionally, the work
in [142] proposes an LLM-based intent translation system that converts user-defined busi-
ness network requirements expressed in natural language into Network Service Descriptors.
GeNet [143], a multimodal copilot framework, leverages LLMs to streamline enterprise
network design workflows by interpreting and updating network topologies and device
configurations based on user intents.

Other significant contributions include an LLM-centric intent lifecycle management
architecture for configuring and managing network services using natural language [145].
The study in [146] utilizes LLMs to automate network configurations through IBN, en-
suring data privacy and configuration integrity. Emergence [138,181], an intent-based
management system, employs the few-shot capability of LLMs with a Policy-based Ab-
straction Pipeline to create a closed control loop for intent deployment and application
management. ChatAFL [141], an LLM-guided protocol implementation fuzzing engine,
generates machine-readable information about protocols for enhanced security testing and
coverage. In the context of federated learning, GPT-FL in [139] is a generative pre-trained
model-assisted federated learning framework that leverages synthetic data generated by
LLMs to train downstream models on the server, which are then fine-tuned with private
client data. LP-FL in [140] combines few-shot prompt learning from LLMs with efficient
communication and federating techniques, using Low-Rank Adaptation to reduce com-
putation and communication costs and enabling iterative soft-label assigning to expand
labeled data sets during the federated learning process.

3.3. Network Analytics

Network analytics is crucial for monitoring, analyzing, and understanding network
performance, behavior, and security. It ensures optimal operation and timely detection and
resolution of issues. By integrating LLMs into network analytics, we can leverage their
powerful language understanding and inference capabilities to offer advanced solutions
for real-time data analysis and predictive maintenance. Various approaches have been
proposed for using LLMs in log analysis. For instance, GPT-2C in [148] is a run-time system
that uses a fine-tuned GPT-2 model to parse dynamic logs for intrusion detection systems.
LILAC in [157] leverages LLMs with an adaptive parsing cache to improve accuracy and ef-
ficiency in parsing complex log data for network analysis tasks. LogGPT [150], on the other
hand, utilizes language interpretation capabilities of ChatGPT to tackle high-dimensional
and noisy log data for anomaly detection in network management. LAnoBERT in [151]
uses the BERT model for unsupervised log anomaly detection, enhancing performance in
network log data analysis. Another variant of LogGPT in [154] employs GPT for predicting
the next log entry based on preceding sequences and uses a reinforcement learning strategy
to improve anomaly detection. BERTOps in [153] is an LLM-based framework designed for
automating network tasks like log format detection, classification, and parsing to enhance
operational workflows.
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Beyond log analysis, other notable contributions include a GPT-based framework
for detecting vulnerabilities in source code by analyzing sensitive code segments [155].
The Network Traffic Transformer (NTT) in [149] is adapted to learn and generalize network
traffic dynamics from packet traces, showing potential for prediction tasks in networking.
NetLM in [152] utilizes a transformer-based LLM for understanding and managing network
traffic dynamics through multi-modal representation learning and incremental control
policy generation. NetBERT in [147] is a domain-specific LLM pre-trained on networking
corpora, improving tasks like classification and information retrieval within the networking
domain. The study in [156] enhances Phi-2 with RAG to improve operational efficiency in
telecom-related queries while addressing resource constraints. Mobile-LLaMA in [158] is a
variant of the LLaMA 2 model tailored for 5G network management, enhancing capabilities
in packet analysis, IP routing analysis, and performance analysis.

