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Abstract—Politicians and government leaders are critical tar-
gets for deepfake attacks. A single deepfake involving these
individuals can severely damage their careers or, in extreme
cases, pose a national security threat. Attackers can leverage
vast amounts of publicly available audio and video recordings
to train their models, making this threat even more pressing.
In response, specialized deepfake detectors have been developed
to focus on detecting deepfakes targeting a specific Person of
Interest (POI). By learning facial expressions and movements
unique to the POI, these detectors can identify inconsistencies in
deepfakes where these authentic attributes are absent. However,
previous methods relied on Facial Action Units, which offer an
incomplete representation of the POI’s behavior. In this paper,
we propose a novel approach to learning POI-specific movements
without requiring deepfake samples during training, making it
independent of any deepfake generation methods. Although our
technique is speaker-dependent, it provides a robust solution for
protecting high-profile individuals who are particularly exposed
to deepfake threats.

Index Terms—deepfake detection, biometrics, media forensics,
behavioral analysis, POI recognition

I. INTRODUCTION

The recent advancements in generative Al, particularly with
GANSs [7] and diffusion models [9], have made it relatively
straightforward for anyone with standard computational re-
sources and a basic understanding of computer science to
create a highly realistic deepfake of a public figure. The most
common deepfake generation techniques are Face-Swap and
Face-Reenactment. The first method consists of “pasting” the
face of person A on the body of person B, while the second
consists of animating a picture of person A with the facial
expression of person B. Both methods result in a deepfake
where person A is depicted moving and saying things they
never said (herited from person B).

The growth of mass media and social networks has led to
an increased risk of fake multimedia content being used to
spread misinformation or discredit public figures. This is even
more true during election campaigns. Deepfake detectors are
essential for filtering out forged content before it spreads on-
line, thereby preventing as much as possible the dissemination
of misinformation.

Most deepfake detectors are trained on datasets to find
traces of manipulation left by generators. However, the de-
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Fig. 1. Principle of behavioral biometrics comparison in the context of
deepfake detection.

tectors struggle to accurately classify deepfakes created by
previously unseen generators, due to the introduction of unique
artifacts with each generator. While deepfake detectors usually
reach around 99% of video-level AUC on train datasets, they
usually don’t get better performances than 70% of video-
level AUC with different datasets [16]. There is a deep
asymmetry between the research on generation and detection.
On one hand, generation relies on minimizing the number
of modifications required to change one face into another.
On the other hand, detection aims to detect any trace of
manipulation on images to be robust to any deepfake generator.
However, today’s generators no longer leave crude traces of
tampering, making deepfake detectors not robust to in-the-wild
deepfake detection. Indeed, harmless traces of manipulation
like compression or social media filters can be interpreted as
potential traces of malicious manipulation [13], [15].

To improve the generalization to unknown deepfake genera-
tors, some research was conducted to create deepfake detectors
conditioned by the identity of a Person Of Interest (POI). The
objective of this change of paradigm is to enable the detection
of any deepfake from the POL.

In comparison to works on the generalization of deepfake
detectors, few studies have tried to create deepfake detectors
specialized to a specific POI. The main issue is that such a
method is not easily scalable to protect everyone from deep-
fake generation. It can be used to protect critical POIs such as
world leaders. However, focusing on the detection of deepfakes
for a POI enables us to leverage the consistency of biometric
information. This data can be divided into two categories:
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physical and behavioral [10]. The deepfakes created by the
current generators are videos where the physical biometrics
are close to the POI whereas the behavioral biometrics come
from the identity of the driving video, as illustrated in Figure
1. Some methods were developed to capture this behavioral
information and used in the context of deepfake detection
[1], [4] but these methods rely on a combination of multiple
hand-crafted features to monitor facial movement which might
not be relevant for describing accurately all the different
facial behaviors of different POIs. One of these methods [4]
employed supervised learning to model the facial behavior of a
POI against a wide range of deepfakes. However, this approach
requires significant computational resources and time, and
its effectiveness may depend on the specific manipulation
techniques used to create the deepfakes.

