
Design and Testing of Information
Models in a Virtual Environment

R. Eberhardt1, S. Mazziotta2, D. Sidou2

Swiss Telecom PTT R&D and Institut Eurécom
 1CH-3000 Bern 29, +41 31 338 81 45, +41 31 338 59 59
eberhardt@vptt.ch
 2F-06904 Sophia-Antipolis Cedex, +33 4 93 00 26 43,
+33 4 93 00 26 27, {mazziott¦sidou}@eurecom.fr

Abstract
The paper introduces the TMN-based Information Model Simulator (TIMS) toolkit, a
rapid-prototyping environment for TMN information models and explains how it is
used in a real-life example. Based on GDMO/ASN.1, GRM and a formal behavior
description, the toolkit generates TMN systems and allows both the visualization of
MIBs at run-time and the access to it through CMIP. Behavior of object models is
described through the use of relationships which leads to considerable simplification
of the behavior and is the first step for a distributed environment. Assertion
mechanisms permit the designer to verify the correct state of the model at run-time.
The paper publishes the results of the tools use for the specification of a management
interface for the V5 access network interface.

Keywords
Information models, GDMO, Relationships, formal behavior, simulation

1 INTRODUCTION

The goal of the TIMS-project is to provide a laboratory environment for TMN-
designers enabling them to prototype solutions, build mock-ups and to test them prior
to standardization, procurement or network introduction. This approach, so the
intention, will speed up the standardization process and improve the quality of the
specifications. A mock-up can also be used to support procurement, enhance education
and improve acceptance testing of the finished products (Eberhardt et al, 1996).
 We believe that the gap between formal specification and actual implementation
should be as small as possible. The telecom operator profits from a tighter
specification while the developer can (semi-) automatically create parts of its
application. GDMO is such an example. TIMS therefore focuses on formal but
executable specifications of static and dynamic schema's in the TMN, i.e. the
relationships between managed (and managing) objects and their behavior
description.
 What is required to reach this goal? Behavior specifications must be separable into a
specification part and an emulation (or algorithmic) part. The specification part
defines rules on the static and dynamic properties of the information model, is
implementation-independent and therefore normative. The emulation part describes
the algorithm of an operation within or on the information model (e.g. Ensemble-
scenarios (NMF 025, 1992)) and is non-normative. Following principles stated in
(Kilov, 92), the specification paradigm is declarative and advocates the use of
relationships. To keep the specifications understandable and manageable, only
functional behavior properties are considered. Thus quantitative or physical aspects
are abstracted away (e.g. actual distribution, timing and real-time issues). Validation
is based on simulation and testing of the executable specification, therefore
mathematical reasoning is not used. Finally, to ensure executability and rapid-
prototyping, the proposed behavior specification language is based on an existing and
interpreted language: Scheme (Clinger and al, 1991).

Plan of the Paper
Section 2 introduces the highlights of the TIMS toolkit seen from the users
perspective, namely its interfaces and the method of behavior formalisation. Section 3
shows in a practical example how TMN information model design is performed.
Section 4 summarizes the results of the design of the V5.1AN management interface
which show that the approach chosen in TIMS is viable indeed. Conclusions on the
work up to now are discussed in section 5.

2 TIMS TOOLKIT

Clause 2.1 introduces the technical support implemented within the TIMS platform,
described in detail in Mazziotta and Sidou (1996). Clause 2.2 presents the main
features of the TIMS Behavior Language (BL) and its structure.

Scheme

O
S

IM
IS

 C
M

IS

IS
O

D
E

 S
ta

ck

Scheme Shell >
...
...

Behavior Propagation Engine

Repositories

scen-
arios

MIB
snap-
shots

BL GRM GDMO ASN.1

daVinci

TMN
System

Information
Model

GUI and
scenario

databases

Q3 interoperable
Interface

other TIMS
box

Mgt
Platform

Other TMN
Systems

Figure 1 : TIMS and its environment

2.1 The Implementation

TIMS is a single toolkit running under UNIX. It is built around the OSIMIS
development toolkit (Pavlou et al, 1995) and other public domain tools. TIMS consists
of the simulator part called “TIMS box”, support software such as the simulation
manager and visualization and browsing tools. The TIMS box is built as an open
system with following interfaces made available:

• Q3 interoperable interface (left hand side of Figure 1)

