
Nona: A Stochastic Congestion-Aware Job
Scheduler for Real-Time Inference Queries

Benoit Pit-Claudel
MIT

Cambridge, USA

Derya Malak
EURECOM

Sophia Antipolis, France

Alejandro Cohen
Technion

Haifa, Israel

Muriel Medard
MIT

Cambridge, USA

Manya Ghobadi
MIT

Cambridge, USA

Abstract— This paper proposes a novel queueing-theoretic
approach to enable stochastic congestion-aware scheduling for
distributed machine learning inference queries. Our proposed
framework, called Nona, combines a stochastic scheduler with
an offline optimization formulation rooted in queueing-theoretic
principles to minimize the average completion time of hetero-
geneous inference queries. At its core, Nona incorporates the
fundamental tradeoffs between compute and network resources
to make efficient scheduling decisions. Nona’s formulation uses
the Pollaczek–Khinchine formula to estimate queueing latency
and to predict system congestion. Builind upon conventional
Jackson networks, it captures the dependency between the
computation and communication operations of interfering jobs.
From this formulation, we derive an optimization problem and
use its results as inputs for the scheduler. We introduce a
novel graph contraction procedure to enable cloud providers to
solve Nona’s optimization formulation in practical settings. We
evaluate Nona with real-world machine learning models (AlexNet,
ResNet, DenseNet, VGG, and GPT2) and demonstrate that Nona
outperforms state-of-the-art schedulers by up to 350×.

I. INTRODUCTION

The compute and latency requirements of emerging online
services, such as ChatGPT [1] inference requests, require
dividing the workload across multiple datacenter servers [2].
As a result, job schedulers must efficiently distribute user-
facing online Deep Neural Network (DNN) inference queries
by meticulously considering computation resources, network
capacity, and congestion while making fast real-time schedul-
ing decisions.

To address this challenge practically, current job scheduling
techniques rely on approximate representations of applications
and deploy point solutions. They also depend on collecting
real-time statistics about the datacenter, such as the status
of currently running jobs or the instantaneous load of com-
pute resources. However, accurately measuring the queue
occupancies of network switches in a cluster in real-time
is nearly impossible due to the bursty nature of datacen-
ter traffic [3], [4]. Thus, the state-of-the-art job schedulers
employ heuristic-based approaches to focus on the compute
requirements of jobs, either ignoring the impact of network
congestion completely [5]–[7], fitting a network cost model
from past executions [8]–[11], or relying on the job to provide
its networking demand [12].

On the other hand, queueing-theoretic approaches have the
potential to capture network congestion, but extending today’s
solutions to structured DNN jobs breaks the independence

assumptions about the arrival processes of data transfers in
the network queues. Therefore, applying them to datacen-
ter workloads presents two significant challenges. First, the
Directed Acyclic Graph (DAG) structure of today’s online
queries induces several locality dependencies. DNN’s DAGs
are composed of tens to hundreds of compute operations (or
tasks) that use the outputs of their parent tasks as inputs;
distributing two consecutive tasks on different compute re-
sources introduces communication costs and requires carefully
considering the impact of data dependencies between the tasks
on network resources and queues. Second, successive tasks in a
DAG introduce stochastic dependency in the arrival processes
of individual tasks: the arrival process of the last task of a
DAG depends on the service distributions of all the other tasks.
Queueing models usually assume Poisson arrivals of jobs auto-
matically result in Poisson arrivals of every task in each job’s
DAG. Given the depth of DAGs of today’s DNN inference
models, this assumption is not accurate. Therefore, today’s
queueing-theoretic approaches cannot be used out of the box
for jobs with deep, complex DAGs. Prior papers avoid these
challenges either by considering individual, isolated jobs [13]
or by excluding DAG parallelism [14]–[16] and ignoring
network congestion. To highlight the prohibitive complexity
of network-aware scheduling, the recent AlpaServe [17] pa-
per proposed a simple queueing-theoretic model to capture
the communication overhead of scheduling inference queries.
However, due to the complexity of their model, they fell back
to a heuristic-based solution [17, Section 4.2].

We propose Nona, a principled framework for distributing
latency-sensitive inference jobs while considering both com-
pute and communication resources of a cluster. Nona has three
novel contributions. First, Nona uses an optimization formu-
lation based on a flow network view [18, Chapter 3, 5.4] of
the cluster that uses the well-established Pollaczek–Khinchine
(PK) formula [19], [20] to predict network congestion and
determine a series of stochastic decisions minimizing the aver-
age expected job completion time (JCT). Nona’s optimization
handles locality dependencies in the DAGs, building on prior
work on networks of queues [21] to compute cluster settings.

Second, Nona’s stochastic scheduler uses the solution found
by the optimization to perform placement decisions in real
time. This stochastic scheduler is lightweight, fast, and easy
to implement (adding Nona’s scheduler to the Apache Spark
framework [22] requires ≈ 20 lines of Scala code): for each

1

2

3

41 ms 1 ms

10 ms

10 ms

100 MB100 MB

10 MB10 MB

(a) A Sample DAG

1

2

3

41 ms 1 ms

10 ms

10 ms
Server b

Server a

100 MB100 MB

(b) Allocation 1

1

2

3

41 ms 1 ms

10 ms

10 ms

Server b

Server a

10 MB10 MB

(c) Allocation 2

Figure 1: (a) An example of a DAG with four tasks. (b, c) sample allocations. Tasks 2 and 3 are large and require 10 seconds
to complete. Task 2 requires more data from the output of task 1 than task 3.

task in a job’s DAG, Nona randomly samples a server from
a pre-computed probability distribution obtained from solving
the optimization.

Nona uses queueing theory to determine this series of
stochastic decisions based on the steady-state properties of
the workload. Consequently, Nona’s optimization problem
concentrates most of the complexity of our solution, leaving
only lightweight operations to Nona’s online scheduler. We
argue that instead of developing complex online heuristic algo-
rithms, latency-sensitive scheduling schemes should shift the
complexity into an offline phase to enable making fast online
decisions. This principle allows for solving the optimization
and generating the corresponding probability distributions of-
fline before running the system and adjusting them during
operation without downtime.

