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Abstract. Federated learning (FL) is one of the promising collabora-
tive machine learning methods finding many usage application scenarios
in different domains such as healthcare ([19]) and/or telecommunica-
tion (5G, 5G beyond and 6G [25]). It also enhances privacy by allowing
users to contribute to the global model training without sharing their
training data. However, the local model updates exposed by users can
still leak sensitive information. To prevent such leakage, secure aggre-
gation protocols are utilized to hide the individual local model updates
from the aggregator. Enhancing privacy in this way creates an open
door for security attacks because the server is no longer able to analyze
received updates for detection of poisoning type of attacks. Although
there are considerable number of studies that address the privacy and
security aspects individually, solutions against the combination of these
attacks have started to appear recently in a few studies. When we add
some additional requirements such as aggregation unforgeability and ro-
bustness against user drop-outs, the number of solutions becomes very
limited. Most of the proposals addressing all these aspects at the same
time require two or more non-colluding aggregators, which may not be a
realistic assumption in most of the use cases. To address this gap, we in-
troduce new secure aggregation protocols involving one aggregator only.
Each proposed protocol addresses a subset of the requirements where as
the final one, FULLSA3, is secure against malicious clients and robust
against user drop-outs. As a side contribution, we design a new batch
oblivious range verification protocol.

Keywords: Federated learning · secure aggregation · privacy · poisoning
attacks · oblivious range verification.

1 Introduction

With the advent of enablers in data collection and data processing, and because
the utilization of huge amount of data brings real value in various aspects such as
better user experience, reduction in operational costs, and sustainability, many
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applications and frameworks have started to adopt the data-driven design (such
as 6G technologies [25], healthcare solutions [19]). Accordingly, federated learn-
ing (FL) has become one of the preferred machine learning techniques whereby
data is no longer collected and stored in a central server and remains at users’
premises.

Although FL enhances privacy protection by allowing the users (i.e., clients
or participants) to contribute to the global model training without exposing
their local training data (by training the model locally and sharing model pa-
rameters updates only), the model updates that they share during training still
leak information about the local training data of the user [24]. To address such
vulnerability, secure aggregation protocols such as [2], are recently proposed,
whereby the FL server receives privacy-protected model updates and aggregates
them without having access to them. Nevertheless, these protocols prevent the
FL server, also called the aggregator, from performing some analysis on local
model updates to detect anomalies in the local model updates caused by, for
example, some model poisoning attack attempts or some unexpected behaviors
of users. Thus, addressing the combination of security and privacy aspects is
needed. Some additional requirements such as validation of the aggregation re-
sult and robustness against user drop-outs can also raise during the execution of
the federated learning process. Although there is a significant number of studies
in the literature about the security and privacy aspects of federated learning
(e.g., [23, 12]), we can only witness a very limited number of attempts to solve
all these expectations, at once.

In this paper, we aim at addressing all these requirements through incremen-
tally designed three new secure aggregation protocols. These protocols consider
the following goals:
– aggregator obliviousness: the aggregator (i.e., the FL server) should not

be able to learn individual local model updates;
– aggregate unforgeability: the aggregator should not be able to alter the

aggregation result.
– fault tolerance: the FL procedure should continue even if some users drop

out.
– input-range unforgeability: the users should not be able to input local

model update parameters that are outside a range defined by the aggregator
(to resist poisoning).

– single server model: the architecture requires only one FL server (i.e.,
does not require two or more non-colluding FL servers).
While the first protocol, FULLSA1, addresses aggregation obliviousness,

input-range unforgeability and fault-tolerance, FULLSA2 improves it by addi-
tionally ensuring aggregate unforgeability. Finally, the last protocol, FULLSA3,
considers all design goals altogether. The security model also becomes stronger,
incrementally. Indeed, FULLSA1 assumes a setting with a semi-honest aggrega-
tor and malicious users; FULLSA2 considers a semi-honest aggregator who may
lie about the aggregate result, and, finally FULLSA3 is the last protocol where
all parties are considered malicious. All the proposed protocols work under the
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Table 1. Literature review on single-server secure aggregation schemes. Notation: *
(malicious aggregator for input privacy only) . ** (users send their shares each time
period). *** (with ACORN-robust). SH (semi-honest), M (Malicious).

aggregate input-range adversary model fault aggregation
Solution unforgeability unforgeability client server tolerance efficiency

Joye-Libert [7] no no SH SH no -
PUDA [12] yes no SH M no no

Bonawitz et al. [2] no no SH SH yes yes
Mansouri et al. [15] no no SH SH yes -
Karakoc et al. [10] yes yes M SH no no

RoFL [13] no yes M SH yes -
EIFFEL [21] ∗ yes yes M M∗ yes ** -
ACORN [1] no yes M *** M∗ yes yes