• the TMN information model integration (bottom of Figure 1)
• test execution environment and the GUI (top of Figure 1)

Q3 Interoperable Interface
TIMS boxes may be accessed via a CMIS API and an underlying OSI protocol stack.
The CMIS API and the OSI-stack used are taken from the OSIMIS library and the
ISODE implementation, respectively. Providing CMIS allows for (1) several TIMS
boxes to interact in different roles (agent, manager, manager/agent) and (2) to
integrate with real TMN applications (e.g. commercial management platforms, real
network elements, network emulators, etc.). This feature is fundamental for the reuse
of TIMS specifications in procurement, as reference configurations, for education and
testing of real TMN systems.

Input of the TMN Information Model
TMN Information Models (IM) are composed of GDMO, ASN.1 and (recently) of
GRM specifications which correspond to the static part of the specification. TIMS
requires only the relationship class specification of the GRM; the relationship
mapping productions are incomplete and therefore embedded in the behavior. The
dynamic part consists of the behavior specification (c.f. section 2).
 GDMO, ASN.1 and GRM parsers* provide suitable output that can be integrated in
the Scheme environment. This makes all the required information about Managed
Objects Classes, Relationship Classes available, e.g. to ensure the correctness of
operations performed on Managed Objects. For ASN.1, a reasonable support of a
value notation is needed since behaviors often include the creation and manipulation
of complex ASN.1 values. Examples of such constructs are provided in section 3.

Graphical User Interface
The GUI mainly corresponds to the command panel which is based on the Tk toolkit.
This panel controls the Test Execution Environment and allows the visualization of
the simulation. The Test Execution Environment consists of a Scenario Player, and a
Snapshot Player:
• The Scenario Player enables the user to run sequences of management operations

or real resource changes (e.g. emulating equipment failures). Step-wise execution
allows tracing all changes in the MIB.

* The GDMO parser is based on the OSIMIS GDMO compiler front-end (Pavlou et al, 1995),
ASN.1 on the ASN Free Value Tool (ASNFVT, 1992). The GRM parser was developed in
TIMS.

• The Snapshot Player enables to save the current system state and to use it as
starting point for scenario runs. This feature is very important in the prototyping
phase when a given state is reached only after a long simulation run.

Figure 2 : Screen Shots of the TIMS Execution Environment (the graph display, the
contents of a managed object and the scenario player)

TIMS presents the MIB as a graph of information objects and relationships. The
visualization is done with daVinci (davinci, 1996), a generic graph visualization tool.
This tool provides automatic layout generation as well as selective suppression of sub-
graphs. The user, selecting a given node of the graph, can then access the managed
objects' attributes and their associated values presented in form of TK widgets.

2.2 Behavior Specification

TIMS Behavior Language Features
TIMS follows in essence the approach advocated by Kilov (1992) where both the use
of relationship-based formalisation and asserted specifications are employed.

Relationship-based Formalisation : BL employs the ODP notion (X.902, 1995) of
"action" to describe a behavior : "An action is defined as something which happens,
of interest for modeling purposes and associated with at least one object. [...]". Very
often, an action can be associated to causal dependencies between objects. This leads
to a behavior-model based on roles and relationships. In the context of TMN
information models the General Relationship Model GRM (X.725, 1995) is a natural
candidate.
Relationship-based Behavior Formalisation provides simpler, more readable and
expressive behavior specifications because managed objects are identified through
roles instead of raw attribute pointers or any other mechanism currently available to
realize a relationship.

Use of assertions : Assertions define the pure specification aspects of the system. In
TIMS, assertions are properties that are checked during the execution of the
simulation. Although often considered a burden, assertions prove very valuable during
incremental and component-based model development. Experience shows that the
specifier can not control the whole complexity of its system and especially when there
is a lot of "behavior interference". Complex behavior often emerges when
relationships overlap, i.e. an object participates in several relationships in different
roles. Specifying assertions is an effective method to ensure the correctness of the
resulting specification at run-time (protecting the specifier from unwanted or
conflicting behaviors).