Nona’s optimization formulation leverages cloud providers’
ability to continuously analyze traffic patterns offline and
estimate each DAG’s average arrival rate. In new deployments
where the arrival rate is unknown or volatile, cloud providers
may solve Nona’s optimization with a set of predicted arrival
rates and adjust the predictions over time. Our evaluation in
section IV-D demonstrates that Nona is robust to changes
in arrival rates of up to ±40%. Moreover, cloud providers
may precompute multiple scheduling strategies corresponding
to multiple arrival rate scenarios so that Nona’s scheduler
uses a lookup table that best matches the current arrival
rate conditions. Overall, Nona requires strictly less live state
information than state-of-the-art heuristics [5]–[12], [17], [23].

Finally, Nona introduces a novel graph contraction proce-
dure to reduce the search space and complexity of the opti-
mization formulation without changing the optimal solution.
This graph contraction procedure enables Cloud providers to
execute Nona’s offline optimization formulation within a few
seconds.

To evaluate Nona, we implement our optimization prob-
lem and conduct extensive simulations comparing its per-
formances to state-of-the-art schedulers such as Decima [7],
and Spark [22], to an Expert scheduler, and to two cus-
tom lightweight congestion-oblivious schedulers (Random and
Opportunistic). Using real-world DNN models (GPT-2 [24],
DenseNet [25], VGG [26], AlexNet [27] and ResNet18 [28]),
we demonstrate that Nona improves the average JCT by
multiple orders of magnitude compared to Spark (56×), an
Opportunistic scheme (180×), a Random scheme (202×),
and Decima (350×), while being within 10% of an ideal
Expert solution. Nona also improves 99%-tile tail JCT by

77×, 21×, 119×, and 81× respectively, compared to the
same schemes. We then evaluate the impact of network
bandwidth on Nona’s performance and find that our results
remain consistent for various network bandwidths. Finally, we
study Nona’s scalability and show that the execution time of
solving our optimization problem is 30,000–245,000× faster
than Decima’s training time. Although both Decima and Nona
have an offline phase, Nona is explainable, faster, and results
in better performance.

II. MOTIVATION

In this section, we explain how heuristic-based, congestion-
oblivious schedulers can make poor scheduling decisions
because of their inability to distinguish the network conges-
tion implications of compute-equivalent distribution strategies.
While we use a generic Congestion-Oblivious Schedulers in
this section, our conclusions hold for other state-of-the-art
scheduling systems, such as Decima [7], Optimus [8], Gan-
diva [9], Tiresias [10], Pollux [11], Themis [12], Spark [22],
INFaas [29], AlpaServe [17] and DRM-DQL [30].

Sample job: Consider a job f summarized by the following
operations:

f : (A,B) 7→ det(A+B) + det(r(A+B)) (1)

Where for any square matrix M , r(M) is a sparse function
setting all elements of M to zero except for a single random
one on each row, and det(M) is the determinant of M .
Figure 1a shows the DAG corresponding to this job with four
tasks: (1) Summing A and B, (2) Taking the determinant of
that sum, (3) Taking the determinant of the sparse version
of the sum, and (4) Summing the outputs of (2) and (3).
The top branch of the DAG has larger transfer sizes than the
bottom branch (all of A + B has to be transferred instead
of just a sparse version), and the middle tasks require more
compute time than the first and last tasks (determinants are
more computationally expensive than sums). The duration of
each task and the amount of data each task requires from
the previous tasks are indicated next to the nodes and edges,
respectively.

Single job scheduling: Consider a scenario with a cluster of
two servers, a and b. We start by studying DAG distribution
strategies for a single occurrence of f . Today’s congestion-
oblivious schedulers do not include any notion of topology
or links between servers. When a job is distributed over
multiple servers, it might pay a fixed penalty corresponding to
various overheads, such as the startup time of a Java Virtual

Congestion-Oblivious
Schedulers Nona

Cluster
Load

2

3

1
1 ms

4
1 ms

10 ms

10 ms

a

b

100 MB100 MB
2

3

1

1 ms

4

1 ms

10 ms

10 ms a

b

10 MB10 MB

2

3

1

1 ms

4

1 ms

10 ms

10 ms a

2

3

1

1 ms

4

1 ms

10 ms

10 ms a

b

10 MB10 MB

Low 50% 50% 20% 80%
Medium 50% 50% 50% 50%

High 50% 50% 80% 20%

Table I: Allocation statistics for different schedulers.

Machine (JVM) on that server. Moreover, congestion-oblivious
schedulers tend not to employ cost functions that scale with the
amount of data that needs to be transmitted between servers.
Their outputs focus on the number of servers allocated to
each task and the order in which different tasks should be
executed. They are, therefore, unable to differentiate between
two allocations with equivalent compute times but different
network footprints.

As an example, Figures 1b and 1c show two possible
task allocations by today’s congestion-oblivious schedulers.
Assuming servers a and b are equivalent, these two dis-
tribution strategies will have the same amount of compute
on each server: place three tasks on one server (equivalent
to 1 + 10 + 1 = 12 ms compute time), and place the
remaining task on the other server (10 ms compute time).
However, allocation 1 in Figure 1b transfers 200 MB of data.
On an 80 Gbps link, that represents 20 ms, or about 60%
of the total JCT. In comparison, allocation 2 in Figure 1c
requires transferring only 20 MB of data across the network
corresponding to 2 ms on the same 80 Gbps link, or about
15% of the total JCT and 10× less than allocation 1. As a
result, even though the compute scheduling of both allocations
is equivalent, their corresponding network traffic is vastly
different. In practice, Today’s congestion-oblivious schedulers
end up randomly alternating between these strategies.

In contrast, Nona considers the size of data transfers on
the DAG together with the available network bandwidth. As
a result, Nona specifies which groups of tasks should run
together on the same server instead of just the number of
servers to allocate to each task. Consequently, Nona selects
allocation 2 every time because it results in fewer bytes being
transferred between the servers.