3.4. Network Management

Network management involves the continuous monitoring, control, and optimization
of network performance, security, and reliability. LLMs provide advanced capabilities for
automating and enhancing these tasks. Their sophisticated language processing power
allows for improved operational efficiency, proactive security measures, and dynamic ad-
justments to network conditions, ultimately leading to more resilient and adaptive network
systems. For cybersecurity, Cyber Sentinel in [171] is a task-oriented cybersecurity dialogue
system leveraging chained GPT-4 models and prompt engineering to explain potential
threats and take proactive security actions, enhancing transparency and decision-making in
network management. SecureBERT in [162] is a cybersecurity language model trained on a
large corpus of cybersecurity text to automate critical tasks in Cyber Threat Intelligence by
capturing text connotations and transforming natural language text into machine-readable
formats. The work in [170] evaluates the effectiveness of LLMs in solving cybersecurity
Capture-The-Flag challenges. CyBERT [160], a domain-specific BERT model fine-tuned
with a large corpus of cybersecurity data, is designed to enhance the performance of various
cybersecurity-specific downstream tasks for Security Operations Centers by processing
dense, fine-grained textual threat, attack, and vulnerability information. The work in [172]
explores the use of LLMs in automating cyber campaigns, presenting a framework for a
plan–act–report loop and prompt chaining to direct sequential decision processes in threat
campaigns, highlighting the potential and ethical implications of LLMs in enhancing threat
actor capabilities in network management. The study in [176] introduces a GPT-2-based
approach to enhance network threat detection, aiming to improve the efficiency and accu-
racy of identifying and issuing early warnings for network threats. For malware detection,
the work in [161] proposes using a BERT-based transformer architecture for automatically
detecting and classifying malicious software in Android applications through static analysis
of preprocessed source code features. The study in [163] proposes using LLMs for detecting
malicious code by analyzing assembly instructions from Portable Executable files, evaluat-
ing their effectiveness in network management. For intrusion detection, HuntGPT [175]
leverages the GPT-3.5 model as a conversational agent to enhance the explainability and
user-friendliness of threat detection in network management.

For specific types of cyberattacks, research includes the introduction of a novel Man-
in-the-Middle (MITM) attack scheme on Internet of Things (IoT) devices using the MQTT
protocol, featuring an MQTT Parser and a BERT-based adversarial model to generate ma-
licious messages, effectively evading various anomaly detection mechanisms in network
management [159]. Net-GPT in [173] is an LLM-empowered offensive chatbot designed
to launch Unmanned Aerial Vehicle (UAV)-based MITM attacks by mimicking network
packets between UAVs and Ground Control Stations, leveraging fine-tuned LLMs on an
edge server to enhance predictive accuracy and adaptability in network management.
For Distributed Denial of Service (DDoS) attack, DoLLM in [180] utilizes open-source
LLMs to analyze non-contextual network flows by projecting them into a semantic space
of LLMs, enhancing the detection of Carpet Bombing DDoS attacks. ShieldGPT in [177]



Future Internet 2024, 16, 365 15 of 29

is a comprehensive DDoS mitigation framework that leverages LLMs to detect attacks,
represent network traffic, inject domain knowledge, and provide actionable mitigation
measures through tailored prompt engineering and representation schemes. Security-
BERT [178], a novel architecture utilizing the BERT model for cyber threat detection in IoT
networks, leverages a privacy-preserving encoding technique to achieve high accuracy
and efficiency in identifying various attack types, making it suitable for deployment on
resource-constrained IoT devices.

For general network management, PAC-GPT in [165] utilizes GPT-3 to generate syn-
thetic data for enhancing machine learning methods in network flow and packet generation.
The work in [166] proposes a holistic framework utilizing LLMs to improve incident man-
agement in network operations, analyzing fundamental requirements and future research
directions based on insights from operators of a large public cloud provider. Owl [167],
a specialized LLM for information technology (IT) operations, employs a mixture-of-adapter
strategy for efficient tuning, demonstrating superior performance on IT-related tasks and
benchmarks. The work in [168] employs LLMs to generate task-specific code from natural
language queries, tackling issues related to explainability, scalability, and privacy for net-
work operators in network management. NorBERT in [164] is a framework that adapts the
BERT model from NLP to learn semantically meaningful embeddings for Fully Qualified
Domain Names in communication networks, aiming to create deep models that generalize
effectively across various network tasks and environments for passive network monitor-
ing. The study in [169] proposes a framework for adapting LLMs to the telecom domain,
aiming to automate network tasks to enhance intent-driven and self-evolving wireless
networks. In [174], a transformer-based LLM is proposed for characterizing, clustering,
and fingerprinting raw text from network measurements, generating robust embeddings for
downstream tasks and identifying new IoT devices and server products through automated
analysis and labeling of Internet scan data. The work in [179] utilizes a lightweight LLM
to process intents, validating them against future traffic profiles and deploying machine
learning-based network optimization applications to enhance key performance indicators.

