US 20240394375A1

a2y Patent Application Publication o) Pub. No.: US 2024/0394375 A1l

a9y United States

Al-Kassar et al. 43) Pub. Date: Nov. 28, 2024
(54) COLLABORATIVE SOFTWARE (52) US. CL
APPLICATION STATIC VULNERABILITY CPC .. GOGF 21/577 (2013.01); GOGF 21/54
DETECTION (2013.01); GOGF 2221/033 (2013.01)
(57) ABSTRACT

(71) Applicant: SAP SE, Walldorf (DE)
(72) Inventors: Feras Al-Kassar, Antibes (FR); Luca

Compagna, [.a Roquette-sur-Siagne
(FR); Davide Balzarotti, Antibes (FR)

(21) Appl. No.: 18/321,627

(22) Filed: May 22, 2023
Publication Classification

(51) Int. CL

GO6F 21/57 (2006.01)

GO6F 21/54 (2006.01)
100 \

Unmodified
Source Code First Static
101 Application Security
—_— Testing Tool
104a

Second Static
»| Application Security

Sink Injection
102 Testing Tool
104b

Sink-injected _Nth_ Static .
Source Code Application Security
103 Testing Tool

104n

Stitch-modified
Source Code

Techniques for collaborative detection of software applica-
tion static vulnerabilities are disclosed. Print statements are
injected into the source code for a software application for
each of its inputs and outputs. Vulnerability findings are
obtained from two or more static analysis tools run against
the modified source code. A determination is made that a
first static analysis tool reports that tainted data can flow
from an input of a function to a return value of the function
and it is determined that the second static analysis tool
reports that tainted data can flow into the input of the
function and that tainted data cannot flow to the return value
based on the vulnerability findings. The injection-modified
source code is modified to include an assignment of the input
to the output to obtain stitch-modified source code. Then
vulnerability findings are obtained for the stitch-modified
source code and they include new findings.

Evaluation
110

First
Vulnerability
Findings
105a

Infer Data-flow
Paths
106

Second
Vulnerability
Findings
105b

Derived Stitches

107

Source Code Stitch
Modification
108

Nth
Vulnerability
Findings
105n

109

L "Old

601
8pon 82IN0g

PaYIPoW-Yams

US 2024/0394375 Al

Nov. 28,2024 Sheet 1 of 5

Patent Application Publication

80T
uonedipoN
UoIS 8poy 82IN0g

L0V

SaUOIS PaAlaQ

501

acor
sBuipui

Ayjiqessuna
Uw

asot
sBuipui4

Ajligelsuinp
puooeg

BGOT
sbuipuiy

syled
MOJ-BIEQ Joju|

!

OIT
uoneneAsy

Ajqesauina
15414

uyol
1001 Bunsal
Aunoag uonesiddy
onels yw

av0r
j00] Bunsa]
Aunoag uoneolddy
O11e1S puU092ag

Bp0T
jooy Bunsay
Aunoag uonesiddy
onelS 18di4

eor
apoY) 82IN0g
paroeluiuig

20T
uonosfup yuig

1oL
8poD 92IN0S

payipowun

/oow

Patent Application Publication Nov. 28, 2024 Sheet 2 of 5 US 2024/0394375 A1

f\ 200

201
™

Obtain source code for a software application

202 \ l

Inject print statements into the source code for each of the one or more
inputs and the one or more outputs

203\ l

Obtain two or more sets of first vulnerability findings from two or more
respective static analysis tools run against the injection-modified source
code

205 \ l

Determine that the first static analysis tool reports that tainted data can flow
from an input of a function to a return value of the function based on a first
set of the first vulnerability findings from the first static analysis tool

206 \ l

Determine that the second static analysis tool reports that tainted data can

flow into the input of the function and that tainted data cannot flow to the

return value based on a second set of the first vulnerability findings from
the second static analysis tool

207\ l

Modify the injection-modified source code to include an assignment of the
input to the output to obtain stitch-modified source code

208 \ l

Obtain two or more sets of second vulnerability findings from the two or
more respective static analysis tools run against the stitch-modified source
code, the two or more sets of second vulnerability findings including new

vulnerability findings not in the two or more sets of first vulnerability
findings

FIG. 2

300
\

Patent Application Publication Nov. 28, 2024 Sheet 3 of 5

B

o B e
Sy

g,

REENSEREEI

SARARMASANAY,

305
\4
303 \

313

s

S’

§

301

-

e

A,

S
A
Y
kY
Y
%
kS
1
b
3

3
FEVERER Ve,

S

oo B el
8
*

Vs

309
N
310
N\
Gres
311

US 2024/0394375 Al

FIG. 3

400

Patent Application Publication

405

»
N o
4 &8 NN
& JPURICIONRr, \\
e ‘\\ \
2 JEETETRIteee vty
e
®
ey
R
K
b
5 ®
e e e T
& »
T

