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Abstract—With the advent of beyond 5G applications, the
execution of computationally intense tasks moves further closer
to the network edge. Alongside the capabilities of a Multi-
Access Edge Computing (MEC), smart decision-making con-
sidering sustainability aspects has become achievable. In this
paper, a resource management technique utilizing Reinforce-
ment Learning (RL) at the MEC is presented in order to
promote power efficient solutions. CPU resources at the MEC
are managed and distributed to several network services for
their individual disposal. A direct relation between the CPU
resources and power consumption at the MEC is proposed further
establishing the need for efficient resource handling. A Soft-Actor
Critic (SAC) approach is leveraged to learn the patterns for
intelligent resource allocation minimizing the power expenditure.
Further, two baseline algorithms, the Knapsack method and
the proportional resource allocation scheme, are implemented to
prove the dominance of the proposed RL-based algorithm. The
results confirm that in the SAC-based RL implementation, the
power consumption at the MEC server is lower compared to the
two baseline algorithms. The promising results pave way for the
deployment of RL-based algorithms for efficient performance,
thus promoting green technologies at the MEC.

Index Terms—Green computing, Beyond 5G, Reinforcement
Learning (RL), Multi-Access Edge computing (MEC), Resource
management, Power management

I. INTRODUCTION

A rapid expansion of networks, heterogeneous services, and
devices is expected as the technologies start using Beyond 5G
standards. This necessitates adaptable long-lasting solutions
with an emphasis on working towards greener computing [1].
Additionally, the identification of the areas within network
cloud infrastructure, such as the centralized cloud, edge or the
data procurement sources, can aid in determining the energy
and power expenditure [2]. Another crucial aspect that can
contribute to the performance enhancement of networks is the
evaluation of models or algorithms using suitable metrics that
can provide deeper insights [3].

MEC plays a crucial role in the efficient manage-
ment of network resources by carrying out many essential
computationally-intense tasks at the network edge while it
enables cloud-computing potential for the network closer to
the end user [4]. MEC handles cross-functional tasks at the
edge such as computation offloading, caching and resource
management. Some of the other pressing concerns at the

MEC involve network privacy, network reliability and mobile
user handover management. Thus, the biggest challenge at
the MEC is to distribute, supervise and reallocate network
resources efficiently. For example, the power dissipation of a
server is directly linked to the number of tasks or services
that are being processed in parallel and to their computational
requirements. An unexpected rise in the resource demand
during unforseen situations such as a large crowd gathering,
or the recent global pandemic, puts extraordinary pressure on
deployed infrastructures. Given the diversity that is expected
in Beyond 5G use-cases in terms of data, devices and traffic,
traditional algorithms are expected to perform inadequately
[5]. In such a scenario, RL algorithms using the power of
Artificial Intelligence (AI) can prove beneficial.

In this paper, a SAC agent which is a part of the RL sub-
class of algorithms is employed. The trade-off between the
management of the CPU resources at the MEC and the effect
on power consumption is studied. The key features of this
work are condensed below:

• A power-consumption aware efficient resource manage-
ment strategy is formulated as a Markovian Decision
Process (MDP).

• The formulated strategy takes into account the CPU
utilization for delay-sensitive services catered by the
MEC. Also, the CPU resources are allocated to these
services based on the distribution patterns learnt by the
SAC algorithm.

• The proposed algorithm along with the system model is
implemented as a proof-of-concept. Performance eval-
uation in terms of average delay and average power
consumed by the MEC server and the services under
consideration is further conducted.

• The results prove the superiority of the RL-based resource
manager over the two implemented baselines on compar-
ison.

The paper ahead is arranged as follows. Section II points out
some of the contributions from the state-of-the-art work in
this domain. In Section III, the system model used for the
experiments is explained. Section IV lays out the targeted
constrained optimization problem. The MDP based problem



formulation is derived in Section V. Section VI lays the details
for the conducted experiments. The results are examined in
Section VII before concluding the work in Section VIII.

II. RELATED WORK

Numerous efforts have been made in the direction of balanc-
ing energy and power dissipation at data centers. Optimization
models both on software and hardware levels have furnished
significant outcomes. Some of these works are mentioned in
brief here on.