In this work, we develop a new method for extracting
facial movements, to enhance the detection of deepfakes of
a POL An encoder of facial dynamics from a state-of-the-art
face reenactment generator is employed to provide a com-
prehensive representation of the face’s expression, pose, gaze
direction,... minimizing the inclusion of unintended physical
appearance information (i.e. physical biometrics data). This
approach ensures that the prediction is primarily based on the
observed facial behavior (i.e. behavioral biometrics data). The
contributions of our article are the following.

o We build training datasets containing hundreds of real
audio/video recordings of 3 different politicians. We also
create deepfakes of them for the evaluation process.

e We propose a new ID recognition algorithm trained to
recognize the facial behavior of a POI against real videos
containing different IDs.

o We show that this face recognition model can be used
to detect deepfakes of a POI without using any deepfake
during the training phase.

The paper is organized as follows: Section II proposes

a short overview of deepfake detection. In Section III we
describe our method and pipeline to extract relevant temporal
information on facial movement. Finally, Section IV shows
our results on our carefully crafted database.

II. RELATED WORKS

Recent works in deepfake detection focus on creating a
universal deepfake detector [2], [6], [8], [11], [23], i.e. a
detector capable of detecting any deepfakes. To generalize
deepfake detection to new generators, these detectors rely
on the detection of artifacts. These artifacts are traces of
manipulation - often invisible to the human eye - introduced
by the deepfake generator. Each generation technique pro-
duces unique artifacts. As a result, deepfake detectors often
struggle to accurately identify deepfakes created by different
techniques. [3], [16], [19], [24].

Another stumbling block to the generalization of deepfake
detection is the introduction of artifacts from compression or
social media upload pipelines [13], [15]. The artifacts intro-
duced by the genuine image processing pipelines are detected
as malicious traces of manipulation, impacting severely the
detection accuracy of the deepfakes.

To improve deepfake detection of critical POIs, some work
was made to obtain robust deepfake detection against unseen
manipulation methods by adding prior knowledge from the
POI [5], [17]. Finally, some studies investigate the facial
mannerisms of POIs to improve deepfake detection. Bohacek
et. al [1] designed a one-class SVM to detect fake videos of
the Ukrainian president Zelenskyy using head pose and facial
action units using only real videos from the POI to train their
network. However, the set of action units used for the study
does not give a complete description of all possible movements
of the face, as demonstrated by Chu et. al [4] where they
created a custom dataset of American politicians and failed
to correctly classify the different POIs based on their Facial



Action Units. In order to enhance the classification process, a
set of 42 novel facial parameters was devised and calculated
using three-dimensional facial landmarks. However, since the
network was trained on deepfakes of the POIs created with
only a few specific generators, this approach may inadvertently
learn their specific artifacts, which can limit its ability to
generalize to other generation methods.

In this work, we propose a new method to extract a full
description of facial movements and a new training strategy
that does not require fake data during training, making our
method independent of unseen manipulation methods.

III. METHOD

We introduce the Behavior Recognition Transformers for
Deepfake Detection (BRT-DFD), a novel pipeline that is built
upon a unique combination of existing techniques to learn
facial behaviors specific to a POI. Once trained, BRT-DFD
can effectively detect deepfakes of the POI by identifying
deviations in these personalized behaviors. The full pipeline
is depicted in Figure 2.

From a sequence of frames, BRT-DFD extracts features
that describe face dynamic (head pose, gaze direction, facial
expression, emotion,...) on all the frames of the sequence
thanks to the movement encoder of the LIA deepfake generator
[22]. We obtain a sequence of facial dynamic encodings for
all the frames. These features are fed to a simple Transformers
encoder [21] to learn the movements between the POI and a
set of other identities. Finally, a classification head is used to
perform the final prediction, i.e. “This movement belongs to
the POI” (positive class) or ”This movement does not belong to
the POI” (negative class). A Cross-Entropy loss is used during
the training to learn the facial behaviors associated with the
POL

A. Pre-processing and Movement features extraction

First, all the videos are cropped around the head following
LIA’s preprocessing [20], [22] and the videos are converted to
sequences. The video-to-sequence process is fully detailed in
Section IV-A.

The pose features are obtained after passing the sequence
through LIA’s head pose+facial expression descriptor. Here
is a brief description of how this encoder works. LIA is an
autoencoder trained to reconstruct a face image x5 (source
image) in another pose given by the image x4 (driving image).
Two encoders are used in LIA’s network.

o The identity encoder Ej: It captures the distinct facial
attributes that define the physical appearance of image .
E;(zs) returns zs_, a latent representation of x, identity
in a facial dynamic of reference.

o The facial dynamic encoder Ep: It captures the facial
expression, the head-pose, and other information relative
to facial dynamic present in image x4. Ep(x4) returns
wy_q a latent representation of the wrapping operation
to perform to transform a face with a facial dynamic of
reference to the head-pose of z,.