403

s
e

s
bbbt R

404

>

5

a8
>

Py

Py
450y

L30%

7

WA,

Nov. 28,2024 Sheet 4 of 5

416

ey

A

7

R

np iR R AR

preroreseoesibresisess

410
414

-
e
e
P

44

US 2024/0394375 Al

™
B Qe

FIG. 4

401

el

%
b
%

408

orseerersers

peeidesosrerre

i

e

¥
sl

411

409

AR R

prasaRanany

oo

413

412-

US 2024/0394375 Al

Nov. 28,2024 Sheet 5 of 5

Patent Application Publication

S 'Old
€08 —
018 ~ eo1neQ) L0G
obeIOg 10$$900.1d IS
201ne Induj
A A
G0S ~_/
Y y -
cls
08 — Keidsiq
IR] EM%M
YIOMIaN W
A
JEVNETS yvES
0cs
0€9 MIOMISN
(s)1on88 /" ees (s)hrenieg /" 1es ,
JanIeg /\, 266 009

US 2024/0394375 Al

COLLABORATIVE SOFTWARE
APPLICATION STATIC VULNERABILITY
DETECTION

BACKGROUND

[0001] The present disclosure pertains to software security
testing and in particular to software application static vul-
nerability detection.

[0002] A common method used by software developers to
identify injection vulnerabilities in Web applications is
through Source Code Scanning Tools. However, the accu-
racy of static analysis tools (also called Static Application
Security Testing tools, or SAST, in the industry) is limited.
For instance, certain commercial SAST tools struggle to
cope with the complexity of real world applications. The
failure of SAST tools can be a result of code snippets whose
presence prevented SAST tools from inferring the data-flow
link between two elements of the program. In other words,
each pattern captured a limitation of one of the existing
tools. Such code snippets may be referred to as “testability
tarpits.” Unfortunately, such tarpits affect different tools in
different ways: what poses a problem from one tool may be
analyzed correctly by another and vice versa. And such
tarpits are prevalent in today’s applications.

[0003] These limitations are known by software security
testing practitioners, who try to mitigate the risk of false
negatives by analyzing their application with multiple static
analysis tools in the hope that what a product misses, another
can find. Unfortunately, combining the alarms of different
tools can reduce the risk of false negatives only to a certain
extent. In fact, any sufficiently complex application would
contain enough different testability tarpits to impede the
analysis of all SAST tools. Thus, even if for different
reasons, it is likely that each tool would encounter a snippet
of code it cannot handle correctly.

[0004] The present disclosure addresses these issue and
others, as further described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 shows a diagram of a collaborative software
application static vulnerability detection technique, accord-
ing to an embodiment.

[0006] FIG. 2 shows a diagram of a method for collab-
orative software application static vulnerability detection,
according to an embodiment.

[0007] FIG. 3 shows a diagram of an exemplary datatlow
through exemplary code, according to an embodiment.
[0008] FIG. 4 shows a diagram of the exemplary datatlow
of FIG. 3 with stitches added, according to an embodiment.
[0009] FIG. 5 shows a diagram of hardware of a special
purpose computing machine for implementing systems and
methods described herein.

DETAILED DESCRIPTION

[0010] In the following description, for purposes of expla-
nation, numerous examples and specific details are set forth
in order to provide a thorough understanding of the present
disclosure. Such examples and details are not to be con-
strued as unduly limiting the elements of the claims or the
claimed subject matter as a whole. It will be evident, based
on the language of the different claims, that the claimed
subject matter may include some or all of the features in

Nov. 28, 2024

these examples, alone or in combination, and may further
include modifications and equivalents of the features and
techniques described herein.

[0011] In the figures and their corresponding description,
while certain elements may be depicted as separate compo-
nents, in some instances one or more of the components may
be combined into a single device or system. Likewise,
although certain functionality may be described as being
performed by a single element or component within the
system, the functionality may in some instances be per-
formed by multiple components or elements working
together in a functionally coordinated manner. In addition,
hardwired circuitry may be used independently or in com-
bination with software instructions to implement the tech-
niques described in this disclosure. The described function-
ality may be performed by custom hardware components
containing hardwired logic for performing operations, or by
any combination of computer hardware and programmed
computer components. The embodiments described in this
disclosure are not limited to any specific combination of
hardware circuitry or software. The embodiments can also
be practiced in distributed computing environments where
operations are performed by remote data processing devices
or systems that are linked through one or more wired or
wireless networks. As used herein, the terms “first,” “sec-
ond.” “third.” “fourth,” etc., do not necessarily indicate an
ordering or sequence unless indicated. These terms, as used
herein, may simply be used for differentiation between
different objects or elements.

[0012] As mentioned above, static application security
testing (SAST) tools each have limitations and software
security testing practitioners try to mitigate the risk of false
negatives by analyzing their application with multiple SAST
tools in the hope that what a product misses, another can
find. Unfortunately, combining the alarms of different tools
can reduce the risk of false negatives only to a certain extent.
In fact, any sufficiently complex application would contain
enough different testability tarpits to impede the analysis of
all SAST tools. Thus, even if for different reasons, it is likely
that each tool would encounter a snippet of code it cannot
handle correctly.

[0013] To address these issues and others, the present
disclosure provides techniques for collaborative software
application static vulnerability detection. These techniques
enable the collaboration between different SAST tools. The
technique operates on application source code, thus allowing
our approach to be applied to SAST tools without the need
to access their internal data structures. As an overview, the
techniques search for signs of interrupted data flows by
using the tools as “oracles” and then inject another path to
circumvent the piece of code that tools were not able to
handle correctly.