Scheduling streams of jobs: The previous example only
considered a single job f . We now consider a more realistic
case where a stream of users submits inference requests for f
on different input data. State-of-the-art congestion-oblivious
schedulers cannot distinguish between allocations 1 and 2.
Thus, they end up load balancing between the two, as shown in
Table I. The same strategy is applied regardless of the resulting
load on the link and the cluster’s total network load. Instead,
Nona captures queueing delays in its optimization formulation
and makes scheduling decisions based on the load on the
cluster. For instance, Nona sometimes decides not to distribute
the job if distributing results in worse performance. As shown

in Table I, this decision depends on the expected average
load of the cluster: when the network is lightly loaded, Nona
chooses to distribute the computation and to use the network
most of the time. When the network is busy, Nona mostly
refrains from distributing f , to avoid adding to the network
congestion and suffering from too much network delay.

This example highlights a significant potential source of
gains over state-of-the-art congestion-oblivious schedulers. By
incorporating network costs into the decision-making process,
Nona is able to reduce network congestion and JCT.

III. NONA’S SYSTEM DESCRIPTION

In this section, we first provide an overview of Nona’s high-
level design (§III-A) and relevant assumptions (§III-B). Then,
we explain Nona’s optimization formulation (§III-C). Finally,
we describe two techniques to solve Nona’s optimization for
real-world jobs (§III-D).

A. High-level Design of Nona

Nona consists of two components: first, an offline optimiza-
tion formulation that minimizes the JCT of a series of jobs
distributed in a cluster with stochastic allocation strategies.
Nona’s formulation uses service provider’s expected load of
network and compute resources in the cluster to determine the
expected queueing delays associated with different scheduling
options. To do so, Nona uses the PK formula1 [19], [20]
to compute the expected JCT corresponding to each job’s
DAG. This allows the formulation to capture the tradeoff
between gains stemming from running tasks in parallel and
additional network delay due to ensuing network congestion.
The solution resulting from the optimization is a probability
associated to each scheduling decision.

The second component to Nona is its stochastic scheduler
that uses the solution found by the optimization to perform
placement decisions in real time. Consequently, Nona’s offline
optimization problem contains most of the complexity of our
solution, leaving only lightweight operations to Nona’s online
scheduler. Tasks are then executed on their chosen server in
the order defined by the DAG.

B. System Model and Relevant Assumptions

To build our optimization formulation, we consider a stream
of jobs to be executed on a cluster. Servers and links in this
cluster are represented as queues with deterministic service
times. Each server has a compute rate which corresponds to
the number of compute operations it performs per second. We
assume each server works on a single compute task at any
given instant, and has an infinite buffer to store pending tasks
while it is busy. We divide the stream of jobs by class, where
each class is defined by a DAG. In practice, for DNN inference
jobs, each class represents a different DNN model.

We assume a large number of independent users submit
inference requests to the cluster, thus following a Poisson

1The PK Formula is a queueing theory result giving the relationship
between the queueing delay customers experience in an queue with Poisson
arrival process, depending on the arrival and service rate distributions.

arrival process [31, Proposition 11.2.VI]. Given that task
completion times are not exponentially distributed, and given
that jobs in datacenter settings are not bound to a single server
and can be split across different servers, we cannot directly
use results from Jackson Networks [21]. However, we use a
similar flow network [32] approach and take advantage of the
PK Formula to estimate buffer delays.

Today’s datacenters interconnect all servers through a hi-
erarchical topology, such a Fat-Tree network [33]. Given that
transport protocols adapt to the speed of the slowest link on the
path regardless of the number of hops, we model the network
topology with one bottleneck link. Our optimization problem
can be extended to include network queueing delays on all
links, but only yields marginal performance gains.

C. Optimization Problem
We start this section by outlining the high-level abstraction

of our optimization problem, as follows:

Minimize: Average job completion time (I)
subject to: Communications, Computing, Flow,

and Scheduling Constraints (II)-(XII) ,

(I) is the objective function to be minimized, (II), (III) and
(VII) are the main constraints of this problem, and (IV)-(VI),
(VIII)-(XII) define auxiliary variables, as we detail below2.

Let J be the set of job classes, defined by their operation
DAG Gj (tasks T j , data dependencies Dj). For any DAG j ∈
J , let βj be the average arrival rate of jobs with DAG j, and
τ j be the average JCT of all requests corresponding to job j.

(I) We define our objective function to be
∑

j∈J βjτ
j . This

objective function captures the average completion time of
jobs, weighted by the arrival rate of each job class.

Stochastic scheduling. A scheduling decision is a mapping
of tasks onto servers, or equivalently a partition of the tasks
in each DAG along with a mapping associating each part to
a server. We frame our decision variables based on this graph
partition view: we first divide the DAGs into subgraphs along
bottleneck nodes (i.e., nodes that are on every root-to-sink
path) and then define probability distributions on partitions of
these subgraphs.

More specifically, for a subgraph with source t0, sink tm,
and intermediate tasks T = {t1, . . . , tm−1}, let π be a partition
of T , and let πk and πl be parts of π. Let Ωt be the set of
all possible triplets (π, πk, πl) for the subgraph with root
t. Ωt represents the set of possible mappings for the source
and the intermediate tasks of the subgraph. Let θt[(π, πk, πl)]
be a probability distribution on Ωt. θt[(π, πk, πl)] corresponds
to the probability of choosing mapping (π, πk, πl) where the
subgraph’s source is placed on the same server as tasks in
πk, the intermediate tasks are grouped according to π, and the
subgraph’s sink is placed on the same server as tasks in πl.
To illustrate these notations, we show in Figure 2b a sample
partition π, with three parts, π0, π1, and π2. The contracted
root task (see section III-D) corresponding to tasks 1 + 2 + 3

2More details on the formulation is available at https://nona.csail.mit.edu.

is placed on the same server as tasks in π2, i.e. tasks 12 to
15. Similarly, the sink task is placed on the same partition as
tasks in π1, i.e. tasks 7 and 11. This corresponds to choosing
the mapping (π, π2, π1).