4. Open Challenges and Opportunities

Many challenges and opportunities remain in deploying LLMs for networking. In this
section, we discuss some of these open challenges and opportunities.

4.1. Congestion Control with Large Language Models

Historically, congestion control in network systems has relied heavily on mathematical
models to manage data traffic and prevent network overloads [182–186]. These models
provide an initial approximation of the actual network behavior, which can be exceedingly
complex to analyze directly. Over time, several sophisticated and effective models, such
as queuing theory and stochastic processes, have been developed. For network engineers,
selecting the appropriate congestion control model often involves balancing mathematical
simplicity with the fidelity of the model to real-world network dynamics. As network
systems have become increasingly complex, identifying and applying the right model has
become more critical. One of the most impactful approaches to congestion control is the
Additive-Increase/Multiplicative-Decrease (AIMD) algorithm [187]. AIMD works by grad-
ually increasing the data transmission rate until packet loss occurs, which signals network
congestion. Upon detecting packet loss, the algorithm significantly reduces the trans-
mission rate to alleviate congestion. This cycle of gradually increasing and then sharply
decreasing the transmission rate helps maintain a balance between network utilization and
congestion, making AIMD a cornerstone in traditional congestion control methods. The in-
genuity behind the AIMD algorithm can be appreciated through a classical illustration of
two flows, as shown in Figure 4a. This visual representation of the AIMD algorithm demon-
strates the convergence of the rates of two users to the fairness line [187,188]. When the
rate iterations are below the efficiency line, the additive-increase mechanism appears as a
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45-degree increment plot. Above the efficiency line, the multiplicative-decrease mechanism
appears as a slide to the midpoint between the current rate iteration and the origin.

(a)

(b)

Figure 4. Iterative balancing of resource allocations using AIMD. (a) A visual representation of
the AIMD algorithm. (b) An illustration of the convergence of AIMD resource allocation based on
Perron-Frobenius theory. The bold arrow represents the Perron-Frobenius right eigenvector of a
non-negative matrix, illustrating its convergence towards the fairness line.

The AIMD algorithm, foundational to TCP congestion control [189,190], not only plays
a critical role in managing traffic flow but also connects deeply to optimization theory
through the Perron-Frobenius theorem and eigenvector computation. In distributed sys-
tems, where resources like bandwidth are shared, the AIMD algorithm ensures fairness
by balancing the data transmission rate among nodes. The Perron-Frobenius theorem,
which deals with the spectral properties of non-negative matrices, provides a mathematical
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framework for understanding how distributed systems converge to stable states [191].
Specifically, the dominant eigenvector characterizes the long-term behavior of such sys-
tems, including network congestion control. This connection helps explain why iterative
adjustments of AIMD lead to fairness in resource allocation, as the system naturally con-
verges to an equilibrium where no single node dominates the resources of networks. By
leveraging these insights, modern approaches to congestion control go beyond manually
tuned algorithms, using computational methods to synthesize optimal control strategies
that balance throughput and delay in complex network environments. As illustrated in
Figure 4b, the iterative adjustments shown by the arrows lead to optimal resource allocation
as the system moves towards the fairness point through a dual optimization process. This
ensures the system converges to a stable allocation guided by the convex optimization and
eigenvector analysis. The bold arrow points to the direction where the system reaches opti-
mal performance (maximum efficiency without congestion), representing the convergence
towards fairness under dynamic network conditions.