[0014] The collaborative software application static vul-
nerability detection technique is described in further detail
below. However, prior to that, an overview of software
security testing is provided. One category of software testing
tools are “static” tools, which scan applications without the
need of deploying the project, by analyzing their code for
signs of security issues. Different models can be used to
represent both the syntax and the semantics of source code.
One such model is a “code property graph,” which merges
in a single model the abstract syntax tree with three other
three graph-based representations: the control flow graph to
represent the order of execution of the statements, the

US 2024/0394375 Al

program dependency graph to capture the dependency
between two statements by following the data-flow among
them, and the call graph to represent functions and methods
invocations.

[0015] These graph-like representations of the program
are suited to detect one of the most prevalent classes of
vulnerabilities, called injection vulnerabilities. Injection vul-
nerabilities occur when an attacker can inject harmful values
into an application that lead to unexpected results when
interpreted by other parts of the system. For example,
directly including a value coming for the attacker in an
HTML page can lead to an XSS vulnerability if the value can
include a HTML tag. This tag causes the user browser to
execute attack-provided code, which can lead to harmful
actions like stealing the user’s cookies. Many other kind of
injections exist. For instance, command injection allows an
attacker to run a command in the system. This could lead the
attacker to get full control of the system.

[0016] Developers need to be particularly careful about
injection vulnerabilities and sanitize all the inputs that could
be controlled by an attacker before these inputs reach a
dangerous operation. To detect these bugs, static tools need
to determine the flow of user-provided information through
the program, starting from the points where attackers can
inject their input (called “sources”) until the points in the
program where this input is consumed and interpreted
(called “sinks™). The wvariables which carry the values
between sources and sinks are called “tainted variables.” In
this setting, detecting injections boils down to discovering
data-flow paths between a source and a sink, for which no
sanitizers have been used.

[0017] However, this process presents two main chal-
lenges. First, the static analysis tool needs to be able to
construct the path in the first place, by understanding how
data can propagate among different variables and different
parts of the code (a process normally called taint propaga-
tion). Second, the tool needs to correctly analyze the result-
ing path to detect whether the user-provided input is prop-
erly sanitized to protect against the specific type of injection
vulnerability that was being considered. Errors in these two
steps can cause the tool to miss vulnerabilities, but also to
raise false alarms, in which case the application is errone-
ously flagged as vulnerable when in reality it is not.
[0018] One of the reason behind these errors are “testabil-
ity tarpits,” that is, specific code patterns that can prevent a
static tool to properly analyze its code (and therefore build
a correct internal model). Even the best SAST tools are
impacted by these tarpits and cannot always fully analyze
real-world applications.

[0019] Finally, even if the internal graph representation of
an application is built correctly, it is often large and time-
consuming to explore exhaustively. Thus, certain static
analysis tools often employ several thresholds to limit their
analysis and produce results in a reasonable time. Certain
tools limit the depth of the call graph, the depth of the data
flow, and the depth of the control flow they process when
looking for vulnerabilities. In addition, tools also adopt other
thresholds, to discard files over a given size or to kill
analyses that take longer than a predefined amount of time.
The number, type, and values of the thresholds vary from
one tool to another (for instance, some tools prefer to go
deeper in the call flow while others prefer to go deeper in the
data flow) and they are often not under the control of the
analyst.

Nov. 28, 2024

[0020] The techniques for collaborative software applica-
tion static vulnerability detection further described below
can bypass testability tarpits, thereby allowing SAST tools
to continue their analysis and report vulnerabilities instead
of being limited, by their own internal thresholds or other-
wise.

[0021] FIG. 1 shows a diagram 100 of a collaborative
software application static vulnerability detection technique,
according to an embodiment. This technique may be imple-
mented by a computer system, such as a server computer or
a system including a plurality of server computers such as a
cloud platform, for example. This collaborative vulnerabil-
ity detection technique uses two or more static application
security testing (SAST) tools 104 to detect vulnerabilities in
software source code, which originates as unmodified source
code 101.

[0022] The SAST tools 104 include a first static applica-
tion testing tool 1044, a second static application testing tool
1045. More than two SAST tools can be used as shown in
FIG. 1, up to an Nth static application testing tool 104%. In
general, SAST tools 104 identify vulnerabilities by detecting
a path between a source and a sink. Thus, detecting vulner-
abilities requires a complete data flow graph, without any
missing edge. However, as mentioned above, specific pat-
terns of code (called “testability tarpits”) may prevent cer-
tain tools from detecting the data-flow that connects the
source to the sink. Examples of such testability tarpits are
described below with respect to FIGS. 3 and 4.

[0023] The collaborative software application static vul-
nerability detection technique shares information about the
internal models of two or more SAST tools 104 without
accessing their code or data structures. The SAST tools 104
are considered as a “black box” which receives as input an
application and returns a set of alerts indicating potential
vulnerabilities.