Structure of a Behavior
A behavior is always defined in the context of a relationship (scope clause) between
objects fulfilling given roles. It corresponds to the execution of a piece of code (body
clause) when it receives a message at one of its interfaces, if the guard (when clause) is
evaluated to true (i.e. enables the execution). The body of a behavior consists of
Scheme code. There is no a priori structure imposed on it. A CMIS API is provided to
specify any CMIS operation within behaviors (GET, SET, ACTION, ...). In addition a
GRM-like API provides access to the required relationship abstract operations, i.e.
ESTABLISH, BIND, UNBIND, TERMINATE. Since usual programming features
(i.e. control flow structures, variable notation...) are required, the use of an existing
and simple programming language, Scheme, reveals to be a reasonable choice. The
execution of the body is immediately preceded and followed by a pre-condition (pre
clause) and a post-condition (post clause), respectively. Finally, each behavior is
labeled by the specifier for the purpose of identification, especially during debugging.
 Invariants are described by a behavior with post-condition but no body part. A
relationship-invariant is a behavior with the message received being any kind of

operation executing upon objects bound to the relationship. A role-invariant restricts
the message target to the objects involved in the role (cf. section 3).

3 MODELING IN TIMS

This section provides a step-wise, example-based tutorial introduction to how
modeling is typically performed in TIMS. The examples derive from the management
interface model for V5 (ETS 300 376-1, 1994).
 Management and domain requirements, expressed in prose or in a semi-formal
representation, form the basis for identifying managed and managing resources.
Placing the resources in context, i.e. building the static schema, is the logical next
step. Some invariants, such as the cardinality between managed objects, will have
become apparent at this point. Were we writing software, we'd sit down and begin
coding - in TMN partially reflected in the Ensemble-scenarios. Coding reveals
whether the choice of resources (managed objects) was correct, if the static schema is
useful and also gives an indication on the ease of use of the interface. This is the point
where we believe a TMN-laboratory becomes useful. The following is an example on
how this is achieved in TIMS:

Requirement: "A field replaceable unit (FRU) is represented as a physical resource
(the equipment) and the logical resource (the functionality, here called userPort). The
operational state of the userPort is dependent on the physical resources it requires
(card, power supply, etc.). The userPort becomes operational automatically once all
physical resources have been installed."

Give relationships a name : Given the resources and an ER-diagram, writing GRM
provides its structure, the role names, their cardinality and their relationship
operations.

Rresource RELATIONSHIP CLASS
BEHAVIOUR RresourceBehaviour;
SUPPORTS ESTABLISH, TERMINATE;
ROLE physicalRole

COMPATIBLE-WITH equipment [...]
 ROLE logicalRole

COMPATIBLE-WITH userPort
PERMITTED-ROLE-CARDINALITY-CONSTRAINT INTEGER(1)
REQUIRED-ROLF-CARDINALITY-CONSTRAINT INTEGER(1..MAX)
[...]

Define constructors & destructors for the static schema : "The installation of the
FRU results in the automatic generation of the logical resources (userPort) and other
relationships. Trigger for this behavior is the creation of the equipment through an
external message (e.g. an M-CREATE)."

(define-behavior "create-equipment" (scope "RmanagedElement")
 (when (and (param Create?) (param moc=? "equipment")))
 (pre ...)
 (body ...

(set! (ttpInstance (Create userPort ...)
(Establish (operation-name) "Rresource" (rir:gen-ri-inst "Rresource")

 (("physical" equipmentInstance)
 ("logical" (ttpInstance))))

...)
 (post ...))

Write scenarios (management function) : TIMS does not make a difference
between code representing behavior internal to the MIB and operations between
manager and agent. In the example, the operational state of userPort is set to
"disabled" if it is in the "enabled" state and one of its supporting physical resources
goes to "disabled".

(define-behavior "logical enabled->disabled "
 (scope-rel "Rresource")
 (when (and (asn=? (Get (Part (ri) "physical") "operationalState") 'disabled)

 (some (lambda (userPort) (asn=? (Get userPort "operationalState") 'enabled))
 (Part (ri) "logical"))))

 (pre ...)
 (body (for-each (lambda (userPort)

 (cond ((asn=? (Get userPort "operationalState") 'enabled)
 (Set userPort "operationalState" 'disabled))))

 (Part (ri) "logical")))
 (post (for-each (lambda (userPort) (asn=? (Get userPort “operationalState”) ‘enabled)))

For those not familiar with Scheme, the lambda-expression allows to define unnamed
functions with temporary variables (such as a function asserting the operationalState
of userPort being enabled).

