
SDN-based Network Traffic Classification using
Deep Reinforcement Learning

Sifeddine Salmi∗, Miloud Bagaa∗, Messaoud Ahmed Ouameur ∗, Oussama Bekkouche§ and Adlen Ksentini¶
∗ Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

Emails: {sifeddine.salmi, miloud.bagaa, messaoud.ahmed.ouameur}@uqtr.ca
, §Aalto University, Otakaari 24, 02150 Espoo FINLAND (e-mail: oussama.bekkouche@aalto.fi),

¶EURECOM, Campus SophiaTech, France (e-mail: adlen.ksentini@eurecom.fr)

Abstract—Software-Defined Networking (SDN) has emerged as
a transformative technology that revolutionizes network man-
agement and architecture by providing unparalleled flexibility
and control over data traffic flows. This flexibility is increasingly
crucial in managing the complex demands of modern networks,
whereby efficient traffic management is essential for mitigating
congestion and enhancing operational efficiency. This paper
introduces a novel traffic management model that employs Deep
Reinforcement Learning (DRL) to transcend the conventional
limitations typically associated with routing strategies that pri-
oritize the shortest path or make non-optimal decisions when
forwarding the traffic between different peers. Our model not
only reduces overall network congestion but also aims to mini-
mize bandwidth usage and enhance routing mechanisms within
SDN environments. By incorporating DRL-based load balancing
mechanisms, the model intelligently redistributes traffic across
multiple pathways, shifting the focus from proximity to efficiency.
This strategic redistribution prioritizes routes that optimize both,
transmission time and network performance, rather than merely
the shortest path. Moreover, the integration of DRL allows for
real-time decision-making, enabling our system to dynamically
adapt to changing traffic conditions and user demands. This
capability is instrumental in significantly reducing transmission
times and improving the overall efficiency of traffic flow across
the network. Our findings highlight the substantial benefits of
integrating SDN with advanced DRL techniques, offering a
pioneering perspective on traffic routing within SDN networks.
We evaluated the proposed framework via simulations and the
obtained results demonstrated the efficiency of our solution
compared to the baseline approaches.

I. INTRODUCTION

In recent decades, technological advancements have cat-
alyzed a paradigm shift in connectivity and communication.
Notably, Software-Defined Networking (SDN) has emerged as
a transformative technology, playing a pivotal role in driving
this digital evolution. Unlike traditional networks, SDN-based
networks undergo a profound metamorphosis, marked by cen-
tralized management facilitated by a dedicated controller. This
distinctive feature endows SDN networks with a high degree of
flexibility, making them a cornerstone in the contemporary era
of dynamic and adaptive networking environments. Moreover,
the SDN technology is playing a pivotal role in the cloud-edge
continuum environment by efficiently interconnecting various
micro-services and hosting nodes [1].

It has been noted that applications involving the exchange
of substantial amounts of data can significantly affect the
time required for traffic to navigate through the network.

A lack of thorough comprehension of the network paths
and their corresponding probabilities complicates the task of
optimizing traffic flow. Numerous optimization solutions have
been explored in existing literature to effectively direct traffic
within SDN-based networks. However, the application of these
optimization techniques often entails significant time delays
before decisions are made [2]. This delay renders them less
effective for emerging applications, which are characterized
by heavy traffic loads and unpredictability of traffic patterns.
To address this issue, a more refined and efficient approach is
required to promptly respond to traffic changes and manage
overloads.

In this paper, we propose an efficient framework that
leverages the strengths of DRL and SDN technologies to
make rapid decisions for directing traffic within an SDN-based
network. The objective is to reroute traffic across multiple
pathways to satisfy the emerging applications’ demands for
bandwidth, end-to-end delay, and jitter. By redistributing traffic
across diversified paths, we aim to enhance overall network
performance. This is achieved by considering various criteria,
such as bandwidth, jitter, and delay on each pathway. We as-
sume that the SDN controller has comprehensive information
about the network topology, enabling it to make decisions for
steering the traffic between any two hosts in the network using
separate paths. The construction of a multi-path is beyond the
scope of this paper. However, any algorithm in the literature,
such as [3] can be employed for constructing the multi-path
topology. Our solution focuses more on the routing protocol by
enabling efficient steering of the network traffic via different
paths to achieve the desired objectives.

