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Abstract| We consider two-user additive Gaussian noise
multiple-access and broadcast channels. Although the set
of rate pairs achievable by time-division multiple-access
(TDMA) is not equal to the capacity region (achieved by
superposition), as the power decreases, the TDMA achiev-
able region converges to the capacity region. Furthermore,
TDMA achieves the same minimum energy per bit as su-
perposition.
Despite those features of TDMA, this paper answers the

question in the title negatively except in two special cases:
multiaccess channels where the users' energy per bit are
identical and broadcast channels where the receivers have
identical signal-to-noise ratios.

One of the simplest ways to engineer multipoint-to-point
(multiaccess) or point-to-multipoint (broadcast) links is to
use Time-Division Multiple Access (TDMA), by means of
which each user is assigned nonoverlapping time slots dur-
ing which they are the only active transmitters. This mu-
tiaccess technology leads to very simple receiver design.
However, multiuser information theory has shown that su-
perposition strategies where users transmit simultaneously
in time and frequency causing mutual interference o�ers in
general higher capacity provided the inter-user interference
is taken into account at the receiver. For example:
� The capacity region (set of achievable rates) of multiac-
cess channels and of broadcast channels are not achieved
by TDMA [1].
� When users are a�ected by independent fading, they can
achieve higher aggregate rate with superposition than with
TDMA, as a simple consequence of the concavity of channel
capacity as a function of signal-to-noise ratio [2].
� In cellular models where each base station neglects the
structure of the out-of-cell interference, superposition cod-
ing (possibly coupled with so-called intercell time-sharing
protocols, if the out-of-cell interference is suÆciently high)
o�ers higher capacity than TDMA in the presence of fading
[3].
Moreover, in practical implementations TDMA su�ers

from performance-limiting multiuser interference because
of nonideal e�ects such as channel distortion and out-of-
cell interference.
The most common practical embodiment of superposi-

tion multiaccess strategies is CDMA. Thus, in practice,
superposition is particularly relevant in the wideband low-
power regime where the received energy per information bit
may not be far from its minimum value. Therefore, it is of
considerable practical interest to compare the capabilities
of TDMA to the capabilities of superposition in the low-
power regime. To make the comparison as crisp as possible
and in order not to incorporate features such as communi-

cation in a cellular environment or in the presence of fading,
which as we saw before may tilt the comparison in favor of
superposition strategies, we limit our analysis to additive
white Gaussian noise channels not subject to fading. In
this summary submitted to ISIT we include both multiple-
access channels and broadcast channels in their simplest
possible setting: the classical two-user scalar white Gaus-
sian noise model. We have also obtained generalizations to
K-user channels with fading.

I. The Multiple Access Channel

We consider the complex-valued multiple-access channel

Y = X1 +X2 +N (1)

where N is Gaussian with independent real and imagi-
nary components and E[jN j2] = �2, E[jX1j

2] � P1 and
E[jX2j

2] � P2. The capacity region is the Cover-Wyner
pentagon [1]:
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In particular, we can conclude from (2) the celebrated re-
sult that the total capacity (maximum sum of rates) of the
multiaccess channel is equal to the capacity of a single-user
channel whose power is equal to the sum of the individual
powers, namely
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As is well known, the boundary (or, more precisely, the
Pareto-optimal points) of the capacity region is achieved
by superposition. In contrast, TDMA achieves the region
described as the union of rectangles:[
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where the parameter � is equal to the fraction of time that
the �rst user is active. By letting the time sharing param-
eter be equal to

� =
P1

P1 + P2
;
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we obtain that the total capacity achieved by (3) is also
equal to (cf. Figure 1)
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Fig. 1. Multiaccess channel capacity region and TDMA achievable
region with with P1=�2 = 4 and P2=�2 = 1.

0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 2. Multiaccess channel capacity region and TDMA achievable
region with with P1=�2 = 0:4 and P2=�2 = 0:1.

In particular, if P1 = P2 and R1 = R2, then TDMA is
optimal.