Zs—r and w,_4 are combined together to obtain zs_4

Zs—d = El(xs) + ED(xd) = Zsor T Wroyd (1)

where z;_4 is the latent representation of the face in x;
with the facial dynamic of z4. z5_4 is used by LIA’s decoder
to reconstruct the face of x; with the pose and expression of
Xq.

In this work, we focus on LIA’s pose encoder Ep. The
use of this motion decomposition highlights a strong property
of disentanglement between the facial features (i.e. physical
biometrics) and the facial pose and expression (i.e. behavioral
biometrics) in the latent vector w,_4. LIA’s authors empha-
sized on the importance of their Linear Motion Decomposition
(LMD) to disentangle facial dynamic and physical attributes.
In Section IV-D, we show that the use of LMD allows better
to detect deepfakes more accurately. For more information on
how the LIA motion decomposition works, please refer to their
publication [22].

Here, for a sequence of frames s = (si,...,s7) all the
frames are passed through LIA’s pose encoder to obtain
h = (hi,...,hr) € RT*512 a latent encoding of the facial
position and expression of the video sequence.

B. Transformer encoder and classifier

With h we only have a description of the facial dynamic
on all the frames of the sequence. We need to exploit the
temporal information to learn the behaviors associated with the
POI. To find relevant temporal information in our encodings
we rely on a Transformers encoder. Thanks to their attention
mechanisms, Transformers capture dependencies across all
time steps simultaneously. Unlike traditional recurrent mod-
els, which process sequences step-by-step and can struggle
with long-range dependencies, Transformers process the entire
sequence in parallel. This allows them to model complex
temporal relationships more efficiently and accurately, making
them particularly powerful for tasks involving sequential data.
Following Zheng et. al training guidelines [24] we add a [CLS]
token before the Transformers encoder. The encoding of the
[CLS] token is meant to embed the general context of the
sequence. This embedding is then passed through a Multi-
Layer Perceptron classifier to perform the final classification,
i.e. "Does this movement belong to the POI, or not?”.

The weights are updated using the Cross-Entropy loss.

C
Leis(y,9) = =Y 1y=clog(je) )
c=0

where in our case, C' = 1 for binary classification.

IV. EXPERIMENTS AND RESULTS
A. Database

To recognize the video of a POI we gathered 191 videos
from the former French minister Najat Vallaud-Belkacem from
her YouTube channel. We filtered out all the videos where she
did not speak in front of the camera for more than 10 seconds
without any cuts, zooms, or other forms of video editing. We
kept 2 173 clips from 79 videos of her, speaking in different
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Fig. 3. Visual description of the database for one POI. Train set contains
real videos of POI and real videos of FF++. No deepfakes were seen during
training process. Test set has real videos of POI and real videos from
Celeb-DF-v2. This serves as validation to check if we effectively manage
to recognize the POI with facial dynamics. The DF-Test set includes the
same real videos of the POI as the Test set, along with deepfake videos of
the POI generated using the same real videos from the Celeb-DF-v2. Two
generators were used.

places (radio studio, TV set, conference stage, National As-
sembly, Zoom meetings, ...) and in different contexts (political
debate, indoor/outdoor interviews, conferences, promotional
videos, ...) for a total duration of 4 hours, 43 minutes, and
21 seconds of videos.

To assess that our method also works with English speakers,
we created 2 additional databases of POI with real videos
from former American presidents Barack Obama and Donald
Trump scrapped on YouTube. Real videos of a POI represent
the positive class

Additionally, we have videos of people who are different
from the Pol. We use 997 real videos from FaceForensics++
[18] and 649 from Celeb-DF-v2 [12] for a total of 1646 videos
for a total duration of 6 hours, 39 minutes, and 13 seconds.
For the rest of the paper, we will refer to this subset as the
negative class. 3 videos of Faceforensics++ contained videos
of Obama. We suppressed them during the training of Obama’s
model. A summary is given in Table I.