Our proposed solution treats each SDN-enabled switch as
an independent DRL agent, capable of making autonomous
decisions regarding different data flows. These flows are
classified based on characteristics, such as TCP and UDP ports
and involved peers (i.e., source and destination). Subsequently,
traffic is directed through various paths to satisfy the desired
Service Level Agreement (SLA). At each switch, the incoming
traffic flow from an ingress port is distributed across egress
ports that facilitate access to the destination by leveraging
already deployed multi-path topology. Additionally, each agent
determines the volume of traffic to be sent through each
egress port to achieve the intended objectives while avoiding
network congestion. Through the continuous collection and

analysis of data from each path, including the estimation
of expected transit times, we dynamically optimize traffic
flow. This strategy not only boosts the overall efficiency of
the network but also fosters a more adaptive and responsive
communication infrastructure.

The rest of the paper is organized as follows: The next
section is devoted to related works, whereby different related
works are presented. Section III presents the problem formu-
lation and the main idea of this paper. Meanwhile, section IV
presents a detailed solution description. Last but not least, the
simulation results are summarized in section V. Finally, the
paper is concluded in section VI.

II. RELATED WORK

The authors in [4] have proposed an approach for optimizing
the routing and resource management in an SDN-based net-
work. The authors have proposed a model that favors either the
shortest path or employs simplistic load-balancing strategies.
In contrast to this work, our solution leverages DRL and
new paradigms of SDN technology to steer the traffic effi-
ciently. Our approach transcends the conventional limitations
of routing strategies by prioritizing efficiency the bandwidth
utilization to meet the desired SLA. By incorporating DRL-
based load balancing mechanisms, our model intelligently
redistributes traffic across multiple pathways, dynamically
adapting to changing traffic conditions and user demands.

Meanwhile, Fu et al [5] undertake a study on SDN-enabled
disjoint multi-path routing, showcasing the benefits of load-
balancing over conventional shortest-path routing. In contrast
to this work that propose a simple model for steering the
traffic, our model is more advanced by integrating cutting-edge
technologies, such as DRL technique, for real-time decision-
making, thereby significantly enhancing the adaptability and
efficiency of traffic management within SDN architectures.

Expanding upon this foundation, our review encompasses
a spectrum of research endeavors elucidating the intricacies
of multi-path routing. Notably, the works of Yan et al and
[6] that propose innovative multi-path solutions leveraging
OpenFlow queuing mechanisms. While their studies contribute
to a deeper understanding of multi-path routing, our work
introduces a pioneering perspective by integrating DRL tech-
niques for dynamic traffic management, offering enhanced
efficiency and adaptability in SDN networks. Moreover, our
work leverages the new concepts Group tables offered by SDN
technology for enforcing various decisions.

Further enriching our understanding is the exploration of
adaptive multi-path provisioning schemes, exemplified by the
dynamic path selection strategy proposed in [7]. While their
approach focuses on maximizing bandwidth and availability,
our model takes a holistic view, leveraging DRL to optimize
traffic routing based on efficiency, bandwidth usage, and real-
time network conditions.

Building upon these foundational studies, our research
introduces a novel traffic management model that leverages
DRL to transcend the limitations of conventional routing
strategies within SDN environments. By prioritizing efficiency,

adaptability, and real-time decision-making, our work offers a
pioneering perspective on traffic routing, contributing signifi-
cantly to the advancement of SDN network management via
machine learning techniques.

III. PROBLEM FORMULATION AND MAIN IDEA

In the context of related works, one notable aspect involves
the development of Algorithms that enable the network to
intelligently determine traffic routing through diverse paths.
This strategic approach, central to optimizing temporal ef-
ficiency, aligns with our overarching goal of enhancing the
user experience by providing the network with the capability
to autonomously reshape traffic flows. To the best of our
knowledge, we are the first to propose a DRL-based routing
protocol for steering the traffic on a multi-path SDN-enabled
network by leveraging the Group tables. To embark on this
journey, we employed the ONOS REST API to meticulously
gather device information from a controller. The proposed
Algorithm focus on steering the traffic and orthogonal on any
routing protocol that can be used to construct the network
paths between different hosts. Before starting the execution of
our framework, multi-path paths should be created using any
existing tool, such as the one proposed in [3].