Moreover, as � grows, we operate predominantly in the
linear region of the logarithm. Roughly speaking, as the
background noise grows, the multiaccess interference be-
comes a secondary factor and the achievable rates become
decoupled. This is illustrated by comparing Figures 1 and
2, where we see that the TDMA achievable rate region oc-
cupies an increasingly large fraction of the capacity region
as �2 increases. This can be formalized by showing that
the TDMA achievable region converges to the rectangle
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in the following sense:
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De�ne the (received) energy per information bit relative
to the noise spectral level of user i = 1; 2 as

Ei
N0

=
Pi
Ri�2

: (6)

Note that sometimes a \system" energy per bit is consid-
ered instead of the individual per-user energies per bit de-
�ned in (6). For example, when all the per-symbol energies
are identical, [4] uses a system energy per bit which is equal
to the harmonic mean of the individual energies per bit.
One of the fundamental limits of interest in this paper is

the minimum energy per information bit, which is obtained
with asymptotically low power [5]. To that end, we can ap-
ply the general framework of capacity region per unit cost
developed in [5]. However, in the particular case at hand it
is instructive to give a self-contained derivation. Several of
the performance measures we will encounter later depend
on the ratio with which both rates go to 0. As the follow-
ing result shows, this is not the case for the multiaccess
minimum energy per bit.
Theorem 1: For all R1=R2, the minimum energies per

information bit for the multiple-access channel are equal
to

E1

N0
=

E2

N0
= loge 2 = �1:59dB: (7)

Furthermore, (7) is achieved by TDMA.

Proof: For a single-user channel the minimum energy per
bit is computed from the capacity-SNR function C(SNR) (in
bits):

Eb
N0 min

= lim
SNR!0

SNR

C(SNR)
(8)

=
loge 2
_C(0)

(9)

where _C(0) = derivative at 0 of C(SNR) computed in nats.
Let us apply this framework to TDMA. First, consider

a �xed time-sharing parameter 0 < � < 1. Using (3) we
obtain
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and
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Since the convergence of the limits (10) and (11) is uniform
over �, we can conclude that the result holds even if � is
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not held �xed and varies with the signal-to-noise ratio. (For
example, in order to enforce a constraint on R1 = R2.)
Since TDMA achieves a subset of the capacity region,

and since in noninterfering single-user channels the mini-
mum energies per bit are also equal to (7), we conclude
that for the multiaccess channel, TDMA achieves the same
minimum energies per bit as superposition.

From all the evidence we have seen so far, we would be
justi�ed to suspect that the purported advantage of su-
perposition over TDMA may actually vanish in the low
power regime. If this is the case, then the increase in re-
ceiver complexity required to realize the capacity achieved
by superposition would be hardly justi�ed unless some of
the other factors mentioned above come into play. How-
ever, this is not the case. The minimum values of energy
per bit are obtained in the limit of in�nite bandwidth and
therefore imply zero spectral eÆciency. As explained in
the recent work [6], the key performance measure in the
wideband regime is the slope of the spectral eÆciency vs
Eb
N0

curve (b/s/Hz/3 dB) at Eb
N0min

:
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(12)

A number of well-known conclusions made in the litera-
ture based on the (in�nite bandwidth) analysis of Eb

N0min
are

shown in [6] to no longer apply in the wideband low-power
regime where bandwidth is �nite and the spectral eÆciency
is nonzero. In particular, unlike Eb

N0min
, the slope S0 gives

an indication of the bandwidth requirements for a given
data rate. Note that in the particular case of the single-user
additive white Gaussian noise channel, C(x) = log(1 + x)
and S0 = 2.
Whereas the conventional capacity region supplies the

tradeo� of rates for �xed powers, we can de�ne a corre-
sponding \slope region" that gives the tradeo� of individ-
ual user slopes for a �xed ratio with which the individual
rates vanish. Although formula (12) applies to single-user
channels it turns out to be suÆcient for our analysis of
both multiaccess and broadcast channels.
Theorem 2: For all R1=R2, the multiaccess slope region

achieved by TDMA is:

f(S1;S2) : 0 � S1; 0 � S2; S1 + S2 � 2g:

Proof: Fix 0 � � � 1. Applying (12) to the individual
rate constraint equations in (3),
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we obtain
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1

�2
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1

�2
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��4
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1
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Thus, if the rate pair belongs to the boundary of the achiev-
able region, then S1 = 2� and S2 = 2� 2�.