Make the model water-proof : Having written some code, the designer must now
review the static and dynamic schemas and check at which points the behavior could
fail due to ambiguities or bugs. Write assertions or invariants (e.g. as part of a
relationship) handling these cases and run the simulation. Assertion-failures will
point at problems in the code. If the simulation shows unexpected behavior this

indicates weak guard statements. Depending on the run-time problems, the designer
may now have to revisit all previous phases up to the design level.

Finalise the model : Once the model works as expected the tough work is over. The
next steps involve mapping the behavior onto a system management model (called
Engineering Viewpoint, in this case OSI Systems Management). The designer needs
to write the relationship mapping (pointer structures, etc.) and to implement action
and notification signatures together with their parameters for behavior crossing the
system management boundary. Example : “A userPort is associated to a v5Ttp using
the ACTION setReciprocalPointer”.

(define-behavior "Rv5Interface-SetReciprocalPtr"
(scope-rel "Rv5Interface")
(when (and (ri) (param Action?) (param Action=? "setReciprocalPointerAction")))
(pre)
(body (let* ((aEndObject(car (param argument)))

(zEndObject (cadr (param argument)))
[...]

-- this action results in the call of an establish & bind operation between aEndObject and
-- zEndObject.

(post ...))

4 A CASE STUDY: V5.1 MANAGEMENT

This section provides results and metrics acquired during the implementation of the
V5.1 management model for configuration management. The case study was
developed in parallel to a V5 management interface specification which is to be used
for procurement purposes.
 The case study focused on the overall behavior of the management architecture and
less on the mapping between hardware behavior and its TMN representation (e.g.
state mappings of protocol engine finite state machines). The model consists of 12
managed object classes and 18 relationship classes. It covers scenarios (management
functions) for the insertion, removal and configuration of ports as well as their
provisioning (cross-connection). A minimal implementation counts 46 managed
object instances of which 31 represent 64 kBit/s channels and can be therefore reduced
while prototyping (e.g. down to 10). The average size of a simple dynamic schema
(e.g. state change between managed objects) lies at 20 lines of Scheme-code. Complex
schema's, such as the constructor for a v5interface MIB structure involve around 50
lines. The code is very repetitive so that cut & paste helps reduce tedious writing.

 The major effort (40 %) lay in acquiring the necessary V5 domain knowledge,
sometimes down to the protocol level. Implementing the V5 static schema (resource
selection, GRM) was quickly done, while embedding the fragment into an overall
MIB architecture turned out to be more difficult than expected (total 20%), mainly due
to functional restrictions found in current GDMO libraries (M.3100). Implementing
behavior itself resulted in a repeated review and refinement of the requirements,
sometimes identifying new demands along the way. Behavior-design and debugging
made up for another 40% of the effort. The modeling of invariants and assertions went
hand in hand with the static schema (GRM constraints) and - when actually specified
- during the development of each behavior.

4.1 Evaluation

The language Scheme proved difficult at first, as the engineers implementing the case
study were more familiar with imperative languages. Once understood, however, the
interpreted nature of Scheme allowed for trial-based code-development. The TMN-
API's themselves were rapidly understood and easily used. The graphical interface
proved useful only for educational purposes and for browsing of small MIB's. A run-
time debugger for behavior traces and for the analysis of interference's between
behavior executions would speed up coding.
 Designing and coding the dynamic schema is very repetitive, but requires detailed
knowledge of both the domain and the TMN libraries. We believe that in future it
should be possible to reuse generically defined relationships and their behavior.
Guards are the enabling condition for the execution of behavior. Specified
incompletely, they may lead to unexpected side effects difficult to foresee by the
designer. Due to GRM, many assertions and invariants came for free, saving extra
coding. Not surprisingly, assertions were used only sparsely because they are often
considered tedious to formulate and very large. This applies especially for post-
conditions, fundamental for evaluating the consistency of the MIB.
 Relationships proved to be very useful for both design and coding. Making the
model accessible via CMIP requires the additional effort of implementing the
relationship mapping. We believe that a relationship management service reflecting
GRM-constructs would simplify management scenarios, provide for distribution
transparency and aid in behavior description.
 The V5 management interface specification project running in parallel benefited a
lot from our design work, especially when it came to understanding the finer points of
the model, its restrictions and pitfalls. The TIMS scenarios could be mapped almost
1:1 into the ensemble specification.