Fig. 1. Main idea and problem formulation

Fig. 1 depicts the main idea of our solution. which is
executed in conjunction with the SDN controller. We have
generated a closed-loop mechanism that consists of continu-
ous monitoring and policy enforcement enabling Zero-touch
network and Service Management (ZSM) [8]. For this reason,
continuous monitoring of ongoing traffic at each network
switch and host is carried out to check the conformance
of network throughput to the SLA. Subsequently, according
to the perceived QoS and SLA, new policies are enforced
into the network to enhance the quality of decisions and
adapt according to the changes happening in the network.
The decisions enforce new flow rules that are pushed at
each switch to steer the traffic to achieve better performance.
The agent for each switch leverages DRL, more precisely
Deep Deterministic Policy Gradient (DDPG), for making the
right decisions that enhance the QoS and increase bandwidth
utilization.

Once the agent determines the appropriate actions for each
switch, this decision is manifested through the implementation
of two distinct flow rules per switch for each traffic flow, as

illustrated in Fig. 1. For each active traffic flow, these two
rules play pivotal roles in traffic management. The first rule
is specifically designed to manage incoming traffic at each
ingress port. This involves detailed inspection and filtering
based on predefined criteria, ensuring that only the intended
traffic is allowed to enter the network, thereby optimizing
resource utilization and enhancing security measures.

The second rule governs the outgoing traffic at each egress
port. It prioritizes traffic based on various parameters, such as
destination, quality of service (QoS) requirements, and current
network conditions. This rule is crucial for efficiently allocat-
ing bandwidth and preventing congestion, as it dynamically
adjusts the flow based on real-time network performance data.

Together, these rules ensure that the network can handle
traffic flows intelligently and efficiently. By segregating the
control mechanisms for ingress and egress traffic, the system
maintains high throughput and minimizes latency, thereby
ensuring that network performance aligns with the strategic
objectives of traffic management within SDN environments.
This dual-rule approach not only simplifies the management
of complex traffic scenarios but also enhances the robustness
and responsiveness of the network infrastructure.

IV. DETAILED SOLUTION DESCRIPTION

Our study delves into the intricacies of group tables, ex-
amining their structure and functionality, particularly in the
context of achieving effective load balancing within networks.
Group tables play a crucial role in network management,
guiding the flow of traffic to optimize performance. Un-
derstanding the intricacies of group tables is essential as
they form the foundation for implementing efficient load-
balancing strategies within networks. Load balancing (LB)
is a fundamental aspect of network design and operation,
ensuring optimal performance by distributing traffic across
network devices [9]. LB is essential in both Software-Defined
Networking (SDN) and cloud computing [10], guaranteeing
continuous service delivery even under network congestion
conditions or device failures [11]. Within SDN environments,
LB dynamically allocates local workloads across networks or
pathways [12]. Additionally, it prevents server overload while
maximizing resource utilization.

A group table consists of group entries, each identified by
a unique 32-bit integer. The capability for a flow entry to
reference a group allows OpenFlow to incorporate additional
forwarding methods, such as ’select’ and ’all’ [13]. Under-
standing how group tables operate is crucial for implementing
effective load-balancing mechanisms within networks.

These entries encompass crucial elements:
• Group identifier.
• Group type, determining group semantics.
• Counters, updated during packet processing.
• Action buckets, an ordered list containing sets of actions

and associated parameters.
Our primary objective is to enhance load-balancing algo-

rithms, which can profoundly influence traffic distribution.
Instead of selecting a single path, we aim to generate a more

dynamic approach by efficiently splitting the traffic across
multiple paths to ensure the required SLA in an efficient
and timely manner. The Group Table already incorporates
Weighted Selection with the SELECT forwarding method
for optimal load-balancing. This integration prioritizes action
buckets based on their weights, ensuring efficient traffic dis-
tribution across network paths by favoring higher-weighted
buckets.