TABLE I
DESCRIPTION OF THE DIFFERENT REAL VIDEO DATABASES

Databases Number of real videos | Total duration
FF++ and Celeb-DF-v2 1528 6h 39min
Najat Vallaud-Belkacem 79 4h 43min
Barack Obama 72 2h 54min
Donald Trump 80 1h 32min

Finally, we split the dataset between train and test. In the
train set, the negative class is represented by the real videos
from FF++, and the real videos of Celeb-DF-v2 are put in
the test set. For the positive class, we split the videos so that
80% of the real videos are in the Train set, and the 20%
remaining in the Test set. Finally, we also create the DF-Test
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Fig. 4. Pipeline for the deepfake generation. Face Reenactment consists of
animating a portrait of the POI with the movements of the POI. Face Swapping
consists of swapping the face of the driving video with the face of the POL

set, composed of the POI’s real video from the test set and
deepfake of the POI generated with the videos of the test set to
asses if our model is robust to deepfake manipulation. Figure
3 gives a visual description of the different sets .

For each POI we generated around 500 Face Swaps and
500 Face Reenactments using real videos from Celeb-DF-
v2 as driving video and one image randomly chosen from
a pool of 10 images of the POI as source image. The pipeline
of the generation of deepfake is presented in Figure 4. We
used LIA to generate face reenactment deepfakes and Roop'
for face swapping. Roop’s face swap model comes from the
Insightface? project. It is worth noting that our test set is
composed of videos generated with LIA and our method rely
on the encoder of LIA. One may argue that our result on LIA-
generated video might be biased. However, since we only use
the facial expression encoder and not the decoder, we think
that there must not be a strong bias on the detection of LIA-
generated videos as seen in Table V where we test our model
on different generators.

B. Training details

First, because each video has a different frame rate, we
define a sequence as a succession of frames spaced by a
fixed time interval. For example, to extract a sequence from
a 30-FPS (resp. 25-FPS) video, we take one frame every 6
frames (resp. 5 frames) so that there is a 0.20-second interval
between each successive frame. We show an example of the
transformation in Figure 5. All the videos that do not have
a frame rate of 25 or 30 were discarded before training and
testing.

Second, to extract long-range facial behaviors, we select
the minimal time duration of a video to be 8 seconds. Videos
lasting less than 8 seconds have been discarded. During each
epoch, and because one 8-second sequence is not representa-
tive of the full video, we randomly pick K 8-second sequences
from each video.

We trained our model for 100 epochs on a GeForce RTX
3090 with 24 GB of VRAM. As in [24], we first apply warm-

Thttps://github.com/sOmd3v/roop
Zhttps://github.com/deepinsight/insightface
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Fig. 5. Video-to-sequence conversion. In this example, we show how a 25-fps
video is transformed into a sequence by extracting one frame every 5 frames.

up on the 10 first and then a cosine decay on the learning
rate with an initial value of 10~%. However, we use AdamW
optimizer [14] instead of Stochastic Gradient Descent (SGD).

C. Results

To evaluate the performance of our model, we compute the
Video-Level AUC: Area Under the Curve of the ROC curve at
the video level. The score of each video is the average score
obtained for K sequences of 8 seconds that come from the
same video.

K
score(video;) = I ,;_:1 score(sequence; i) 3)

In Table IV, we report the result obtained after training the
network on multiple epochs and different classifiers.

We trained three models with real videos of French former
minister Najat Vallaud-Belkacem, and former American presi-
dents: Barack Obama and Donald Trump. The results in Table
IT show similar results in video-level AUC for different POIs.
It proves that BRT-DFD extracts an embedding that contains
enough movement description to learn behaviors from different
POIs.

TABLE II
VIDEO LEVEL AUC (%) OBTAINED ON TRAIN, TEST, AND DF-TEST
DATASET FOR FACIAL BEHAVIOR RECOGNITION WITH DIFFERENT POIS.

POI Train set | Test set | DF-Test set
Najat Vallaud-Belkacem 99.99 96.57 91.47
Barack Obama 99.94 98.80 93.09
Donald Trump 100.0 98.80 93.77

We compare the performance of BRT-DFD with state-of-
the-art deepfake detectors RECCE [2] and SBI [19], each
trained using FF++. RECCE uses an auto-encoder to re-
construct real face images, along with a multi-scale graph
reasoning module to detect generator-specific artifacts. In
contrast, SBI was trained solely on real images versus self-
blended images, without any deepfakes. Results on our custom
databases are shown in Table III. For RECCE and SBI, the
video-level AUC calculation is adjusted, with sequence; i
replaced by frame; j in Equation 3.

We observe that RECCE and SBI struggle to maintain
high performance across different POIs, whereas our method

TABLE 111
VIDEO LEVEL AUC (%) OBTAINED ON DF-TEST SET OF DIFFERENT POIS
WITH SOTA DETECTORS. IN BOLD, THE BEST-PERFORMING DETECTOR.