TCP ex Machina in [192] introduces Remy, an innovative approach to congestion
control. Utilizing computational power, Remy automatically generates algorithms based
on predefined network assumptions and objectives. Unlike traditional TCP protocols
that manually define endpoint reactions to congestion signals, Remy synthesizes control
algorithms by specifying network conditions and performance goals. This method allows
for creating distributed algorithms that can adapt to various network environments, opti-
mizing throughput and minimizing delay without requiring intrusive changes to network
infrastructure. Remy-generated algorithms offer a significant improvement over manu-
ally designed protocols, providing a more adaptable and efficient approach to congestion
control in diverse network conditions. The success of the automation approach proposed
in TCP ex Machina represents a groundbreaking step towards automating the process of
optimal congestion control, highlighting the potential for integrating advanced intelligence
with TCP congestion control mechanisms. Central to TCP ex Machina is the use of network
objectives or performance goals set by network operators to optimize network performance
alongside network conditions. These crucial elements can be effectively managed by lever-
aging the capabilities of LLMs. For instance, network operators may find it challenging to
articulate clear and precise network objectives or performance goals. LLMs can analyze
detailed descriptions provided by network operators to accurately identify and distill the
main objectives and goals that can be realistically achieved. This automated identification
process ensures that network performance targets are well-defined and aligned with the
intentions of the operators. Additionally, network operators may lack comprehensive visi-
bility into current network conditions. LLMs can analyze incident reports and operator logs
to identify patterns and infer network conditions. By synthesizing this information, LLMs
can suggest adjustments to network objectives or performance goals, providing a more
dynamic and responsive approach to congestion control. This approach can potentially
facilitate informed decision-making and optimized network performance before actual
implementation, demonstrating a significant advancement in network optimization.

In satellite networks like Starlink [193], the behavior of AIMD must be adapted to
account for the higher latencies inherent in satellite communication. In terrestrial networks,
AIMD increases the transmission rate incrementally until packet loss occurs, then reduces
the rate significantly. However, in satellite environments, packet loss is often caused by
long propagation delays or changes in satellite positioning, not necessarily congestion. This
misinterpretation by AIMD could lead to unnecessary reductions in transmission rates,
resulting in suboptimal throughput for users. To address this, modifications to AIMD are
necessary for satellite networks. One such approach, inspired by the work of Sally Floyd
on HighSpeed TCP [194], could involve adjusting the AIMD parameters (the additive
increase rate and multiplicative decrease factor) to be more tolerant of delay and packet
loss caused by satellite dynamics rather than congestion. In this way, the algorithm would
better suit the fluctuating bandwidth and latency conditions found in satellite-to-ground
communications of Starlink.
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Automated machine learning (AutoML) and LLMs can further enhance the adaptabil-
ity of AIMD in these challenging environments. AutoML can automatically fine-tune the
parameters of AIMD by analyzing real-time network conditions, such as latency, through-
put, and packet loss rates, and dynamically adjusting the behavior of the algorithm. This
enables more efficient and resilient congestion control mechanisms that are responsive to
the unique demands of satellite-based internet services. For example, AutoML models
could analyze historical Starlink network performance data and predict the optimal AIMD
settings for various traffic scenarios, ensuring better network performance across diverse
geographic regions and environmental conditions. Additionally, the models could continu-
ously learn from live network data to optimize AIMD parameters on the fly, significantly
improving throughput and reducing latency even as Starlink satellites move in and out
of range. Meanwhile, LLMs can complement this approach by providing intelligent rec-
ommendations and insights to network operators. By analyzing large datasets of Starlink
network traffic, LLMs can help identify patterns in packet loss, latency, and bandwidth
fluctuations that might not be immediately apparent. This can inform adjustments to AIMD
settings or even suggest new variations of congestion control algorithms tailored to satellite
networks. LLMs can also facilitate better human-AI collaboration by translating network
insights into natural language, allowing operators to make informed decisions more easily.
As such, while traditional AIMD congestion control mechanisms face limitations in satellite
environments like Starlink, integrating AutoML and LLMs can significantly improve their
overall performance and reliability.