To provide a programmable solution and enhance adapt-
ability, we leverage flow rules to dynamically adjust flows
based on changes in the group table. This approach en-
ables the system to respond effectively to evolving network
conditions. Recognizing the increasing demand for adaptive
load-balancing mechanisms within dynamic networking en-
vironments, we have integrated DRL techniques into our
system. Contemporary networking landscapes necessitate load
balancers to dynamically adjust traffic distribution in real-time,
considering factors, such as congestion and link performance.
Traditional load balancers excel in static scenarios but often
struggle to adapt under changing conditions. By integrating
DRL, our system autonomously learns and it will be able
to adapt optimally according to different traffic patterns and
users’ behaviors.

A. Implementation Details

The integration of DRL aims to empower the load-balancing
framework with the capability to dynamically adjust traffic dis-
tribution policies in response to evolving network conditions.
This adaptation is essential for ensuring efficient resource
utilization and minimizing network latency, particularly in
SDN-based networking environments characterized by their
dynamic and adaptable nature. The proposed framework can
be modeled as a model-free Markov Decision Process (MDP)
problem, defined as a tuple ⟨S,A,R⟩, such that: i) S denotes
the set of states; ii) A denotes the set of actions; iii) R denotes
the reward.

We consider the state set S = {s1, s2, . . . , sn} to be
a discrete states. We formulate each state st at a step t
to consider the traffic delay Tt computed as the difference
between time generation and time reception of each flow. The
state also considers the total amount of the data processed
across all buckets Pt. Moreover, the state considers the data
rate represented as bandwidth Bt and the amount of data
transferred Dt across all the flows. Thus, we represent the
state St as: St = (Tt, Pt, Bt, Dt).

Additionally, A is the set of possible actions that determine
the weights allocated to buckets within the group table. In
fact, each potential path between each source and destination
at each switch is assigned a specific weight. The latter will be
converted to the rate of the packet should be forwarded via
that egress port.

Meanwhile, the reward R is defined as the average band-
width between any source and destination in the network. This
reward serves as a direct reflection of the effectiveness of
the agent’s actions. By prioritizing bandwidth optimization,
the agent learns to adjust its actions to maximize bandwidth

performance. Consequently, this adaptation enhances network
efficiency and overall performance, particularly in dynamic
environments.

This decision-making process is crucial for orchestrating
efficient resource allocation within the network. The resultant
instructions are then transmitted to the data plane, whereby
various tasks, such as forwarding and packet processing, are
executed according to the taken actions by the DRL-based
agent. Upon completing this process, the data plane provides
performance results in the form of updated group tables.
These outcomes essentially reflect the effectiveness of the
actions derived from the decision-making process, and hence
they are relayed back to the DRL-based agent. This feedback
mechanism serves as a rewarding mechanism, reinforcing the
agent’s learning process and facilitating continual optimization
of load-balancing strategies within the network architecture.

B. Training and Evaluation

After thoroughly defining our model-free Markov Deci-
sion Process (MDP) problem, it became evident that we
face challenges associated with continuous state and action
spaces, necessitating the use of the Deep Deterministic Policy
Gradient (DDPG) algorithm. This algorithm offers a suitable
framework for addressing our complex problem. Thanks to
the Actor-critic strategy employed by DDPG, the agent will
converge fast and accept continuous space for both the state
and the action.

Fig. 2. DDPG-based Agent in the proposed solution

The learning process iterates through multiple episodes,
allowing the DRL agent to engage with the environment,
experiment with various strategies, and acquire optimal load-
balancing policies. Initially, the agent adopts a randomized
action selection strategy to explore the expansive action space
and gain insights into the network dynamics. This phase of
exploration is crucial for gathering essential information that
will inform subsequent decision-making processes.