To completely characterize an allocation strategy, we must
also determine the placement of the roots of the DAGs. We
notice that to obtain a Pareto-efficient solution, the average
load of every server should be equal. Therefore we set the
assignment of the roots of the jobs to uniform distributions.

The assignment distributions θt[(π, πk, πl)] are our opti-
mization variables. They are valid probability distributions,
hence:

(II)
∑

Ωt
θt[(π, πk, πl)] = 1.

(III) θt[(π, πk, πl)] ≥ 0.

Communication cost. Let b(t,t
′) be the amount of infor-

mation needed by each task t′ from one of its predecessors
t, and µ be the capacity of the bottleneck link. Let also Rj

be the set of subgraph roots, P(t) and S (t) respectively be
the set of predecessors and successors of t, and by extension
(t, t′) ∈ π the event “t and t′ belong to the same part of
partition π”. Each job arrival produces a set of communication
arrivals, corresponding to edges in the DAG that are distributed
over different servers. From job arrivals, we derive the average
data transfer arrival and service rates (respectively λ(t,t′) and
S(t,t′)), and deduce a stability constraint on the link’s load (ρ),
the average queuing delay at the link (ϕ), and the average total
communication delay (c(t,t′)):

(IV) Arrival Rates:

λ(t,t′) =
∑
Ωt

βjθt[(π, πk, πl)] ·


1(t′ /∈ πk) if t∈ Rj

1(t /∈ πl) if t’∈ Rj

1((t, t′) /∈ π) o.w.
.

(V) Service time: S(t,t′) =
b(t,t

′)

µ .

(VI) Link load: ρ =
∑
j∈J

∑
t∈Dj

∑
t′∈S (t)

λ(t,t′)S(t,t′).

(VII) Stability condition: ρ < 1.

(VIII) PK formula: ϕ =

∑
j∈J

∑
t∈Dj

∑
t′∈S (t)

λ(t,t′)S
2
(t,t′)

2(1−ρ) .

(IX) Communication delay: c(t,t′) = ϕ+ S(t,t′).

Cost propagation. Let pt be the number of operations
required by each task t ∈ T j and ν the compute power
of servers. Let N (t) the root node coming after t in Rj ,
sorted in topological order. We independently compute the
average completion times for each subgraph. First, we compute
χt,k,l[(π, πi)], the time required for all branches in part πi of
π to complete given that (π, πk, πl) was chosen, for every
partition. Then we average those times to κt, the average time
between the completion of the source and sink of a subgraph.
Finally, we propagate the completion times of individual
subgraphs to obtain the average JCT:

(X) Conditional branch completion time:

χt,k,l[(π, πi)] =
∑
t2∈πi

∑
t1∈P(t1)

[
pt

′

ν
+ 1(t2 /∈ πi)c(t1,t2)

+ 1(t1 = t ∧ i ̸= k)c(t1,t2)

]
+ 1(i ̸= l)

∑
t1∈πi|(t1,N (t))∈Dj

c(t1,N (t)).

(XI) Subgraph completion time:

κt =
∑

(π,πk)

θt[(π, πk, πl)]max
πi∈π

{χt,k,l[(π, πi)]}+
pN (t)

ν
.

(XII) JCT: τ j = pt0

ν +
∑

t∈Rj κt.
Due to equations (IV, VIII, XI), the objective can at most

be reduced to a geometric fractional function in simple cases,
hence Nona’s optimization formulation is not convex. We
discuss practical considerations to approximate the optimal
solution in the following section.

D. Practical Solving Considerations

We introduce two novel techniques to reduce the search
space of the optimization formulation. Note that the last
technique is already reflected in the formulation presented in
section III-C through the choice of variables.

Technique 1: DAG Contraction. First, we notice that the
size of the search space scales with the number of tasks
in the DAGs. Depending on the DAG, some tasks need to
be executed sequentially. Consequently, executing sequential
tasks on different servers brings no benefit since they cannot
be run in parallel. We use this observation to contract edges
with sequential endpoints into a single node.

However, contraction needs to maintain correct task de-
pendency. For instance, only isolated edges—subsets of the
graph limited to a single input and output—may be contracted.
Otherwise the resulting graph would not faithfully represent
dependencies between tasks and would present unnecessary
idle periods.

The following contraction procedure leverages this insight
to keep only edges whose endpoint might gain from parallel
execution: as long as the DAG can be further contracted,
contract all edges a → b where all input nodes of b are also
input nodes of a, and all output nodes of a are also output
nodes of b. More rigorously, given G(T ,D) a graph to be
contracted, with nodes T and edges D, the set of edges to be
contracted in a contraction step is given by:

C =
{
(a, b) ∈ D | ∀n ̸= a, (n, b) ∈ D =⇒ (n, a) ∈ D,

∀n ̸= b, (a, n) ∈ D =⇒ (b, n) ∈ D
}

Figure 2a illustrates this contraction procedure. Edges to
be contracted in the next step are highlighted in green. Some
edges seem contractable but are not; we highlight them in
yellow and show the edges preventing them from being
contracted in red. For example, contracting the edge between
nodes 4 and 5 would lead to node 8 waiting for node 5 to

complete before starting, a dependency not present in the
initial graph. As shown by the bottom branches (nodes 12
to 15), multiple rounds can be necessary to ensure the graph
is fully contracted.

Technique 2: Relative Assignments. The second technique
we use takes advantage of the relative assignments between
tasks and servers. In particular, we argue that the critical
question the optimization problem should answer is not which
specific task should be placed on which specific server. Rather,
the assignment decision can be reduced to a set of relative
decisions: which tasks of a job should be grouped together on
the same server.

Therefore, Nona’s optimization uses θt[(π, πk, πl)] to group
tasks together on an arbitrary server, instead of looking at
which specific server should host a given task. Note that
relative assignment makes the optimization formulation inde-
pendent of the number of servers, thereby enabling Nona to
scale to large clusters. Our evaluations demonstrate this highly
desirable feature in Section IV.