Theorem 3: Let the rates vanish while keeping R1=R2 =
�. The optimum multiaccess slope region (achieved by su-
perposition) is:
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Furthermore,

closure

([
�>0

S(�)

)
= f(S1;S2) : 0 � S1 � 2; 0 � S2 � 2g: (16)

Proof: As we showed in Theorem 1, as we let the powers
and rates vanish, both energies per bit E1 and E2 approach
the same value, and therefore (6) implies that in the limit

P1
P2

=
R1

R2
= �:

In the rest of the proof we will assume that P2 = P1=�.
While this is only required in the limit, we can handle
the more general case invoking uniform convergence in the
same way as in the proof of Theorem 1.
We can re-write (2) as
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Let us apply (12) to the individual rate constraints of
(17) (assuming we are operating in the Pareto-optimal seg-
ment of the Cover-Wyner pentagon). For �xed � and �,
the individual maximal achievable rates become
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The �rst and second derivatives are equal to (in the limit
as P1 ! 0):

_C1(0) = _C2(0) =
1

�2
;
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Plugging these results into (12) we obtain

S1 =
2�

2� 2�+ �
(19)

S2 =
2

1 + 2��
: (20)

We can solve for � in (19) and (20) and subtract the re-
sulting equations in order to obtain:

1 =
�

S1
�

�

S2
+

1

�S2
�

1

2�
; (21)

which is equivalent to the boundary condition in (15). The
conditions S1 � 2, S2 � 2 follow immediately from the
fact that the existence of an interferer cannot improve the
rate. Moreover, the points at which the lines S1 = 2 and
S2 = 2 intersect with (21) correspond to � = 1 and � =
0, respectively, i.e. to the vertices to the Cover-Wyner
pentagon.

To show (16) note that as either � ! 0 or � ! 1 the
third constraint in (15) becomes redundant.
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Fig. 3. Slope regions in multiaccess channel with TDMA and super-
position � = 1 and � = 2.

Theorem 3 shows that both users can achieve slopes that
are arbitrarily close to the single-user slopes provided they
use superposition, optimum decoding, and their powers are
suÆciently unbalanced. Therefore, even in the simple set-
ting of the two-user additive Gaussian multiaccess channel

the low-power capabilities of TDMA are markedly subop-
timal. As a concrete example, suppose we constrain user 1
to have a small rate R1 = � and

E1

N0
= (3:01�� 1:59)dB

whereas
E2

N0
= (3:01

�

4
� 1:59)dB;

then the highest rate achievable by TDMA is

RT

2 =
�

4

whereas superposition achieves

R2 =
�

2
;

operating at the point � = 2, S1 = 1, S2 = 2 (Figure 3).
Theorem 4: If both users are constrained to have the

same energy per bit, then TDMA achieves optimum slopes.

Proof: Identical energies per bit imply that

S1
S2

=
R1

R2
= �

which, when substituting the values found in (20), requires
� = 1=2. On the other hand, for every value of � the
superposition slope region \touches" the TDMA region at
one point (Figure 3), which corresponds to the mid point
� = 1=2 in the Pareto-optimal segment of the Cover-Wyner
pentagon. To see this, note that � = 1=2 achieves the
minimum sum (equal to 2) of the slopes in (20):

2�

2� 2�+ �
+

2

1 + 2��
:

II. Broadcast Channels

We consider the simple complex-valued two-user broad-
cast Gaussian channel where users 1 and 2 receive the
same signal from the transmitter embedded in independent
Gaussian noise with di�erent powers:

Y1 = X +N1

Y2 = X +N2 (22)

whereE[jX j2] � P , E[jNij
2] � �2i . We will assume �21 < �22

as in the case �21 = �22 TDMA is trivially optimal. The
capacity region of this channel (achieved by superposition
and stripping) is equal to [1]

[
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whereas the region achievable by TDMA is

[
0���1
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Fig. 4. Capacity region and TDMA-achievable rate region of broad-
cast channel with P=�2
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Fig. 5. Capacity region and TDMA-achievable rate region of broad-
cast channel with P=�2

1
= 0:4 and P=�2

2
= 0:1.

As for multiaccess channels, it appears from Figures 4
and 5 that as the power decreases, the TDMA-achievable
region occupies a larger fraction of the capacity region.
This fact has been formalized in [7] showing that for every
pair (R1; R2) in the broadcast capacity region,

lim sup
P!0

R1

log2

�
1 + P

�2
1

� +
R2

log2

�
1 + P

�2
2

� � 1: (25)

Analogously to (6) we de�ne

Ei
N0

=
P

Ri�2i
: (26)

Theorem 5: Suppose that R1=R2 = �. Then, the mini-
mum energies per bit achieved by both TDMA and super-
position are:

E1

N0
=

�
1 +

�22
�21�

�
loge 2 (27)

E2

N0
=

�
1 +

��21
�22

�
loge 2 (28)

Proof: Let us start with TDMA. Enforcing the constraint
on the ratio of the rates in (24), pins down the value of
the time-sharing parameter and we obtain that the rate
achieved by user 1 is