The authors in [6] minimize energy by making use of a
customized process that can classify task requests arriving
at the MEC host server. A multi-constrained energy efficient
optimization model is proposed by the authors in [7] for In-
dustrial Internet-of-Things (IIoT) networks. The research work
in [8] suggests a joint partial-offloading and power allocation
algorithm positioned on Lagrangian-constrained optimization
and Johnson method. With this approach, the authors attempt
to optimize energy consumption and task execution delay. The
authors in [9] utilize a binary-search water-filling algorithm
for maximising resource allocation to a power-constrained
MEC Internet-of-Things (IoT) network. A cost-effective edge
allocation algorithm is proposed by the authors in [10] for a
MEC with limited power capacity.

The research idea in [11] uses Deep Reinforcement Learn-
ing (DRL) to allocate resources to multimedia broadband
services with dense traffic. Deep Deterministic Policy Gradient
(DDPG) is applied by the authors of [12] to optimize efficient
resource allocations and offload computation cooperatively.
Computation offloading and minimising the execution of tasks
queue using actor-critic learning while considering energy
constraints is the primary focus of the work presented in
[13]. In [14], a Deep Q-Network (DQN) optimizes the user
offloading data ratios and MEC-computational resources while
promoting green computing.

From the aforementioned works, it is noted that a system-
level approach assessing the relation between different services
within a MEC is yet to be accounted for. Each network
resource being managed at the MEC impacts the power
consumption in their own way. At the same time, network
performance metrics such as the delay has to be monitored
continuously without deterioration. With multiple objectives
to be achieved, using AI algorithms to establish a relation
between the resources and the services at the MEC seems
fitting. Hence, this paper sets the groundwork for an advanced
scalable AI-based solution that can adjust to growing user
preferences and shared network resource requirements.

III. SYSTEM MODEL

A communication network framework that can encapsulate
the broad system level framework spanning from the MEC
connected to the core cloud to the end users at the RAN
domain was required for the proposed methodology. As a
result, the system model in Fig. 1 is considered for realizing
the experiments described in later sections.

A single MEC server M hosts integral offloaded network

Fig. 1. System model

service s that belongs to a set of broader network services
S and supplies computational resources to applications such
as Virtual Reality (VR), smart homes, AI/ML models at the
end devices and remote control robots. The MEC server M
further holds the RL agent A that consequently interacts with
the services sϵS to learn the network demands. At time t, the
services sϵS place their resource demands in terms of CPU
requirements to the MEC M . The CPU needs per service
sϵS requires c computational resources, while C is the total
computational capacity of the server. Computational resources
c at MEC server M is expected to vary dynamically attributing
to the dynamic behaviour of the tasks offloaded by the end
users. To avoid shifting the focus from resource management
at the MEC M , all the services in sϵS are admitted into the
MEC M . Conversely, none of the sϵS is left without resource
allocation as it would violate the unspoken assumption which
is that the services or tasks are offloaded to M because it
had the computational capacity to host. However, resource
provision to each of the individual resource demand put forth
by sϵS is based on the decisions made by the RL agent A.

IV. PROBLEM FORMULATION

A. Key Performance Indicators

Task execution delay incurred by the services and power
consumption is used in this work as the Key Performance
Indicators (KPI) for monitoring the performance of the MEC
server M . The delay is calculated using the equation, d =
g cs
ca

. Here g is the gain factor which controls the impact
of resource demand for a service cs and allocated resource
ca. On the other hand, power consumption is modelled as
P = Pidle + (Pmax − Pidle)

cs
ca

[1]. The assumption here is
that the MEC server M consumes power even when its not
managing services sϵS. Pidle is the power consumed in the
idle state and Pmax is the power consumed when its catering
to the services. The values for Pidle and Pmax can vary as they
follow a normally distributed curve with mean values selected
as per the specifications in [15]. Both the KPIs are selected
after careful search within the state-of-the-art as observed
in the works [1] and [16]. The parameters considered while
calculating the KPI’s are mentioned in Table I.