IV. EVALUATIONS

A. Methodology

To evaluate Nona, we augment the event-based simulator
in Decima [7] to become network-aware. The simulator takes
the following input parameters: (1) a series of DAGs, each
corresponding to a class of jobs, (2) an average arrival rate
for each job, and (3) the cluster properties such as the number
of servers, network capacity, and compute capacity per server.
Upon every task arrival or departure, the simulator places the
subsequent available tasks on servers according to scheduling
policy of the evaluated scheme. Finally, the simulator reports
statistics about job and task completion times.

Workloads. We consider five classes of inference jobs
constructed from GPT2 [24], Densenet121 [25], VGG16 [26],
AlexNet [27], and ResNet18 [28], for which we retrieve jobs’
DAGs using PipeDream’s [34] profiling tool. We then contract
each graph as described in section III-D. We report model
characteristics in Table II, including the number of tasks
in each DAG before and after contraction. Our contraction
procedure reduces the number of tasks by up to a factor 107,
reducing the search space by similar factors. Some models,
such as Alexnet and VGG are reduced to a single node by
our contraction procedure. This indicates that their operations
graphs are sequential with no model parallelism opportunities.

Model Size (MB) Layers # of tasks in the DAG
Pre-Contraction Post-Contraction

GPT2 487 164 178 40
Densenet 31 369 429 4
VGG16 528 40 41 1
Alexnet 233 22 23 1

Resnet18 45 61 71 10

Table II: Properties of DNNs used in evaluating Nona.

To simulate a realistic multi-tenant cluster, we generate
a series of background compute and communication jobs.
Each background compute job consists of a single task in

1 2 3

4 5

10 16

7

11

13

15

8

12

4 5

8+10 161+2+3 7+11

1512

13+14

4 5

8+10 161+2+3 7+11

12+13
+14+15

14

(a) Contraction procedure.

4 5

8+10 161+2+3 7+11

12+13
+14+15

π0

π1

π2

(b) Graph partitioning.

Figure 2: (a) Contraction procedure on a sample graph. (b) Summary of graph partition notations.

20 40 60 80 100

10−1

100

101

Average System Load (%)

A
ve

ra
ge

JC
T

(m
s)

Spark Decima Nona Opportunistic Expert Nona∗ Random

(a) All jobs

20 40 60 80 100
102

103

104

Average System Load (%)

(b) Inference jobs

Figure 3: Average JCT depending on system load.

104 105

10−1

100

101

Bandwidth (Mbps)

A
ve

ra
ge

JC
T

(m
s)

(a) All jobs

104 105

103

104

Bandwidth (Mbps)

(b) Inference jobs

Figure 4: Average JCT depending on link bandwidth.

its DAG, with zero communication demand. Each background
communication job has zero compute demand. Empirically, we
choose the ratio of inference-to-background arrival rates to be
100:1.

Compared Schemes. We simulate the following schemes:
Decima [7]: Decima is a reinforcement-learning scheduler

to make scheduling decisions based on instantaneous informa-
tion about the state of the cluster. The model is congestion-
oblivious: its training environment does not consider network
delays. We use a DNN model trained on SQL queries provided
by the authors.

Spark’s Fair Scheduler: this scheme shares the compute
resources of the cluster fairly between all active jobs. It
also requires instantaneous information about the state of the
cluster. By default, Spark’s Fair Scheduler prioritizes large jobs
and starves smaller jobs by blocking all of the servers allocated
to a job until it completes. We modify it such that tasks release
their resources when they are done.

Random: Tasks allocations are chosen randomly. While this
scheme has almost no overhead, it is both compute-oblivious
and congestion-oblivious.

Nona: We run Nona’s optimization offline separately from
its simulator. The performances of our implementation of
Nona’s optimization are discussed in section IV-F. The output
of the optimization is saved to a file. The simulator loads
Nona’s probability distributions from the file at startup, and
uses them to make congestion-aware scheduling decisions.

Opportunistic: Whenever the contracted graph presents
parallel branches, distribute all these branches on different
servers. The specific servers are chosen randomly such that
one of the branches is placed on the same servers as the root of

the subgraph, making this scheme also congestion-oblivious.
Nona∗: Nona’s optimization problem takes the average

arrival rate of jobs as input. In some cases where that in-
formation is not available initially, or if the arrival patterns
change during operations, Nona would run with a non-optimal
assignment strategy. To test Nona’s robustness to varying
system conditions, we run simulations using a single set of
allocation probabilities, obtained from solving the optimization
a single time, and use this same probability distribution for all
the loads (or arrival rates).

Expert: this scheme uses a manually derived probability
distribution. For every data point, we reason about the job’s
DAG and the system’s expected load and determine the
optimal distribution. This process is tedious and does not
scale in the size of the cluster, the number of DAGs, or the
complexity of the DAGs.

Among these schemes, the Expert, Opportunistic, Random,
as well as Nona and Nona∗ do not use the current state of the
cluster queues when making scheduling decisions. Decima
and Spark’s Fair Scheduler use live state information about
the state of the cluster and the completion progress of jobs
to make decisions.

B. Nona’s Overall Gains

Figure 3 compares different scheduling techniques’ average
JCT on a cluster with 80 servers and 10 Gbps link bandwidth.
We vary the interarrival rates λj of jobs j and derive the
corresponding compute load as

∑
j λjSj where Sj is the sum

of the service times of all tasks of j.
As shown in Figure 3a, when considering all jobs in the

cluster, Nona performs similarly to the Expert case, and

10−2 100 102 104
0

0.2

0.4

0.6

0.8

1

JCT (ms)

C
D

F

Spark Decima Nona Opportunistic Ideal Random

(a) Background

102 103 104

JCT (ms)

(b) ResNet18

102 103 104

JCT (ms)

(c) VGG16

102 103 104
0

0.2

0.4

0.6

0.8

1

JCT (ms)

C
D

F

(d) Densenet121

102 103 104

JCT (ms)

(e) AlexNet

102 103 104

JCT (ms)