[0024] The collaborative vulnerability technique operates
on the source code 101 of the target application, by using an
approach based on two main operations: infer 106 and stitch
108. The infer operation uses one SAST tool 104 to identify
new security-relevant data-flow paths (i.e., those that origi-
nate from a source that can contain user-controlled input
values) for another SAST tool 104. To achieve this, sink
injection 102 is first performed to inject “fake” sink instruc-
tions (e.g., “echo” operations) into the unmodified source
code 101 of target application to obtain sink-injected source
code 103.

[0025] In some embodiments the unmodified source code
101 is also provided to each SAST tool 104 and the findings
from the unmodified source code 101 may be compared to
the findings from stitch-modified source code 109.

[0026] Then, each SAST tool 104 is run on the sink-
injected source code 103, scanning that modified application
to generate corresponding vulnerability findings 105. That
is, each SAST tool 103 outputs its own vulnerability findings
105. For example, the First Static Application Security
Testing Tool 1044 outputs First Vulnerability Findings 1054,
the Second Static Application Security Testing Tool 1045
outputs Second Vulnerability Findings 1054, and the Nth
Static Application Security Testing Tool 1047 outputs Nth
Vulnerability Findings 105z7.

[0027] After the vulnerability findings 105 are generated,
the Infer Data-flow Paths component 106 processes all the
reported findings related to the fake sinks injected by Sink
Injection 102. The Infer Data-Paths component 106 extracts

US 2024/0394375 Al

security relevant data-flow paths from the SAST tools 104.
The data-flow paths are those that originate from a source
that can contain user-controlled input values. The Infer
Data-Paths component uses fake sinks and the SAST tools
104 as “oracles” such that if one tool reports a vulnerability
for a fake sink, that indicates that there is a data-flow. If the
path between a source and the fake sink is reported as
vulnerable by the first SAST tool 104a, for example, it
means that the SAST tool 104a was able to build an
uninterrupted data-flow path between the two statements. If
the same path is not reported as vulnerable by the second
SAST tool 1045, then then it is likely that its code contained
testability tarpits that prevented the second SAST tool 1045
to reconstruct the same data-flow.

[0028] A “stitch” can be created to stitch two ends of a
data-flow together such that the new edge can help another
tool. This fake assignment by the stitch can propagate the
data-flow.

[0029] Specifically, the data-path learned by the first
SAST tool 104a can be used by the Infer Data-flow Paths
component 106 to derive a “stitch” 107 that stitches the two
ends of the data-flow together, by creating a new edge in the
data-flow graph that can help the second SAST tool 1045 to
conduct its analysis. The source code is further modified by
the Source Code Stitch Modification component 108 to
include this stitch, resulting in Stitch-modified Source Code
109.

[0030] After the Infer Data-flow Paths component 106 has
iteratively derived stitches for new data-paths, evaluation
110 can be performed. The evaluation component 110 may
clean the application code of fake sinks and scan the code
with all SAST tools 104 in order to compare the findings
with stitches to the original findings.

[0031] In summary, a set of SAST tools 104 are used as
oracles to infer which variables are connected to a given
source without being sanitized. If a tool detects these con-
nections, new data-flow edges are added to the application
source code (e.g., with simple variable assignments) to help
other tools discover the same connections.

[0032] Further details of the Collaborative Software
Application Static Vulnerability Detection are presented in
Algorithm 1 given in Listing 1 below. Algorithm 1 takes as
input a web application and a set of SAST tools, and outputs
new findings from SAST tools (if any is reported upon the
addition of our stitches).

Algorithm 1

1: Input

2: A web application
3: Ts set of SAST tools
4: Output

5: Ns new findings from SAST tools
6: Prepare

7: i<=0

8: ST'—o

9: Fs'<scan(Ts,A)
10: InferStitch
11: Al—inject(A)
12: repeat
13: i<i+l
14: Fs'<scan(Ts, A1)
15: STi<infer(A™!,Fs?)
16: Alestitch(ST,A™Y)
17: until ST = &

18: Evaluate

Nov. 28, 2024

-continued

Algorithm 1
19: Ale—clean(A*!)
20: Fs™*!<scan(Ts,A?)
21: Ns'«diff(Fs™1 Fs®)

Listing 1

[0033] In the prepare phase (lines 6-9 of Algorithm I),
initialize two variables (i.e., the iteration step i is set to O, the
initial set of stitches ST° is set to the empty set) and run the
SAST tools against the original application to collect the set
of findings Fs°. These findings can serve as a baseline to
evaluate the effectiveness of the techniques in detecting
novel findings.

[0034] In this Infer and Stitch phase (lines 10-17 of
Algorithm 1), a set of SAST tools is used to infer whether
tainted values propagate between the input and the output of
functions. To achieve this, the application source code is
modified by “injecting” (line 11) fake sinks after each
function call, to print both the inputs and the output values.
Since printing a variable can lead to an XSS vulnerability, a
SAST tools may raise an alert if the variable is tainted (i.e.,
it can contain unsanitized user input).

[0035] For instance, one embodiment may modify the call
to funcl, by adding two fake sinks, such as “echo $in;” and
“echo $out;” to echo an input variable $in and an output
variable $out of a function. An example of fake sinks is
given below with respect to FIG. 3.