5 CONCLUSIONS

The paper gives an overview of the rationale guiding TIMS’ development. It describes
the TIMS TMN toolkit and its highlights. The relationship behavior formalisation is
introduced and a guide on how to model TMN interfaces using TIMS is provided.
 Although the initial learning curve is steep, it compares favorably with commercial
toolkits. While Scheme has its advantages, it isn't widely known and not sufficiently
readable to be used as specification; a specification-typesetter could be considered a
solution.
 The language features and the use of relationships provide everything required by
ODP and align reasonably well with new methodologies suggested in ITU-T (G.851,
1996).
 The greatest cost remains in acquiring the domain knowledge necessary to be able to
develop a management interface. A laboratory environment helps understanding both
the domain and its management design. The speed in which new TMN information
models were implemented (smaller test cases with up to 8 managed objects were
implemented in less than 2 weeks) indicates that it is possible to bring TMN into the
laboratory.

5 REFERENCES

ASNFVT (1992), ASN.1 Free Value Tool, at ftp://osi.ncsl.nist.gov/pub/osikit/"
Clinger, W. and Rees, J. (1991) - Report on the Algorithmic Language, Scheme.

ACM Lisp Pointers, vol. 4 (3), 1991. - Available at
http://www.cs.indiana.edu/scheme-repository/doc/standards/r4rs.ps.gz.

davinci (1996) The Interactive Graph Visualization System daVinci, available at
http://www.informatik.uni-bremen.de/~inform/forschung/daVinci/daVinci.html.

Eberhardt, R. and Sidou, D. et al. (1996) Executable TMN specifications with TIMS,
proceedings of the NOMS’96 , IEEE. Available at http:/www.eurecom.fr/~tims

ETS 300 376-1 (1994) Q3 interface at the Access Network (AN) for configuration
management of V5 interfaces and associated user ports; Part 1: Q3 interface
specification, ETSI Technical Standard, December 1994

NMF 025 (1992) The Ensemble Concept and Format, Network Management Forum
G.851-01 (1996) Draft Recommendation, Managemeent of the transport network -

Application of the RM-ODP framework. June 1996
X.725 (1995) ISO/IEC JTC 1/SC 21, ITU X.725 - Information Technology - Open

System Interconnection - Data Management and Open Distributed Processing -
Structure of Management Information - Part 7 :General Relationship Model.

X.902 (1995) Basic Reference Model of ODP - Part 2: Foundations, ISO 10746-2,
ITU X.902.

Kilov, H. (1992) From OSI Systems Management to an Interoperable Object Model:
Behavioural Specification of (Generic) Relationships, Proceedings 3rd
Telecommunications Information Networking Architecture Workshop (TINA 92),
1992, Narita, Japan,

Mazziotta, S. and Sidou, D. (1996) - A Scheme-based Toolkit for the Fast Prototyping
of TMN-systems - 1996. Seventh International Workshop on Distributed Systems
: Operations & Management.

Pavlou, G. and McCarthy, K. and Bhatti, S. and Knight, G. and Walton, S. (1995)
The OSIMIS Platform: Making OSI Management Simple, Integrated Network
Management IV, 1995, Santa Barbara, USA

6 BIOGRAPHY

Rolf Eberhardt joined Swiss Telecom R&D in 1991 following his graduation in
computer science from ETH Zürich, Switzerland. He has worked as TMN
specification engineer, consultant and in standardization (ETSI TM2, ITU-T SG4,
NMF), mainly on transmission networks. His interests focus on behavior
formalisation, access networks and X-interfaces.
 Sandro Mazziotta graduated in computer science in 1993 from Nice-Sophia
Antipolis University, France. In 1994, he joined the Corporate Communications
department of Institut Eurécom where he pursues a Ph.D. thesis. His research interests
include the specification, validation and testing of the dynamic behavior of object-
based distributed systems.
 Dominique Sidou received his computer science degree: "Diplome d'Etudes
Approfondies (DEA)", from University Paul Sabatier, Toulouse - France in 1989. His
research interests focus on distributed systems: behavior modeling and validation,
distributed object technologies (ODP, CORBA), and network and systems
management (TMN, SNMP). He is research engineer at Institut Eurécom (Sophia-
Antipolis, France).