POI RECCE SBI BRT-DFD (Ours)
Najat Vallaud-Belkacem 66.79 91.20 91.47
Barack Obama 82.41 95.83 93.09
Donald Trump 81.83 78.50 93.77

provides more consistent predictions. Additionally, both state-
of-the-art detectors show better detection performance on the
Obama subset. The driving videos for generating deepfakes
were sourced from Celeb-DF-v2, a dataset containing real
video clips of American actors. Due to the predominance
of white actors in this dataset, manipulation traces were
more noticeable, which resulted in better classification when
evaluating the Obama subset.

D. Ablation study

In this section, we show the importance of the disentan-
glement of physical biometrics and behavioral biometrics. We
retrain our model after removing the Linear Motion Decompo-
sition module from LIA’s encoder. We obtain a classification
score with and without LMD that we report in Table IV.

TABLE IV
VIDEO LEVEL AUC (%) OBTAINED ON DF-TEST FOR FACIAL BEHAVIOR
RECOGNITION WITH AND WITHOUT LINEAR MOTION DECOMPOSITION.
IN BOLD, THE BEST PERFORMANCES ARE OBTAINED WITH THE LMD

MODULE
DF-Test set
Method N. Vallaud-Belkacem | B. Obama | D. Trump
BRT w/o LMD 84.8 87.0 86.8
BRT w/ LMD 91.47 93.09 93.77

The removal of the LMD module results in a more important
leakage of physical information. We observe a 5 to 7%
decrease in video-level AUC. Because physical biometrics are
more discriminating than behavioral biometrics, the networks
tend to focus on appearance rather than facial dynamics.
Consequently, the attenuation of physical information allows
the model to focus on facial dynamics for the prediction.

E. Results per generator

We compared the video-level AUC on two subsets of DF-
test to evaluate the behavior of BRT-DFD on Face Swap and
Face Reenactment separately. We create FS-Test set, a subset
of DF-Test set with the real videos of POI and FaceSwaps
of the POI generated with Roop. Similarly, we create FR-
Test set, a subset of DF-Test set with the real videos of
the POI and the Face Reenactments of the POI generated
with LIA. We observe that Face-Reenactment deepfakes are
more difficult to distinguish from real videos than Face-Swap
deepfakes. While Face-Swaps preserve the facial dynamics of
the driving video, Face-Reenactments often produce deepfakes
focused on a single, specific expression of the POI, which is
subtly altered by the driving video’s dynamics. As a result,



Face-Reenactments maintain more of the POI’s original facial
dynamics than Face-Swaps.

TABLE V
VIDEO LEVEL AUC (%) OBTAINED PER DEEPFAKE GENERATORS. FS AND
FR STAND RESPECTIVELY FOR FACE SWAP AND FACE REENACTMENT

POI FS-Test set | FR-Test set | DF-Test set
Najat Vallaud-Belkacem 91.37 91.57 91.47
Barack Obama 98.31 87.87 93.09
Donald Trump 98.00 89.54 93.77

V. DISCUSSION AND CONCLUSION

Previous methods [1], [4] failed in providing solutions that
combined both, a full description of facial behaviors and
training on real videos only. To detect deepfakes of a POI
based on the facial behaviors of the video, we introduced
BRT-DFD a Behavior Recognition Transformers for Deepfake
Detection. This network was designed to learn a POI’s facial
behaviors against those of decoys. We emphasized that to
achieve better results in POI deepfake detection, it is important
to detect movement without leaking information from facial
attributes to be sure that our prediction is mainly based on
behavioral biometrics. LIA’s motion descriptor works well at
providing information about the facial dynamic (head pose,
gaze direction, expression, etc...) without relying on physical
biometrics data.

BRT-DFD is speaker-dependent; When one wants a deep-
fake detector for a new POI, one has to train a new model using
new data. However, it provides a reliable solution for critical
individuals such as world leaders, as there are no universal
deepfake detectors today to protect all from deepfakes.

Further studies are necessary to determine the optimal ratio
of videos featuring POIs to those featuring other identities
during the training phase. An additional enhancement would
be to incorporate vocal behavior into the detection process
and develop a fusion model that integrates audio, video, and
their synchronization. Finally, creating a public benchmark
is necessary to properly evaluate the existing POI deepfake
detectors.
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