(f) GPT2

Figure 5: CDF of the JCT for each job, on a 80-server cluster, with 70% communication and compute load.

outperforms Spark by a factor of 32 to 56×, the Opportunistic
scheme by a factor 30 to 180×, the Random scheme by a
factor 70 to 202× and Decima by a factor of 139 to 350× on
average JCT. As the system load increases, the likelihood of
having more active jobs than servers increases. Spark attempts
to fairly allocate as many servers to every job in the system.
This means giving each job a single server. Thus, the average
JCT for Spark plateaus as the scheduler stops performing any
parallelism to maintain fairness. Nona still achieves lower JCT
both average and 99%-tile (by a factor 77×), since even at high
load, some amount of parallelism can be beneficial when low
amounts of data are transmitted on the parallel branches. The
JCT for the Opportunistic and Random schemes is dominated
by network congestion even at low load, and therefore their
performance is not affected significantly by load variations
when compared with Nona’s performance.

Similarly, Figure 3b shows that when the average is taken
only over inference jobs, Nona also yields average JCTs
similar to the Expert case and also outperforms Spark, the
Opportunistic and Random schemes, and Decima by respective
factors of 28 to 56×, 25 to 111×, 59 to 145, and 59 to 125×,
respectively. Decima performs better when the average JCT is
taken over inference jobs only since it prioritizes completing
existing jobs over running the Shortest Remaining Tasks First
(SRTF), and therefore starves the small background jobs.

The main reason for these improvements is network con-
gestion: while Nona is offline and does not have an instanta-
neous view of the network, neither of Spark, Decima, or the
Opportunistic or Random schemes take the network into ac-
count when making scheduling decisions. Therefore, all these
schemes overload the network link by eagerly distributing jobs
as much as possible, while Nona successfully prevents the
system from jamming.

C. Impact of the Network Capacity

To isolate the impact of network resources on average JCT,
we fix the arrival rate and vary both the capacity of the
network and the network demand of each job, while keeping
the compute load constant. In Figure 4, Nona still performs
as well as the Expert solution, and yields consistent average
JCT gains over a wide range of bandwidths. More specifically,
Nona outperforms Spark’s Fair Scheduler, the Opportunistic
and Random schemes, and Decima, respectively by up to 22×
(27×), 60× (44×), 70× (57×), 111× (44×) when the average
is taken over all jobs (over only inference jobs). Here again,
Decima suffers particularly from starving background jobs.

D. Nona’s Robustness to Arrival Rate Uncertainty

To show the robustness of Nona’s optimization to uncertain
arrival rates, we run the optimization a single time, for ex-
pected loads and bandwidths of 50% and 10Gbps respectively.
Then, we run the same experiments as in sections IV-B
and IV-C for Nona using only this single solution. The
resulting JCT, labeled Nona∗ in Figures 3 and 4, show Nona
does not require a precise knowledge of the effective arrival
rates. Nona∗’s performance is within 15% of Expert and Nona,
and therefore outperforms all the other schemes by factors
similar to Nona’s.

E. Impact of the Job Structure

Figure 5 breaks down Figure 3 and shows the Cumulative
Distribution Function (CDF) of JCTs for each job class, at a
load of 70%. For inference jobs, Nona performs similarly to
the Expert allocation and outperforms every other scheduling
approach when the DAG presents parallelism options (Fig-
ures 5b,d,f), and outperforms all other schemes except for
Spark for jobs with a single task (Figures 5c,e). Nona gives
slight priority to background jobs given that its objective

function is an average over the JCT of all jobs, including
background. Indeed, while we modified Spark to prevent head-
of-line blocking for these small background jobs, Figure 5a
shows that Nona serves almost 40% of background jobs
with no queueing delay, compared to 1% for Spark. Overall,
for inference jobs, Nona accelerates the 99%-tile tail JCTs
over Spark, the Opportunistic and the Random schemes, and
Decima by 57×, 15×, 89× and 58× respectively. Figure 5a
confirms Decima suffers from starving the short and frequent
background jobs, with 99%-tile tail JCT 343× higher than
Nona. A similar behavior is observed for single-task inference
jobs as demonstrated in Figures 5c and e: Nona achieves a
99%-tile tail JCT 343× lower than Decima.

F. Nona’s Optimization Implementation

Some linearization techniques have been proposed to solve
problems with geometric fractional objective functions [35],
[36] like Nona’s. However, these methods consider problems
with no equality constraints, as opposed to Nona (equa-
tion II). Therefore, we implement the objective function of
the Lagrangian relaxation of Nona’s problem, and attempt to
minimize it. The Lagrangian parameters are set empirically
to multiple orders of magnitude above the expected JCTs, to
sufficiently penalize points outside of the feasibility region.
After contracting jobs, the size of the search space for the five
jobs chosen is of 46, spread across 9 probability distributions;
in general, the problem scales linearly with

∑
j |Rj | and is

independent of the number of servers in the cluster.
Table III reports the runtime of our single-threaded imple-

mentation of Nona’s optimization’s solver, running on one
AMD EPYC 7502P CPU, and compare it for various cluster
sizes to the time required to train Decima’s RL model on an
Nvidia A100 using the same input parameters. We scale the
training set proportionally to the size of the cluster to ensure
a constant average number of jobs per server, explaining the
linear scaling in training time. Nona, on the other hand, uses
a queueing theoretic model independent of the cluster size to
capture the essence of the problem’s properties, and solves its
optimization formulation 30,000×–245,000× faster3.

Scheme Number of servers
16 32 48 64 80 96 112 128

Decima 108h 215h 321h 438h 555h 651h 765h 889h
Nona 13s 13s 13s 13s 13s 13s 13s 13s

Table III: Training/optimization time comparison.

V. RELATED WORK

This section categorizes prior approaches into five classes
of techniques: (i) Inference Schedulers, (ii) Heuristic-Based
Schedulers, (iii) DNN Schedulers, (iv) Queueing-Theoric
Techniques, and (v) Optimal Resource Allocation.