[0036] Then the infer and stitch operations are iterated
over (repeat-until loop). Once the iteration step is increased
(line 13), the SAST tools are run against the modified
application (line 14) and the infer operation (line 15) is then
used to process the SAST findings. In particular, the SAST
findings related to the injected fake sinks are inspected and
the following conditions evaluated:

[0037] Condition 1: at least one SAST tool (e.g., 104a)
detects that tainted data can flow from one function
parameter (say $in) to the return value of the function
(say $out); and

[0038] Condition 2: another SAST tool (e.g., 1045)
reports that tainted data can only flow into $in, but not
into Sout.

[0039] When both Condition 1 and Condition 2 are true,
then the findings of the first tool (104a) can be used to help
the second tool (1045). The infer operation derives a new
“stitch” that enforces a trivial data-flow connection between
$in and $out. The inferred stitches are concretized in our as
a modification at the source code of the application. In some
embodiments this may be an assignment or a conditional
assignment for each stitch. This is done by the stitch
operation at line 16 of our algorithm. For instance, for the
stitch ST1 capturing the data-flow connection between $in
and $out, the conditional assignment hereafter may be added
just after the function:

/o
$out = func($in);
/* STITCH__BEGIN: ST1 */
if(round(rand(0,1))){
$out = $in;

/* STITCH_END */
/.

US 2024/0394375 Al

[0040] The assignment is wrapped inside an “if” statement
to create an alternative edge in the data-flow, without
completely replacing the path through the function. This
prevents the transformation from introducing new false
negatives. The condition for the “if” statement is an expres-
sion that is randomly computed as true or false at runtime
(e.g., the rand (0,1) expression).

[0041] In the general case in which a function has more
than one parameter, they are all individually tested and, if
more than one argument is part of taint propagation, multiple
edges (stitches) will be introduced in separate conditional
blocks-like in the following example:

/o
$out = func($inl,$in2);
/* STITCH__BEGIN: ST1 */
if(round(rand(0,1))){
$out = $inl;

)

/* STITCH__END */

/* STITCH__BEGIN: ST2 */

else if(round(rand(0,1))){
$out = $in2;

¥
/* STITCH_END */
.

[0042] Note that while adding stitches, the fake sinks of
the input parameters that were used to infer these stitches are
removed, as they are not needed anymore. If the fake sinks
of all the input parameters of a function are removed, then
also the fake sink of the function return variable is removed.
[0043] In summary, with the stitch operation, the applica-
tion is modified to add new instructions that explicitly
connect two variables, when at least one tool detects that
tainted data can flow from one to the other.

[0044] It shall be noted that one iteration of the infer and
stitch operations may not be sufficient to discover vulner-
abilities. The interplay between different tarpits and their
effect on different tools may result in the fact that none are
able to process the entire chain during the first iteration.
Therefore, the infer and stitch operations may be repeated in
an iterative fashion until no new edges (e.g., new stitches)
are discovered in the graph.
[0045] In this evaluate phase (lines 18-21 of Algorithm I),
the application code is cleaned from any remaining fake
sinks (clean instruction at line 19) and then the code is
scanned with all SAST tools. By removing from these SAST
findings those already reported on the original application
(diff at line 21), novel SAST findings which emerging
because of the stitches added in the previous phase can be
output. In order to remove already reported SAST findings,
the diff instruction compares findings as follows. Two find-
ings F1 and F2 are considered identical if and only if the
following conditions hold:

[0046] Finding Condition 1: F1 and F2 belong to the

same vulnerability type3; and
[0047] Finding Condition 2: the sink line of F1 is
identical to the sink line of F2.

[0048] An example of evaluation is described below with
respect to FIG. 3.

[0049] FIG. 2 shows a diagram 200 of a method for
collaborative software application static vulnerability detec-
tion, according to an embodiment.

Nov. 28, 2024

[0050] At 201, the method obtains source code for a
software application, the source code including a plurality of
functions having one or more inputs and one or more
outputs.

[0051] At 202, the method injects print statements into the
source code for each of the one or more inputs and the one
or more outputs to obtain injection-modified source code.
[0052] At 203, the method obtains two or more sets of first
vulnerability findings from two or more respective static
analysis tools run against the injection-modified source
code, the static analysis tools including a first static analysis
tool and a second static analysis tool;

[0053] At 204, the method determines that the first static
analysis tool reports that tainted data can flow from an input
of a function to a return value of the function based on a first
set of the first vulnerability findings from the first static
analysis tool;

[0054] At 205, the method determines that the second
static analysis tool reports that tainted data can flow into the
input of the function and that tainted data cannot flow to the
return value based on a second set of the first vulnerability
findings from the second static analysis tool;

[0055] At 206, the method modifies the injection-modified
source code to include an assignment of the input to the
output to obtain stitch-modified source code; and

[0056] At 207, the method obtains two or more sets of
second vulnerability findings from the two or more respec-
tive static analysis tools run against the stitch-modified
source code, the two or more sets of second vulnerability
findings including new vulnerability findings not in the two
or more sets of first vulnerability findings.