B. Constrained resource and power management

The resource and power management at the MEC M is
posed as an optimization function O(t), which is expressed



TABLE I
KPI PARAMETERS

Delay
Gain factor 0.1

Power (W)
Mean Stdev

Max 700 200
Idle 150 50

by (1). As introduced in the system model, sϵS is the finite
number of services hosted by the MEC M with a preference
value ws. These preference values ws are based on the
prioritization of the service that is, if some services need to
be prioritized over the others if the situation arises. We aim
at maximizing the difference between the CPU resources
represented as Rs and the power consumption Ps for all S
services.

O(t) = max
S∑

s=1

ws(Rs − Ps)(t) (1)

The objective function in (1) is followed by a set of
restrictions. Equation (2) refers to the the overall resource
capacity of the server M . The CPU resources ca allocated
to different services cannot exceed C which is the maximum
CPU distribution capacity of the MEC.

S∑
s=1

ca ≤ C (2)

Resource over-allocation is monitored by equation (3). In
addition, Ls is the incoming resource demand load from
sϵS and Rs is the allocated resources. α is the permissible
resource satisfaction parameter used for overseeing resource
over-allocation.

Ls ≤ αRs (3)

The KPI’s presented previously are assumed to be associated
with Service Level Agreements (SLA). Additional constraints
including the KPI’s are added to keep the objective realistic.
Each service inside the MEC M produces a delay ds within the
network as in (4). The delays ds are expected to be less than
the maximum acceptable limit Ds for each individual service.
The values for Ds are known from accessible communication
network standards [17]. Similarly, the total power consumed

by each individual service
S∑

s=1
ps needs to be proportional to

the capacity limit C and power limit P of the server. The
consumption index Rs

C ensures that the services using fewer
resources of the total capacity C are not the ones contributing
the most to the power limit P . It is to be noted that the values
for ds and ps are calculated as per the KPI section defined
previously.

ds ≤ Ds (4)

S∑
s=1

ps ≤
Rs

C
P (5)

V. MEC RESOURCE AND POWER MANAGEMENT

A. RL problem formalized as MDP

Every RL agent has to interact iteratively with an envi-
ronment to learn the agent’s RL policy. In this work, the
environment is formulated as a MDP in the form of a tuple
(St, At, Tt, Rt, γ). The agent interacts with a continuous state
space stϵSt and makes continuous action decisions atϵAt. The
agent moves from one state st to the next state st+1 knowing
the actions At while relying on the probability transition
function T (t) = P (st+1|st, at). The reward received by the
agent on proceeding with an action at is represented as rtϵRt,
where Rt is set of immediate rewards awarded. The influence
of the reward rt is determined by the discount factor γ. The
discount factor γ can vary between 0 and 1, a value closer
to 1 implies that the future rewards hold as much importance
as the immediate rewards. The state space, action space and
reward function used for the work in this paper are defined
below:

• State space: The state space at time t comprises of
the maximum CPU capacity of the server C. It further
contains CPU demand cs, CPU allocation ca, the delay
incurred ds and the power consumed ps by each service
sϵS.

• Action space: The action space comprises of the random
CPU allocations for each service sϵS that the RL
agent makes given the state space St and the transition
probability T (t) as defined earlier.

• Reward: The reward function rt is dependent on several
components to guide the RL agent’s policy learning, as
described in (6). The first term of (6) is in favour of
the rewarding the agent every time it takes the correct
action. The function f(cd) is dependent on the difference
between the allocated resources ca and the resource
demand cs for the services sϵS. Within the function f
the difference cd = ca−cs is multiplied with appropriate
preference value ws as introduced in the problem formu-
lation. The second term of (6) which is

∑
Ω(cs, ds, ps)

is used for punishing the agent every time it violates
any of the constraints mentioned in the problem for-
mulation. Ω(cs, ds, ps) is a function dependent on the
resource demand cs, delay ds and power consumed ps
as per the set constraints. Just like the rewarding factor,
within Ω(cs, ds, ps) there are breach values multiplied to
respective constraints based on the service preference.

rt =
f(cd)