Strategy: Fig.2 illustrates the concept of strategy, often
denoted as network knowledge, constitutes a fundamental
aspect of reinforcement learning (RL) paradigms, particularly

in the domain of decision-making. Formally, a policy π
embodies this strategic approach by defining a probabilistic
mapping from states to actions within the RL framework.
Mathematically, this can be expressed as:

πθ(at|st) = P[At = at|St = st] (1)

Here, πθ(at|st) represents the probability of taking action
at given state st, parameterized by θ. Thus, the policy acts as
the ’actor’ in the RL system, determining the agent’s actions
based on the observed state.

We also have the Critic component, which provides es-
timates of Q-values Q̂πθ

ϕ (st, at), whereby ϕ represents the
parameters of the Critic. The Critic learns to estimate the value
of state-action pairs, providing feedback on the effectiveness
of actions selected by the Actor in achieving the agent’s goals.

Simultaneously, the Critic, represented by Q̂πθ

ϕ (st, at), eval-
uates the value of these actions in the given state. Through the
Actor-Critic framework, the agent learns to improve its policy
by receiving feedback from the Critic on the estimated value
of state-action pairs.

However, the ultimate objective is to transition towards more
deterministic actions as the agent learns and refines its policy.
This transition is achieved through training both the Actor and
the Critic.

We commence our endeavor by initiating the training of the
Critic component, a foundational step in our pursuit of refining
the agent’s policy towards deterministic actions. The principal
aim in training the Critic is the minimization of a designated
loss function L(ϕ), where ϕ represents the parameters of the
Critic network. This loss function quantifies the discrepancy
between the predicted Q-values Q̂πθ

ϕ (st, at) and the target Q-
values y∗(s, a). Typically, L(ϕ) is formulated as the squared
error between the predicted and target Q-values:

L(ϕ) =
(
y∗(s, a)− Q̂πθ

ϕ (st, at)
)2

(2)

Concurrently, for each sample i, the Temporal Difference
(TD) error δt is computed, representing the deviation between
the predicted Q-value at the current state-action pair (st, at)
and the sum of the immediate reward rt and the discounted
estimated Q-value of the subsequent state (st+1) under the
policy πθ:

δt = rt + γQ̂πθ

ϕ (st+1, πθ(st+1))− Q̂πθ

ϕ (st, at) (3)

Subsequently, the target Q-values yi are computed for a
minibatch of N samples {si, ai, ri+1, si+1}. These values,
signifying the TD target values for each sample, are calculated
employing a target network Q′ to mitigate issues associated
with the moving target problem:

yi = ri+1 + γQ̂′πθ

ϕ′ (si+1, π(si+1)) (4)

Finally, the parameters ϕ of the Critic network are updated
by minimizing the loss function L over the minibatch of
samples:

L =
1

N

∑
i

(yi − Q̂πθ

ϕ (si, ai|ϕ))2 (5)

Through iterative minimization of the loss function utilizing
environment samples, the Critic gradually approximates the
true Q-values [14]. This approximation aids in evaluating the
effectiveness of actions taken by the Actor according to the
prevailing policy, thereby guiding the Actor toward making
informed decisions within the environment.

Once the Critic has been trained and the target Q-values yi
have been calculated, the actor will be also trained using the
same loss function. The deterministic policy gradient theorem
(Silver et al., 2014) provides the basis for training the Actor.
According to this theorem, the policy gradient is given by:

∇θJ(θ) = Est,at∼πθ(·)

[
∇aQ

πθ

ϕ (st, at)∇θπθ(st)
]

(6)

This equation represents the guiding principle behind up-
dating the policy parameters of the Actor network, θ, to
improve the agent’s decision-making process. Let’s delve into
the components of this equation to understand its implications
for training the Actor.

• ∇θJ(θ) represents the gradient of the objective function
J(θ) with respect to the policy parameters θ. In simpler
terms, it indicates how the expected cumulative rewards
change with small changes in the policy parameters. This
gradient serves as a compass guiding the Actor towards
actions that maximize expected returns.

• The notation st, at ∼ πθ(·) signifies that the states st and
actions at are sampled from the current policy πθ, which
is parameterized by θ. This sampling process allows
the Actor to explore different actions in different states,
which is crucial for learning an effective policy.