3Our simple approach for solving Nona’s optimization problem is fully
parallelizable, and could be made multi-threaded. Smarter approaches to
solving the optimization problem could further reduce the time required by
the optimization. We leave these improvements to future work.

Inference Specific Schedulers: Datacenter schedulers for
inference tasks have gathered interest from the community
in the past couple of years. However, as shown in the sur-
vey from Ye et al. [37], the focus of previous approches
has been on clever Machine Learning or GPU architecture
based approaches to make the compute operations themselves
more efficient. For example, in [38], the authors explored
the benefits of caching data in GPU memory; in [23], the
authors expanded on this idea by arguing for a system that
only reloads the difference between two variants of the same
model. INFaas [29] proposed a system to automatically choose
model varients depending on current cluster state. Finally,
AlpaServe [17] demonstrated benefits of model parallelism
for statistical multiplexing of compute tasks in jobs. Our
approach is based on the insight that the network must be
taken into account for latency-sensitive online queries. Some
of the techniques exposed in these papers (like caching) are
compatible with Nona but would require some modifications
of our optimization formulation; we leave this as future work.

Heuristic-Based Schedulers: Heuristic-based schedulers at-
tempt to distribute tasks on a cluster by observing its current
status and using a heuristic to make fast placement decisions.
For instance, Gandiva [9], Tiresias [10], Themis [10], Pol-
lux [11], and Pipedream [34], proposed several algorithms
to distribute machine learning training jobs while optimizing
compute utilization, compute throughput, or fairness metrics.
However, these approaches did not consider latency-sensitive
user-facing inference jobs. Sparrow [39] proposed an online
randomized sampling mechanism to determine the status of
compute queues before allocating tasks to servers. Yet, Spar-
row’s approach is not extendable to network queues because
of the bursty nature of network flows [3]. In addition, the key
difference between online schedulers and our approach is that
online schedulers rely on the short-term behavior of queues
while our queueing theory-based approach draws on the long-
term stochastic system characteristics.

DNN Schedulers: Recent DNN models have become suf-
ficiently large to warrant dedicating entire clusters or iso-
lated subsets of clusters to single jobs [40]. DNN-specific
approaches thus work offline to derive an optimal allocation
of resources specific to one cluster and one job. In [13], the
authors derived an optimal DNN job DAG split minimizing
the training time. In [6], the authors explored paralleliza-
tion dimensions beyond model and data parallelism and find
strategies combining them. PipeDream [34] and Gpipe [41]
improved pipelining for DAG parallel training of a single job.
Gpipe assumed that the entire cluster is available for a single
job; consequently, Gpipe is not tailored to consider interactions
between different jobs. Therefore, extending these solutions
to handle streams of inference jobs is non-trivial: it requires
considering much larger search spaces that consider multiple
DAGs and their interactions.

Queueing-Theoretic Techniques: Unlike heuristic-based
schedulers, queueing-theoretic scheduling techniques leverage
the steady-state properties of the cluster to distribute a series
of tasks on a network of queues [15]. For instance, Jackson

networks [21] consider networks of queues with Poisson
arrival processes and exponential service time distributions to
summarize the flows of jobs by a Markov model [16], and
to derive a product-form expression of the JCTs. However,
Jackson networks consider independent customers, whereas
datacenter jobs DAGs introduce dependency between tasks. On
top of this, DNN inference workload runtimes do not match
exponential distributions, and only approximations are avail-
able for Jackson networks with non-exponentially distributed
service times.

Optimal Resource Allocation: Several papers have proposed
scheduling methods for non-DNN jobs. For example, [42]
derived optimal query execution plans for geo-distributed
data. Similarly, [43], [44] studied latency-optimal scheduling
schemes and proposed methods to optimize resource utiliza-
tion. Finally, [45] explored dependency-aware scheduling. Yet,
these works do not consider DAG parallelism for user-facing
inference jobs with a complex DAG structure, often because
they are geared toward smaller jobs with DAGs reduced to one
task. On top of this, these solutions do not take into account
network congestion.

VI. ACKNOWLEDGEMENTS

The MIT-affiliated authors are supported by NSF SHF-
2107244, NSF CAREER-2144766, NSF PPoSS-2217099,
NSF CNS-2211382, NSF CNS-2008624, NSF FuSe-TG-
2235466, and the Center for Ubiquitous Connectivity (CUbiC),
sponsored by Semiconductor Research Corporation (SRC) and
Defense Advanced Research Projects Agency (DARPA) under
the JUMP 2.0 program.

This research was partially supported by the program
“PEPR Networks of the Future” of France 2030.

Co-funded by the European Union (ERC, SENSIBILITÉ,
101077361). Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the
European Union or the European Research Council. Neither
the European Union nor the granting authority can be held
responsible for them.

VII. CONCLUSION

In this paper, we present Nona, a stochastic, queueing-
theory-based scheduler for DAG parallelism in datacenter
clusters. Nona uses an optimization formulation to derive
placement probability distributions minimizing average job
completion time. Our approach takes into account both net-
work and compute service and queueing times, and can easily
be extended to consider other constraints (e.g., memory). We
show that Nona outperforms state-of-the-art heuristic-based
solutions by up to 350×.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” 2023.
[2] L. Weng and G. Brockman, “Techniques for training large neural

networks,” 2022.
[3] S. Gheissi, S. Mahmood, and S. Ghorbani, “Burstiness in data center

topologies,” in Proc. of the 3rd International CoNEXT Student Work-
shop, ser. CoNEXT-SW ’22. NY, USA: ACM, 2022, p. 29–31.

[4] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Micro-burst in data
centers: Observations, analysis, and mitigations,” in 2018 IEEE 26th
International Conference on Network Protocols, 2018, pp. 88–98.

[5] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc., ACM SIG-
COMM Computer Communication Review, vol. 44, 2014, pp. 455–466.

[6] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” Proc. of Machine Learning and Systems,
vol. 1, pp. 1–13, 2019.

[7] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proc. of the ACM Special Interest Group on Data Communication,
New York, NY, USA, 2019, p. 270–288.