[0057] In some embodiments, at 208, the method further
obtains two or more sets of original vulnerability findings
from the two or more respective static analysis tools run
against the source code prior to modification and compares
the two or more sets of second vulnerability findings to the
two or more sets of original vulnerability findings to identify
a set of new findings.

[0058] In some embodiments, the assignment of the input
to the output is conditional on a random value generator.

[0059] In some embodiments, the assignment of the input
to the output is positioned in the injection-modified source
code after the function.

[0060] Insome embodiments, the method further removes
corresponding print statements when modifying the injec-
tion-modified source code to include an assignment of the
input to the output.

[0061] Insome embodiments, the method further removes
print statements correspond to an output when all print
statements for corresponding inputs are removed.

[0062] In some embodiments, the source code is in a PHP
Hypertext Preprocessor language and the print statements
are echo operations.

Examples

[0063] The Listing below shows a snippet of PHP code
inspired by a real XSS vulnerability. The vulnerability exists
because the attacker controls the $_POST variable at line 15,
whose value can reach, without being properly sanitized, the
echo statement at line 18. Despite the fact that the code is
simple, certain SAST cannot detect this vulnerability.

US 2024/0394375 Al

1 <Iphp
2 function funcl ($vars){
3 $res =
4 foreach ($vars as $var => $val) {
5 $res = § res.$var ;
6
7 return $res ;
8
9 function fune2 () {
10 $args = func_ get_ args();
11 $ret = call__user_func_ array(‘sprintf’, $args);
12 return $ret;
13 }
14
15 $ vars = §_ POST; //source
16 $x = funcl($vars);
17 $y = func2 ($x);
18 echo $y; // sink
[0064] The reason for the vulnerability is shown in FIG. 3

which shows a diagram of an exemplary datatlow through
exemplary code, according to an embodiment. FIG. 3 gives
a data flow graph of example code above. In the figure, there
are three sets of blocks, associated respectively to the main
function (in the middle) to funcl (on the right), and to func2
(on the left). Finally, the edges illustrate the data flow
between the different lines of code.

[0065] In particular, funcl 302 uses a foreach 303 loop to
concatenate the keys of an array, an operation that is not
handled correctly by a first SAST tool. As a result, the edge
between 303 and 304 in FIG. 3 would be missing, thus
breaking the path associated to the vulnerability. Moreover,
func2 308 receives the arguments through the built-in func-
tion func_get_args 309 and then calls the built-in function
sprintf 310 dynamically through the PHP function call_
user_func, which this time poses problems to a second
SAST tool. In this case, the edge between 309 and 310
would be missing, again resulting in a fragmented path that
prevented the tool to detect the vulnerability.

[0066] This example shows two important aspects. First,
the fact that the reason why SAST tools fail to discover
vulnerabilities are different. Second, the fact that existing
tools cannot be combined to overcome each other’s limita-
tions. Today, all an analyst can do is run both tools in
isolation, in both cases reaching the same empty result.
[0067] While different tools use different strategies and are
affected by different limitations, the combined model of the
program is more complete, and therefore more effective at
findings bugs, then their two models in isolation using the
collaborative techniques described above.

[0068] FIG. 4 shows the data-flow graph of the modified
application after two iterations of our approach. The new
edges to and from 408 and to and from 416 are the stitches
introduced by the techniques described above. In the third
iteration no new stitches are inferred and our approach
moves to the evaluation phase.

[0069] To sum up, from this first iteration our approach
learned that, through the function funcl, tainted data propa-
gates from the $vars variable to the $x variable. Our
approach now uses this information to forcefully add this
dependency in the program.

[0070] To make the relationship between the $vars and $x
variables explicit, our approach modifies again the source
code of the application, this time by adding a simple
conditional assignment as in the code listing above where
$vars and $x replace $in and $out, respectively.

Nov. 28, 2024

[0071] The listing below shows the example snippet of
PHP code modified to include fake sinks using echos:

<7php
function funcl ($vars){
$res ="
foreach ($vars as $var => $val) {
$res = $ res.$var ;

return $res;

function func2 () {
$args = func_get_args();
$ret = call_user_ func_array (‘sprintf’, $args);
return $ret;

$ vars = §__POST; //source
$x = funcl($vars);

echo $vars; /*EI1-16*/
echo $x; /*EO1-16%*/

$y = func2 ($x);

echo $x; /*EI1-17*/

echo $y; HEO1-17%

echo $y; // sink

[0072] The listing below shows the example snippet of
PHP code with inferred stitches added to the code:

<7php
function funcl ($vars){
$res ="
foreach ($vars as $var => $val) {
$res = $ res.$var ;

return $res ;

function func2 () {
$args = func_get_args();
$ret = call_user_ func_array (‘sprintf’, $args);
return $ret;
}
$ vars = §__POST; //source
$x = funcl($vars);
if(round(rand(0,1))){
$x = $vars;

}

$y = func2 ($x);

if(round(rand(0,1))){
$y = $x;

echo $y; // sink

[0073] In summary, with the stitch operation of our
approach, we modify the application to add new instructions
that explicitly connect two variables, when at least one tool
detects that tainted data can flow from one to the other.