In the past, around the 1980s, end users had no visibility into the underlying network
conditions, making it difficult to optimize the AIMD algorithm effectively. Back then, net-
work environments were simpler, and the performance of the AIMD algorithm depended
largely on static assumptions. However, with the advent of more complex systems such as
5G, 6G, and satellite-based internet of SpaceX, optimizing network resource allocation even
with AIMD has become increasingly challenging due to the dynamic and intricate nature
of these networks. Emerging technologies like satellite-based non-terrestrial networks
and Open Radio Access Network architecture in future wireless networks [195], further
complicate the landscape, requiring more adaptive congestion control solutions. TCP
Machina represents a significant advancement in the field of congestion control, utilizing
supervised learning to automate the design of congestion control algorithms. By training
on network simulations, TCP Machina is able to optimize congestion control strategies
for various network scenarios, learning the most effective methods for resource allocation.
However, while this approach offers improvements, it is limited by its reliance on prede-
fined conditions and lacks the ability to dynamically adapt in real time to the constantly
changing environments found in modern networks. The integration of LLMs and network
log analysis introduces a new dimension of adaptability to this challenge. By analyzing
network logs, LLMs can infer network conditions that are typically opaque to end users.
Based on these insights, LLMs can dynamically adjust the parameters of the AIMD al-
gorithm, specifically fine-tuning α (Additive Increase) to optimize resource allocation in
response to evolving network conditions, and β (Multiplicative Decrease) to efficiently
manage congestion. This approach allows for continuous, data-driven refinement of AIMD
parameters, ensuring that network resource allocation is precisely tailored to the unique
and fluctuating conditions of complex networks. In doing so, LLMs provide a level of
responsiveness and efficiency in congestion control that surpasses static, scenario-based
methods, making them particularly well-suited for the demands of modern networks. This
approach utilizes unsupervised learning, offering greater flexibility and adaptability to
unanticipated network conditions as compared to supervised learning methods.

4.2. Language Server Protocol with Large Language Models

The Language Server Protocol (LSP) is a critical standard in modern software develop-
ment, designed to decouple the language-specific features of development environments
from the editors or Integrated Development Environments (IDEs) that use them. This
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protocol enables the creation of a single language server that can provide features like auto-
completion, go-to-definition, and linting to multiple IDEs, simplifying the development
process and improving the consistency of language support across different tools. LSP
works by allowing the language server to communicate with the development tools using a
common protocol, ensuring that features like syntax highlighting and code completion are
uniformly applied, regardless of the editor being used. This decoupling facilitates easier
maintenance and enhancement of language features and enables developers to use their
preferred tools without sacrificing functionality.

In AI-assisted programming [196,197], integrating LLMs with the LSP marks a signifi-
cant advancement. In particular, LLMs can enhance LSP by providing more sophisticated
and context-aware programming assistance. For instance, LLMs can offer intelligent code
suggestions, automated documentation generation, and advanced error detection and
correction, thereby significantly boosting productivity and reducing time spent on routine
coding tasks. Integrating LLMs with LSP can also improve the handling of networking
protocols and configurations within development environments. Networking tasks often
require precise and complex configurations, such as those involved with TCP/IP stacks.
By embedding LSP within the networking stack, LLMs can assist in configuring and debug-
ging network protocols, making it easier for developers to manage networking tasks. This
integration has the potential to transform network programming by providing developers
with intuitive tools that streamline building and maintaining network applications.

The potential for LLMs to enhance LSP goes beyond mere coding assistance. With their
ability to understand and generate human-like text, LLMs can facilitate better communi-
cation and documentation within development teams. These models can automatically
generate detailed explanations and summaries of code, making it easier for team members
to understand complex implementations and collaborate more effectively.