S
−
∑

Ω(cs, ds, ps) (6)

B. Intelligent solution using RL

A perceptive model-free RL agent that works in continuous
space is needed to solve the problem of interest in this work.
SAC maximizes the objective function J(θ) represented by
J(θ) = Eτ∼πθ

[
∑∞

t=0 γ
t(r(st, at) + αH(πθ(.|st)] to learn the

policy πθ(at|st). It further uses entropy regularization in the
form of αH(πθ(.|st)) while α controls the regularization.
γt(r(st, at)) is the immediate reward to be gained with γ,



TABLE II
SIMULATION PARAMETERS

Parameter Value
Learning rate 0.0001

Optimizer Adam
Activation function ReLu
Discount factor (γ) 0.9

Trade-off coefficient (α) 0.9
Batch size 64
Episodes 20

Steps 1024

the discount factor driving it. SAC proves to be advantageous
as it brings the much required stability by exploiting two Q-
network Q(st, at) approximators [18]. Hence, SAC is chosen
as the RL agent for making resource allocation decisions based
on the computation demand behaviour set forth by the network
services.

VI. EXPERIMENTS

A. Implemented Framework

The system model as explained in Section III was simulated
using Python 3.11 [19]. The RL-SAC agent implementation
was completed using Tensorflow 2.15 [20]. The specific pa-
rameters used to tune the agent are referred to in Table II. A
dataset that is suitable for the system model and for the RL
agent was required. The Google cluster usage-traces proved
useful in training the RL agent [21]. Google’s data centers
information is classified into different tasks with different
priorities along with their CPU utilization values. The CPU
utilization and task classification is of particular interest to this
work to emulate different services being hosted by MEC M .
Reasonable pre-processing steps and assumptions have been
made throughout the simulations as some of the parameters
related to data center’s information is confidential and is not
provided by Google or any similar enterprise. Nevertheless,
the dataset satisfies the requirements of this work and aids in
completing the proof-of-concept simulations.

B. Experiments performed

The RL SAC agent is trained for 20 episodes before the
agent reaches a learning saturation. An episode in a RL
algorithm signifies for how long the agent interacts with the
environment and the dataset. In this work, each episode was
further divided into 1024 sub episodes in the form of steps. The
agent then draws the necessary state St, next state St+1, action
At and reward Rt values from the replay buffer to train on.
The details of the implementation is provided in the pseudo-
code algorithm 1 [18]. For performance comparison of the
algorithm 1, two baselines are also additionally implemented.
For the simulations, 4 network services are hosted at the MEC
M . Each of these services have diverse delay requirements as
established in the system model section. The average delay
experienced and the average power consumption by each of
the service is observed for the last 5 episodes in the results
section. The overall average power consumption of the MEC
server M is also calculated.

Algorithm 1: SAC training for the MEC
Initialize replay buffer D , policy parameters θ
Set target networks ϕ1, ϕ2

for episode=1 to N do
Reset environment and get initial state St

for steps=1 to M do
Select atϵAt

Gather response from the environment for at
Collect next state st+1, reward rt, done sign d
Store (st, rt, at, st+1, d) in the replay buffer D
if sampling step then

Randomly sample a minibatch
B = {(st, rt, at, st+1, d)}
Calculate the Q-function
rt + γ(minQ(st+1, at+1))− αlogπθ(at+1|st+1)
Perform gradient descent and update
Q-function
L← 1

|B|Σ((Qϕ(st, at)− y(r, st+1))
2

Update policy
1

|B|
∑
sϵB

(minQ(s, aθ(s)))−αlogπθ(aθ(s)|s)
update target network parameters
ϕtarg
1,2 ← τϕtarg

1,2 + (1− τ)ϕ1,2

end
end

end

C. Baselines

The proposed RL algorithm in this work is compared against
the following two baseline algorithms:

• Knapsack problem: The Knapsack problem is a widely
used approach for resource allocation in general. Within
the Knapsack approach, a set of objects with associated
weights have to be packed adhering to a capacity limit.
It serves the purpose for the work in this paper as a
resource management problem with preferences is being
solved. The authors of [22] and [23] have made use of
the Knapsack algorithm for solving network edge-related
issues thus emphasizing on its relevance.