[8] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of the
Thirteenth EuroSys Conference. NY, USA: ACM, 2018.

[9] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in 13th USENIX
Symp. on Operating Systems Design and Implementation (OSDI 18).
Carlsbad, CA: USENIX Association, Oct. 2018, pp. 595–610.

[10] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu, and
C. Guo, “Tiresias: A gpu cluster manager for distributed deep learning,”
in Proc. of the 16th USENIX Conference on Networked Systems Design
and Implementation, USA, 2019, p. 485–500.

[11] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in 15th USENIX Symp.
on Operating Systems Design and Implementation, Jul. 2021, pp. 1–18.

[12] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient
GPU cluster scheduling,” in 17th USENIX Symp. on Networked Systems
Design and Implementation, Santa Clara, CA, Feb. 2020, pp. 289–304.

[13] J. M. Tarnawski, A. Phanishayee, N. Devanur, D. Mahajan, and
F. Nina Paravecino, “Efficient algorithms for device placement of dnn
graph operators,” in Advances in Neural Information Processing Systems,
vol. 33. Curran Associates, Inc., 2020, pp. 15 451–15 463.

[14] I. Grosof, Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, “Optimal
scheduling in the multiserver-job model under heavy traffic,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 6, no. 3, dec 2022.

[15] R. Nelson, Probability, stochastic processes, and queueing theory: the
mathematics of computer performance modeling. Springer Science &
Business Media, 2013.

[16] S. Feizi, M. Médard, and M. Effros, “Compressive sensing over
networks,” in Proc., Annual Allerton Conference on Communication,
Control, and Computing, Sep. 2010, pp. 1129–1136.

[17] Z. Li, L. Zheng, Y. Zhong, V. Liu, Y. Sheng, X. Jin, Y. Huang,
Z. Chen, H. Zhang, J. E. Gonzalez, and I. Stoica, “AlpaServe: Statistical
multiplexing with model parallelism for deep learning serving,” in 17th
USENIX Symp. on Operating Systems Design and Implementation (OSDI
23). Boston, MA: USENIX Association, Jul. 2023, pp. 663–679.

[18] D. Bertsekas and R. Gallager, Data networks (2nd ed.). USA: Prentice-
Hall, Inc., 1992.

[19] A. Y. Khintchine, “Mathematical theory of a stationary queue,” Matem-
aticheskii Sbornik, vol. 39, no. 4, p. 73–84, 1932.

[20] F. Pollaczek, “Über eine aufgabe der wahrscheinlichkeitstheorie. i,”
Math Z, vol. 32, p. 64–100, 1930.

[21] J. R. Jackson, “Jobshop-like queueing systems,” Management Science,
vol. 10, no. 1, pp. 131–142, 1963.

[22] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, oct
2016.

[23] X. Yao and A. Klimovic, “Deltazip: Multi-tenant language model serving
via delta compression,” 2023.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[26] A. Z. Karen Simonyan, “Very deep convolutional networks for large-
scale image recognition.” in Proc. of the 3rd International Conference
on Learning Representations (ICLR), May 2015.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume
1, ser. NIPS’12, Red Hook, NY, USA, 2012, p. 1097–1105.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[29] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), Jul. 2021, pp. 397–411.

[30] H. Geng, D. Zeng, and Y. Li, “Performance efficient layer-aware dnn
inference task scheduling in gpu cluster,” in GLOBECOM 2022 - 2022
IEEE Global Communications Conference, 2022, pp. 2242–2247.

[31] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes: volume II: general theory and structure. Springer, 2008.

[32] J. R. Jackson, “Networks of waiting lines,” Operations Research, vol. 5,
no. 4, pp. 518–521, 1957.

[33] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, 1985.

[34] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proc. of the 27th ACM Symp.
on Operating Systems Principles, NY, USA, 2019, p. 1–15.

[35] W. Chun-Feng, L. San-Yang, and S. Pei-Ping, “Global optimization
for sum of geometric fractional functions,” Applied Mathematics and
Computation, vol. 216, no. 8, pp. 2263–2270, 2010.

[36] F. Bazikar and M. Saraj, “Solving fractional geometric programming
problems via relaxation approach,” MatLAB J, vol. 1, no. 3, pp. 1–14,
2018.

[37] Z. Ye, W. Gao, Q. Hu, P. Sun, X. Wang, Y. Luo, T. Zhang, and Y. Wen,
“Deep learning workload scheduling in gpu datacenters: A survey,” ACM
Comput. Surv., vol. 56, no. 6, jan 2024.

[38] G. R. Gilman, S. S. Ogden, R. J. Walls, and T. Guo, “Challenges and
opportunities of dnn model execution caching,” in Proc. of the Workshop
on Distributed Infrastructures for Deep Learning, ser. DIDL ’19. New
York, NY, USA: ACM, 2019, p. 7–12.

[39] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proc. of the Twenty-Fourth ACM
Symp. on Operating Systems Principles, ser. SOSP ’13. New York,
NY, USA: ACM, 2013, p. 69–84.

[40] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudi-
gere, Y. Zhang, and A. Kewitsch, “TopoOpt: Co-optimizing network
topology and parallelization strategy for distributed training jobs,” in
20th USENIX Symp. on Networked Systems Design and Implementation
(NSDI 23), Boston, MA, Apr. 2023, pp. 739–767.

[41] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” in Proc. of the 33rd
International Conference on Neural Information Processing Systems,
Red Hook, NY, USA, 2019.

[42] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
WAN-aware optimization for analytics queries,” in Proc., USENIX Symp.
on Operating Systems Design and Implementation, 2016, pp. 435–450.

[43] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-
scale computing,” in Proc. of the 11th USENIX Conference on Operating
Systems Design and Implementation, USA, 2014, p. 285–300.

[44] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
SIGOPS European Conference on Computer Systems (EuroSys), Prague,
Czech Republic, 2013, pp. 351–364.

[45] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene:
Packing and dependency-aware scheduling for data-parallel clusters,” in
Proc., USENIX Symp. on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 81–97.