Example Hardware

[0074] FIG. 5 shows a diagram 500 of hardware of a
special purpose computing machine for implementing sys-
tems and methods described herein. The following hardware
description is merely one example. It is to be understood that
a variety of computers topologies may be used to implement
the above described techniques. The hardware shown in
FIG. 5 may be used to implement the computer systems and
computer software (computer reprogram code) described
herein.

[0075] The computer system 510 includes a bus 505 or
other communication mechanism for communicating infor-
mation, and one or more processor(s) 501 coupled with bus
505 for processing information. The computer system 510

US 2024/0394375 Al

also includes a memory 502 coupled to bus 505 for storing
information and instructions to be executed by processor
501, including information and instructions for performing
some of the techniques described above, for example. This
memory may also be used for storing programs executed by
processor(s) 501. Possible implementations of this memory
may be, but are not limited to, random access memory
(RAM), read only memory (ROM), or both. A storage device
503 is also provided for storing information and instructions.
Common forms of storage devices include, for example, a
hard drive, a magnetic disk, an optical disk, a CD-ROM, a
DVD, a flash or other non-volatile memory, a USB memory
card, or any other medium from which a computer can read.
Storage device 503 may include source code, binary code, or
software files for performing the techniques above, for
example. Storage device and memory are both examples of
non-transitory computer readable storage mediums.

[0076] The computer system 510 may be coupled via bus
505 to a display 512 for displaying information to a com-
puter user. An input device 511 such as a keyboard, touch-
screen, and/or mouse is coupled to bus 505 for communi-
cating information and command selections from the user to
processor 501. The combination of these components allows
the user to communicate with the system. In some systems,
bus 505 represents multiple specialized buses, for example.

[0077] The computer system also includes a network
interface 504 coupled with bus 505. The network interface
504 may provide two-way data communication between
computer system 510 and a network 520. The network
interface 504 may be a wireless or wired connection, for
example. The network 520 may be a local area network or
an intranet, for example. The computer system 510 can send
and receive information through the network interface 504,
across the network 520, to computer systems connected to
the Internet 530. Using the Internet 530 the computer system
510 may access data and features that reside on multiple
different hardware servers 531-534. The servers 531-534
may be part of a cloud computing environment in some
embodiments.

Experimental Results

[0078] An experiment was performed on 114 software
projects including PHP code using the techniques discussed
above. The experiment used two commercial SAST tools
that support PHP language. Overall, the collaborative soft-
ware application static vulnerability detection technique
added 151.82 stiches per project, with a median of 35. Both
SAST tools collected new alerts (e.g., software vulnerability
notifications), with the first SAST tool collecting 93,022
alerts with the collaborative vulnerability detection tech-
niques, up from 82,995 without using the collaborative
vulnerability detection techniques disclosed herein. The
second tool collected 80,090 alerts with the collaborative
vulnerability detection techniques disclosed herein, up from
74,307 alerts without the collaborative vulnerability detec-
tion techniques.

[0079] The use of these techniques allowed the two SAST
tools 8,394 new alerts were reported. Validation was per-
formed on a random sample of 688 alerts, and when one alert
was valid for a project the other alerts were checked for the
same project, resulting in validation of 1,663 alerts. From
this validation, 23 zero day vulnerabilities were reported and
confirmed in eight different projects. Nine other potential

Nov. 28, 2024

vulnerabilities were also reported but confirmed has not yet
been received from their developers.

[0080] By use of the collaborative software application
static vulnerability detection techniques, software vulner-
abilities were detected that could not have otherwise been
detected by either of the SAST tools separately.

What is claimed is:

1. A computer system, comprising:

one or more processors;

one or more machine-readable medium coupled to the one

or more processors and storing computer program code
comprising sets instructions executable by the one or
more processors to:

obtain source code for a software application, the source

code including a plurality of functions having one or
more inputs and one or more outputs;

inject print statements into the source code for each of the

one or more inputs and the one or more outputs to
obtain injection-modified source code;

obtain two or more sets of first vulnerability findings from

two or more respective static analysis tools run against
the injection-modified source code, the static analysis
tools including a first static analysis tool and a second
static analysis tool;

determine that the first static analysis tool reports that

tainted data can flow from an input of a function to a
return value of the function based on a first set of the
first vulnerability findings from the first static analysis
tool;

determine that the second static analysis tool reports that

tainted data can flow into the input of the function and
that tainted data cannot flow to the return value based
on a second set of the first vulnerability findings from
the second static analysis tool;

modify the injection-modified source code to include an

assignment of the input to the output to obtain stitch-
modified source code; and
obtain two or more sets of second vulnerability findings
from the two or more respective static analysis tools
run against the stitch-modified source code, the two or
more sets of second vulnerability findings including
new vulnerability findings not in the two or more sets
of first vulnerability findings.
2. The computer system of claim 1, wherein the computer
program code further comprises sets of instructions execut-
able by the one or more processors to:
obtain two or more sets of original vulnerability findings
from the two or more respective static analysis tools
run against the source code prior to modification; and

compare the two or more sets of second vulnerability
findings to the two or more sets of original vulnerability
findings to identify a set of new findings.