4.3. Network Engineering Optimization for Large Language Models

Beyond leveraging LLMs to optimize network performance, another promising and
important direction is exploring how network engineering strategies can optimize the
functioning and deployment of LLMs. As LLMs are integrated into various applications,
several challenges arise that require innovative network engineering solutions.

A significant challenge is managing high-demand LLM inference services that must
handle a wide range of requests, from short chat conversations to lengthy document
analysis, while ensuring fair processing for all clients. Traditional rate limiting can lead to
under-utilization of resources and poor client experiences when spare capacity is available.
The unpredictable request lengths and unique batching characteristics of LLMs on parallel
accelerators further complicate this issue. To address this, the work in [198] introduces a
new concept of LLM serving fairness based on a cost function that accounts for the number
of input and output tokens processed and proposes the Virtual Token Counter scheduler to
maintain fairness. Fairness is a critical aspect in network resource allocation, ensuring that
all clients receive equitable access to computing resources [199–203]. A potential future
direction is to integrate AIMD principles with scheduling algorithms to dynamically adjust
resource allocation for LLMs based on real-time network conditions and usage patterns,
potentially improving both fairness and resource utilization for LLMs.

Efficiently running LLM inference tasks on resource-limited mobile terminals is an-
other critical challenge. Traditional deep reinforcement learning methods used for offload-
ing these tasks to servers face issues such as data inefficiency and insensitivity to latency
requirements. In [204], the authors propose an active inference algorithm with rewardless
guidance for making offloading decisions and resource allocations in cloud–edge networks.
This approach helps manage the distribution of LLM inference tasks between mobile de-
vices and servers more effectively, ensuring that LLMs can be utilized efficiently even in
resource-constrained environments. Incorporating network engineering techniques, such
as optimizing data transmission paths and dynamically adjusting resource allocation, can
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potentially enhance the efficiency and responsiveness of LLM-based applications on mobile
platforms by improving data utilization efficiency and adaptability to changing task loads.

Creating new LLMs or fine-tuning existing ones for domain-specific tasks requires
extensive data. The term “large” in LLM refers to models with billions of parameters. De-
ploying such parameter-heavy LLMs is resource-intensive, necessitating carefully designed
hardware platforms. The work in [205] introduces the GenZ analytical tool to explore the
relationship between LLM inference performance and various hardware design parameters.
This study provides insights into configuring platforms for different LLM workloads and
projecting future hardware capabilities needed for increasingly complex models. Network
engineering can play a crucial role by optimizing data flow and reducing latency between
distributed hardware components, ensuring that LLMs operate at peak efficiency across
diverse environments.

Acquiring large, high-quality instruction data for training generative LLMs is often
costly and difficult to access. The work in [206] proposes Federated Instruction Tuning
(FedIT), which leverages federated learning to harness diverse instruction data generated
by end users while addressing privacy concerns. This approach allows for the training of
LLMs using data stored on local devices, thus enhancing their ability to generate authentic
and natural responses. Future research could explore the integration of advanced network
engineering techniques to optimize data synchronization and transmission in federated
learning environments, ensuring efficient and secure data handling.

Interoperability among AI systems, particularly those involving LLMs, is a critical
aspect of advancing AI applications [207]. The challenge lies in enabling seamless interac-
tion and integration of diverse AI models and systems. One approach involves leveraging
text-oriented exchange protocols to facilitate communication between different AI mod-
els, thereby enhancing the functionality and coherence of LLMs in various applications.
Establishing semantic and syntactic standards for AI systems is essential. Such standards
ensure that AI systems, including LLMs, can reliably exchange information, similar to how
Internet protocols facilitate reliable data exchange across diverse systems. By adopting
these standards, LLMs can operate more cohesively with other AI models and control sys-
tems, ensuring interoperability across different platforms and applications. Additionally,
AI interoperability can promote cooperative interactions among various AI systems. This
can be achieved through the development of standardized protocols that enable AI sys-
tems to share knowledge and insights, thereby improving their collective intelligence and
decision-making capabilities. For LLMs, this means the ability to interact seamlessly with
other AI models, enhancing their capacity to process and generate contextually accurate
and relevant responses.