• The policy function πθ(st) maps states st to actions and
represents the probability of selecting action at given
state st. It encapsulates the decision-making process of
the Actor, determining which actions to take in different
states based on the learned policy parameters.

• The action-value function Qπθ

ϕ (st, at) under policy πθ,
parameterized by ϕ, represents the expected cumulative
rewards obtained by taking action at in state st and
following policy πθ thereafter. It serves as a measure of
the long-term desirability of taking a particular action in
a given state.

• Finally, the gradients ∇θπθ(st) and ∇aQ
πθ

ϕ (st, at) de-
note the gradients of the policy function and action-value
function, respectively. These gradients drive the learning
process by indicating how changes in the policy param-
eters affect the action choices and subsequent rewards.

Incorporating the actor loss formulation, the actor loss Lactor
can be expressed as:

Lactor =
1

N

∑
i

Qπθ

ϕ (si, ai) (7)

, where N represents the total number of samples (states)
used in the calculation. This formulation highlights the objec-
tive of the Actor network to maximize the sum of Q-values
obtained from the Critic network, as it strives to achieve higher
expected returns/Q-values.

The policy gradient theorem provides a principled approach
to updating the Actor’s policy parameters based on the ex-
pected rewards obtained from different actions in various
states. By iteratively adjusting the policy in the direction
suggested by these gradients, the Actor strives to maximize
expected returns, ultimately leading to improved decision-
making capabilities in reinforcement learning tasks.

V. PERFORMANCE EVALUATION

In the balance of this section, we initially present the train-
ning of the DRL-based agent, then we present its inference.

We initiated an extensive simulation study to evaluate the
effectiveness of our DDPG-basedload balancer agent. The
primary objective was to assess its efficiency in balancing
loads across interconnected components under various network
conditions. To achieve this, we carefully designed a setup
capable of generating three distinct traffic types, each with
different data rates. This configuration allowed for a thorough
evaluation of the load balancer’s efficacy, including its perfor-
mance under bandwidth restrictions and packet loss scenarios.
Additionally, we enriched the environment by incorporating
multiple paths, increasing the complexity of load-balancing
assessments.
A. Training

For implementation, we utilized the PyTorch framework
and conducted a rigorous training regime comprising over
4,000 episodes, each consisting of 50 epochs. To create our
experimental environment, we employed the TCLink class
within Mininet, enabling us to define unique criteria for
each link. To initiate network traffic, we utilize the iperf
tool, launching three concurrent traffic streams simultaneously.
Within this framework, we established different distinct paths,
each characterized by varying metrics to emulate real-world
network scenarios.

Fig. 3. Running average of the previous 100 episodes using DDPG

To gauge the effectiveness of the DDPG policy, we monitor
the running average reward computed over the preceding 100
episodes. This ongoing assessment allows us to evaluate the
agent’s performance and its capacity to adjust its policy in
response to environmental cues.

Moreover, our analysis encompasses the examination of the
running average reward, as illustrated in Fig. 3. This scrutiny

not only showcases the reward’s convergence over time but
also offers valuable insights into the DDPG agent’s learning
trajectory.
B. Inference

We have compared our solution to a base-line approach
that distributes the weights equally across all the buckets.
The comparative results, as depicted in Fig. 4, highlight
the superior performance of the DDPG-based load balancer
over the central Baseline solution, particularly in efficiently
handling data packets as data rates increase. For instance, for a
data 120Mbps rate, while the baseline solution did not exceed
4600 packets, our approach reaches 7500, which demonstrates
its efficiency.

Fig. 4. Performance Comparison of Load Balancer Systems

Moreover, notably, the DDPG-based Load Balancer consis-
tently outperforms the baseline solution, demonstrating sub-
stantial enhancements in bandwidth, as depicted in Fig.5.
This persistent trend of bandwidth improvement not only
demonstrates the effectiveness of our approach but also ac-
centuates its reliable and consistent ability to achieve higher
bandwidth gains. These discoveries underscore the superiority
of the DDPG-based Load Balancer agent in optimizing data
transmission performance.