3. The computer system of claim 1, wherein the assign-
ment of the input to the output is conditional on a random
value generator.

4. The computer system of claim 1, wherein the assign-
ment of the input to the output is positioned in the injection-
modified source code after the function.

5. The computer system of claim 1, wherein the computer
program code further comprises sets of instructions execut-
able by the one or more processors to:

remove corresponding print statements when modifying

the injection-modified source code to include an assign-
ment of the input to the output.

US 2024/0394375 Al

6. The computer system of claim 1, wherein the computer
program code further comprises sets of instructions execut-
able by the one or more processors to:

remove print statements correspond to an output when all

print statements for corresponding inputs are removed.

7. The computer system of claim 1, wherein the source
code is in a PHP Hypertext Preprocessor language and the
print statements are echo operations.

8. A non-transitory computer-readable medium storing
computer program code comprising sets of instructions to:

obtain source code for a software application, the source

code including a plurality of functions having one or
more inputs and one or more outputs;

inject print statements into the source code for each of the

one or more inputs and the one or more outputs to
obtain injection-modified source code;

obtain two or more sets of first vulnerability findings from

two or more respective static analysis tools run against
the injection-modified source code, the static analysis
tools including a first static analysis tool and a second
static analysis tool;

determine that the first static analysis tool reports that

tainted data can flow from an input of a function to a
return value of the function based on a first set of the
first vulnerability findings from the first static analysis
tool;

determine that the second static analysis tool reports that

tainted data can flow into the input of the function and
that tainted data cannot flow to the return value based
on a second set of the first vulnerability findings from
the second static analysis tool;

modify the injection-modified source code to include an

assignment of the input to the output to obtain stitch-
modified source code; and
obtain two or more sets of second vulnerability findings
from the two or more respective static analysis tools
run against the stitch-modified source code, the two or
more sets of second vulnerability findings including
new vulnerability findings not in the two or more sets
of first vulnerability findings.
9. The non-transitory computer-readable medium of claim
8, wherein the computer program code further comprises
sets of instructions to:
obtain two or more sets of original vulnerability findings
from the two or more respective static analysis tools
run against the source code prior to modification; and

compare the two or more sets of second vulnerability
findings to the two or more sets of original vulnerability
findings to identify a set of new findings.

10. The non-transitory computer-readable medium of
claim 8, wherein the assignment of the input to the output is
conditional on a random value generator.

11. The non-transitory computer-readable medium of
claim 8, wherein the assignment of the input to the output is
positioned in the injection-modified source code after the
function.

12. The non-transitory computer-readable medium of
claim 8, wherein the computer program code further com-
prises sets of instructions to:

remove corresponding print statements when modifying

the injection-modified source code to include an assign-
ment of the input to the output.

Nov. 28, 2024

13. The non-transitory computer-readable medium of
claim 8, wherein the computer program code further com-
prises sets of instructions to:

remove print statements correspond to an output when all

print statements for corresponding inputs are removed.
14. The non-transitory computer-readable medium of
claim 8, wherein the source code is in a PHP Hypertext
Preprocessor language and the print statements are echo
operations.
15. A computer-implemented method, comprising:
obtaining source code for a software application, the
source code including a plurality of functions having
one or more inputs and one or more outputs;

injecting print statements into the source code for each of
the one or more inputs and the one or more outputs to
obtain injection-modified source code;

obtaining two or more sets of first vulnerability findings

from two or more respective static analysis tools run
against the injection-modified source code, the static
analysis tools including a first static analysis tool and a
second static analysis tool;

determining that the first static analysis tool reports that

tainted data can flow from an input of a function to a
return value of the function based on a first set of the
first vulnerability findings from the first static analysis
tool;

determining that the second static analysis tool reports

that tainted data can flow into the input of the function
and that tainted data cannot flow to the return value
based on a second set of the first vulnerability findings
from the second static analysis tool;

modifying the injection-modified source code to include

an assignment of the input to the output to obtain
stitch-modified source code; and

obtaining two or more sets of second vulnerability find-

ings from the two or more respective static analysis
tools run against the stitch-modified source code, the
two or more sets of second vulnerability findings
including new vulnerability findings not in the two or
more sets of first vulnerability findings.

16. The computer-implemented method of claim 15, fur-
ther comprising:

obtaining two or more sets of original vulnerability find-

ings from the two or more respective static analysis
tools run against the source code prior to modification;
and

comparing the two or more sets of second vulnerability

findings to the two or more sets of original vulnerability
findings to identify a set of new findings.

17. The computer-implemented method of claim 15,
wherein the assignment of the input to the output is condi-
tional on a random value generator.

18. The computer-implemented method of claim 15,
wherein the assignment of the input to the output is posi-
tioned in the injection-modified source code after the func-
tion.

19. The computer-implemented method of claim 15, fur-
ther comprising:

removing corresponding print statements when modifying

the injection-modified source code to include an assign-
ment of the input to the output.

20. The computer-implemented method of claim 15, fur-
ther comprising:

US 2024/0394375 Al Nov. 28, 2024

removing print statements correspond to an output when
all print statements for corresponding inputs are
removed.

	Front Page
	Drawings
	Specification
	Claims