4.4. Challenges and Constraints of Implementing Large Language Models in Networks

LLMs rely on autoregressive mechanisms, generating text by predicting the next
token (word or character) based on previous ones. This process allows them to generate
coherent sequences of text that can be applied to various tasks, such as natural language
understanding, translation, and even conversational AI. The autoregressive mechanism
operates iteratively, resulting in highly fluent language models that can mimic human
communication. However, deploying LLMs in network engineering presents challenges.
While effective for NLP tasks, LLMs often lack the domain-specific knowledge required for
complex networking tasks. Although LLMs can interpret inputs and generate responses,
they rely on probabilistic associations learned from vast, general-purpose datasets, which
can lead to linguistically accurate but contextually inappropriate responses for specific
networking situations. In essence, LLMs do not possess the in-depth understanding of
network infrastructure, protocols, and dynamics that come naturally to experienced human
operators [208–210].

While LLMs are highly capable in general NLP tasks, their “intelligence” lacks human
intuition and the ability to fully comprehend or anticipate edge cases that often arise in
complex, real-world network environments. As LLMs are trained on data provided by
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developers, they are confined to the patterns and information within those datasets. This
means that when faced with scenarios or issues not present in their training data, LLMs
might struggle to provide accurate or relevant solutions. For example, unforeseen network
configurations, atypical network behaviors, or novel security threats might fall outside the
learned scope of the model, leaving it ill-equipped to respond effectively. This limitation
highlights a significant challenge in relying solely on LLMs for network operations. Since
the models rely heavily on the completeness and diversity of the training data, gaps or
biases in those data can lead to inaccurate or incomplete responses in real-time network
operations. Additionally, in networking, where rapid and dynamic adjustments are often
needed, LLMs may lack the adaptability to respond to entirely new conditions. This issue is
particularly concerning in situations where real-time problem-solving or decision-making
is critical, such as during unexpected outages or security breaches.

Given these constraints, LLMs are best suited to complement human operators rather
than replace them. This points to the role of LLMs as part of a human-in-the-loop system
for networking. Human expertise is essential for interpreting nuanced, context-specific sit-
uations, especially when conditions diverge from typical patterns seen in the training data.
LLMs can assist by automating routine tasks, suggesting possible solutions, and providing
rapid data-driven insights, but the ultimate decision-making and troubleshooting responsi-
bilities still require human intervention to ensure network stability and reliability. Such an
approach combines the efficiency and speed of LLM-driven automation with human exper-
tise to ensure robust, adaptive, and contextually appropriate network management. LLMs
can be highly beneficial in assisting non-experts or laypersons in understanding network
configurations and troubleshooting steps, making network operations more accessible
while still requiring human oversight for critical decision-making and problem resolution.
This approach is crucial for leveraging the strengths of LLMs while compensating for their
current limitations.

5. Conclusions

In this study, we provide an extensive review of the intersection between LLMs
and next-generation networking technologies. By exploring the transformative role of
LLMs in network design, implementation, analytics, and management, we highlight their
potential to revolutionize traditional networking practices. The integration of LLMs into
network systems presents both opportunities and challenges. Future research should
focus on optimizing the deployment of LLMs in network environments, addressing issues
related to computational efficiency, scalability, and interoperability. The development of
domain-specific LLMs and the incorporation of advanced AI techniques like federated
learning and reinforcement learning can further enhance the capabilities of network systems.
Overall, this review underscores the importance of continuing to innovate and integrate AI
technologies, particularly LLMs, into network engineering to build more resilient, efficient,
and intelligent networks capable of meeting the demands of modern digital infrastructure.
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