R1 =
� log2

�
1 + P

�2
1

�
log2
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1 + P

�2
2

�
log2
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�2
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�
+ � log2

�
1 + P

�2
2

� : (29)

The reciprocal of the derivative of (29) with respect to P
at P = 0 is equal to �=(��21+�

2
2) and (27) follows. Formula

(28) is obtained in an entirely analogous way or simply by
noticing from (26) that

E1

N0

E2

N0

=
�22
��21

: (30)

Let us analyze now the capacity region (23). De�ne ��(P )
to be the solution to

log2

�
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��(P )P

�21

�
= � log2

�
1 +

(1� ��(P ))P

��(P )P + �22

�
: (31)

Although we are unable to �nd an explicit solution for
��(P ), we will be able to compute the derivative with re-
spect to P at P = 0. Equating the derivatives of both sides
of (31), we obtain

��(P )
�2
1

+ P _��(P )
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�2
1

=
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�2
2
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(�2
2
+P��(P ))

2

�
1 + P (1���(P ))

�2
2
+P��(P )

(32)

Letting P = 0 in (32) we get that the derivative at 0 is
equal to ��(0)�

2
1 and

��(0) =
��21

�22 + ��21
: (33)

Taking the reciprocal of the derivative and multiplying by
loge 2=�

2
1, (27) follows, and so does (28) by applying (30).

Let us direct our attention to the analysis of the slopes.
Theorem 6: Let the rates vanish while keeping R1=R2 =

�. The broadcast slope region achieved by TDMA is:

f(S1;S2) : 0 � S1 �
2�

1 + �
; 0 � S2 �

2

1 + �
g: (34)
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Proof: As in the proof of Theorem 5, enforcing the con-
straint R1 = �R2, we obtain the value of the time sharing
parameter and the value of the individual rates. Applying
formula (12) to (29) and after considerable algebra (omit-
ted in this summary) we obtain the desired result. The fact
that if we operate on the boundary of the capacity region
we get S1 = �S2 can be readily seen from the fact that the
numerator in the de�nition of slope has a factor of � be-
cause R1 = R2�, whereas the denominators are identical:
the Eb

N0
's di�er by a multiplicative constant (30) which is

immaterial in the de�nition of slope (left side of (12)).

Theorem 7: Let the rates vanish while keeping R1=R2 =
�. The optimum broadcast slope region (achieved by su-
perposition) is:

f(S1;S2) : 0 � S1 �
2� (� + �22=�

2
1)

�2 + 2� + �22=�
2
1

;

0 � S2 �
2 (� + �22=�

2
1)

�2 + 2� + �22=�
2
1

g: (35)

Proof: It is suÆcient to justify the slope of user 1 because
as we saw above S1 = �S2. As in the proof of Theorem
5, we need to work with an expression for the achievable
rate (31) which depends on an implicitly-de�ned function
��(P ). Equating the second derivatives of both sides in
(31) we get

�
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0
@
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1
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=
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2
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� P _��(P )
�2
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(�2
2
+P��(P ))

2
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�
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� 1
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2(1� ��(P ))(��(P ) + P _��(P ))
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2 +

2P _��(P )(��(P ) + P _��(P ))

(�22 + P��(P ))
2 +
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2
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P (1� ��(P ))(2 _��(P ) + P ���(P ))

(�22 + P��(P ))
2

�
Substituting the value of ��(0) found in (33), and letting
P = 0, we obtain

_��(0) = �
��21(2��

2
1 + �22 � ��22)

2(��21 + �22)
3

: (36)

Therefore, the �rst and second derivatives are now com-
putable explicitly. Applying (12), we obtain the formula in
(35).

Comparing the results of Theorems 6 and 7 we see that
unless �21 = �22 (in which case TDMA is optimal), TDMA
is wasteful of channel resources.
Figure 6 plots the ratio between the slopes achieved with

superposition and TDMA as a function of �. This quanti-
�es the bandwidth expansion factor that TDMA requires
in the low-power wideband regime.
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Fig. 6. Bandwidth factor penalty incurred by TDMA as a function
of R1=R2 = � for �2

2
= 10�2

1

Reference [7] devoted to an analysis of the broadcast
channel in the wideband regime states \Our results thus
suggest that for high bandwidth channels, time-sharing
may be very close to optimal, and that for such channels,
very little is to be gained from using the complicated coding
schemes that are usually needed to beat the simple time-
sharing strategy." This is another example to add to those
in reference [6] where it was shown that in�nite-bandwidth
analyses may lead to misleading conclusions in the wide-
band regime.
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