Fig. 5. Analyzing Bandwidth Performance: A Comparative Study of DDPG-
based Load Balancers agent and baseline solution

Overall, our simulation outcomes illustrate the potential of
our approach in enhancing network performance. It offers
an optimized decision-making process capable of adapting to
the dynamic nature of data plane environments and hence
achieving the desired SLA whatever the traffic patterns or
user’s behavior.

VI. CONCLUSION

Our study demonstrated the effectiveness of a machine
learning-based agent, more precisely DDPG, for enabling load
balancing in optimizing traffic management within SDN. In
our simulation, we directly compared the DDPG-based load
balancer agent with a baseline solution, revealing significant
enhancements in network performance with the DDPG ap-
proach. Notably, the DDPG-based agent load balancer show-
cased remarkable adaptability to dynamic network conditions,
consistently achieving superior bandwidth utilization com-
pared to the baseline. This underscores the immense poten-
tial of reinforcement learning algorithms, such as DDPG, in
elevating traffic routing efficiency within SDN architectures.
Looking ahead, future research endeavors could concentrate on
further refining the DDPG algorithm to dynamically adapt to
evolving network conditions and traffic patterns, thus fostering
the development of more sophisticated load-balancing mech-
anisms. Moreover, the evaluation of our approach on SDN-
based physical switches.

REFERENCES

[1] N. Toumi, M. Bagaa, and A. Ksentini, “Machine learning for service
migration: A survey,” IEEE Communications Surveys Tutorials, vol. 25,
no. 3, pp. 1991–2020, 2023.

[2] A. Nacef, M. Bagaa, Y. Aklouf, A. Kaci, D. L. C. Dutra, and A. Ksentini,
“Self-optimized network: When machine learning meets optimization,”
in 2021 IEEE Global Communications Conference (GLOBECOM),
2021, pp. 1–6.

[3] M. Bagaa, D. L. C. Dutra, T. Taleb, and K. Samdanis, “On sdn-driven
network optimization and qos aware routing using multiple paths,” IEEE
Transactions on Wireless Communications, vol. 19, no. 7, pp. 4700–
4714, 2020.

[4] M. R. Celenlioglu and H. A. Mantar, “An SDN based intra-domain
routing and resource management model,” Proc. IEEE Int. Conf. Cloud
Eng., pp. 347–352, Mar. 2015.

[5] M. Fu and F. Wu, “Investigation of multipath routing algorithms in
software defined networking,” in Proc. Int. Conf. Green Informat.
(ICGI), Aug. 2017, pp. 269–273.

[6] J. Yan, H. Zhang, Q. Shuai, B. Liu, and X. Guo, “Hiqos: An SDN-based
multipath QoS solution,” China Commun., vol. 12, no. 5, pp. 123–133,
May 2015.

[7] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Adaptive and
reliable multipath provisioning for media transfer in SDN-based overlay
networks,” Comput. Commun., vol. 106, pp. 107–116, Jul. 2017.

[8] M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “Qos and
resource-aware security orchestration and life cycle management,” IEEE
Transactions on Mobile Computing, vol. 21, no. 8, pp. 2978–2993, 2022.

[9] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. H. Andrew, “Greening
geographical load balancing,” IEEE/ACM Transactions on Networking,
vol. 23, no. 2, pp. 657–671, Apr 2015.

[10] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey
of cloud computing systems,” in 2009 Fifth International Joint
Conference on INC, IMS and IDC, 2009. [Online]. Available:
http://dx.doi.org/10.1109/ncm.2009.218

[11] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network architecture for joint failure recovery and traffic engineering,”
in Proceedings of the ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems - SIGMETRICS ’11,
2011. [Online]. Available: http://dx.doi.org/10.1145/1993744.1993756

[12] V. D. Chakravarthy and B. Amutha, “Path based load balancing for
data center networks using sdn,” International Journal of Electrical and
Computer Engineering (IJECE), vol. 9, no. 4, p. 3279, Aug 2019.

[13] “Openflow switch specification,” https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.4.1.pdf, march 26, 2015.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971.