• Proportional distributor: In this approach, a randomly
chosen service from all the services hosted by the MEC is
assigned resources proportional to their preference values.
This method ensures that the services with higher prefer-
ence value is assigned resources before the others. Energy
proportionality has been encouraged for a significant time
such as in [24] and boosts prioritization of tasks at the
edge.

VII. RESULTS

Average delay and average power consumption at the MEC
is used as the main KPIs for evaluating the effectiveness of
the suggested algorithm in this work. To begin with, in Fig.
2, the average delay experienced by each of the 4 services
being hosted at MEC M is calculated as presented in the KPI
section. Clearly, the RL-SAC algorithm incurs extremely small



delay compared to the Knapsack and proportional distributor
algorithms. The results observed affirms that the underlying
cause for better delay values while using RL-SAC can be
directly attributed to a remarkably better resource allocation
scheme. Extremely stable SAC agent is able to dynamically
learn policies that can vary along with the varying heteroge-
neous network loads compared to the other two algorithms.

The results in Fig.3-Fig.7 are related to the power consump-
tion at the MEC M . The average power consumption by each
service sϵS is being shown in Fig.3. A similar pattern as
the average delay is observed where the RL-based solution
performs better by enabling the services to consume lesser
power in comparison to the others. Identically, the resource
allocation strategy is learnt using sophisticated Q-networks
within the SAC agent which are far more advanced than
the Knapsack or proportional distributor’s decision making
strategy. Moreover, the experience replay buffer included in
the SAC algorithm exploits the reward-punishment mechanism
by favouring the samples with higher rewards.

In Fig.4-Fig.7 the power consumption by each individual
service sϵS is shown respectively. The power consumption
is shown with respect to the CPU demands that were put
forward by these services. Further, the CPU demands are in
the form of utilization ratio and are divided into different
bins for representation purposes. It is observed that for each
demand bin the RL-SAC gives a lower power consumption
value compared to the baselines. A separate bin when the CPU
utilization is zero is added, to highlight the fact that an idle
server can consume power as well. Hence, it can be concluded
that the proposed resource and power management algorithm
in this work is not only able to bring down the overall power
consumption at the MEC but also at an individual service level
as well.

The results achieved strengthens the rationale that there is a
strong correlation between the network resource distribution
and power consumption at the edge server. A methodical
resource allocation policy not only reduces the power con-
sumption but also avoids over provisioning of resources.
There can be an overall reduction in the operational costs for
the operators as the expenditure on actively maintaining and
cooling large-scale server clusters will go down. In addition,
the results achieved also solidifies the hypothesis that AI
technologies such as the one in this work are the prospective
solution in the times ahead.

VIII. CONCLUSIONS

An AI-based solution to resolve power efficiency at the
network edge is proposed in this paper. An algorithmic imple-
mentation of a RL-based system model inclusive of the major
components of a network infrastructure is used for validation.
The implementation revolves around the fundamental notion of
building a link between the edge server’s CPU resources and
the power consumption by the services hosted by it. RL-SAC
exhibits an enhanced performance at the network edge server
in terms of CPU resource management and power manage-
ment in comparison to the standard Knapsack and proportional

Fig. 2. Average delay experienced by hosted services at the MEC

Fig. 3. Average power consumption of hosted services at the MEC

Fig. 4. Average power consumption of service I at the MEC

Fig. 5. Average power consumption of service II at the MEC

distributor algorithms. The significant performance improve-
ment particularly in terms of power consumption while using
the RL based SAC agent emphasizes the importance of system-



Fig. 6. Average power consumption of service III at the MEC

Fig. 7. Average power consumption of service IV at the MEC

atic and smart resource management. For future work, server
maintenance power, minimising the idle and migration power
can be considered [25]. Resource requirement data collected
from other cloud service providers can also be experimented
with to further enhance performance. Further, a multi-MEC
environment involving components from the RAN domain can
be experimented to have a broader point of view. Additionally,
AI technologies such as explainable AI and distributed RL can
also be attempted.
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