Our FULLSA1 no yes M SH yes yes
Our FULLSA2 yes yes M M∗ yes yes
Our FULLSA3 yes yes M M yes yes

single-server model. Another by-default goal is naturally performance. We show
that our protocols are scalable in the number of users.
Overview of our protocols. To develop FULLSA1 and FULLSA2, we have
started by studying the secure aggregation solution in [10] and improve it by
addressing fault-tolerance and offering better performance. Indeed, we first im-
prove the oblivious programmable pseudo-random function introduced in [10] to
convert it into a batch oblivious range verification protocol. Instead of obliviously
verifying the range of each model parameter one-by-one and executing one obliv-
ious transfer protocol per parameter, the verification is performed on a vector-
basis. We also propose another optimization to reduce the number of oblivious
transfer operations (which significantly improves the performance) whenever the
threshold values defined for input-range verification consist of some specific val-
ues. Note that, once again this oblivious programmable pseudo-random function
can be used as a standalone solution, as described in [10].

On the other hand, to address fault-tolerance, we utilize the idea in [15]
making the Joye-Libert encryption scheme [7] robust against user drop-outs.
Whenever some users drop out, other online users are expected to encrypt a
zero-value, collaboratively, on behalf of the dropped users. In [15], some of the
malicious users may still try to alter this process resulting in the encryption of
a non-zero value and hence falsifying the aggregate result; To prevent this kind
of malicious behavior, we add a verification step involving bilinear pairings so
that the aggregator can validate the correct encryption of ’0’.

To move from FULLSA1 to its extended version, FULLSA2, we use the idea
in [12] to additionally ensure aggregation unforgeability whereby homomorphic
signature-based bilinear pairings are used.

Finally, since the underlying batch oblivious range verification protocol is
secure only if the server is semi-honest, to achieve security against a malicious
server we adopt the approach of [13] and replace the oblivious verification pro-
tocol with a range zero-knowledge proof (ZKP).
Related work. In recent years, there have been several studies proposing new
secure aggregation solutions addressing the security and privacy aspects simul-
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taneously. Table 1 presents a brief comparison of our protocol with the existing
solutions working in the single server model. This table does not include the
following studies which cannot be easily compared:
– The studies [6, 8] propose the usage of multi-hop communication for

anonymization of the local model update ownership. Since the aggregator
can assess the plaintext local model updates, the server can analyze the
received local model update for the detection of security attacks.

– Some other designs such as ELSA [18] and Prio [5] require two non-colluding
servers so that these servers cannot access the individual local model updates
thanks to the underlying two-party computation protocol but can perform
operations on the secret shares of the local model updates in a collaborative
way. Both ELSA and Prio, by-design, assume that at least one server is
semi-honest and hence do not consider a fully malicious setting. Therefore,
we only compare with single-server solutions.

– Flamingo [14] works on a single server model but requires a small group of
clients (named as "encryptors") communicating with the server for decryp-
tion of the results.
As shown in Table 1, earlier solutions, namely [7, 11, 2, 10, 13] consider that

at least one player is semi-honest and some of them do not guarantee fault-
tolerance against user dropouts. On the other hand, EIFFEL [21] and ACORN
[1] consider a malicious aggregator only for input privacy and not for the in-
tegrity of the aggregator. While our FULLSA2 is comparable to EIFFEL and
ACORN, EIFFEL involves clients for reconstruction and ACORN does not en-
sure aggregate unforgeability.

2 Preliminaries

Table 2 provides the notation used throughout the paper.
Threshold Joye-Libert scheme: This scheme introduced in [15], improving
the Joye-Libert scheme [7], consists of the following six algorithms.
– Setup(1κ) → (pp, {eki}i∈[n], ekA): Takes security parameter κ in unary as

input and outputs randomly selected n keys {eki | 1 ≤ i ≤ n} and ekA =
−
∑n

1 eki and public parameter pp = (N,H1) where N = p× q, p and q are
randomly selected values and H1 is a cryptographic hash function.

– SKShare(pp, eki, t, n) → {(j, [eki]j) | 1 ≤ j ≤ n}: outputs secret sharing of
eki.

– ShareProtect(pp, {[eki]j}, τ) → [y′i]j : outputs encryption of ‘0’ under the
secret share [eki]j .

– ShareCombine({j, [ci0]j}j ̸=i, τ.) → c0i,τ outputs the reconstructıon of the
encryption of ‘0’ under eki.

– Protect(pp, eki, τ, xi,τ )→ ci,τ :

ci,τ ← (1 + xi,τN)H1(τ)
eki mod N2

– Agg(pp, ekA, τ, {ci,τ}i∈[n])→
∑n

1 xi,τ :
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n, nD, nA : number of users, dropped users, available users, respectively
U , UD, UA : set of all users, set of dropped users, set of available users, respectively
Ui : user number i from set U
xi,j,t : j-th model parameter value at time-period t from client Ui

Xi,t : set of items of user Ui such that Xi,t = {xi,j,t}
nX : number of data points to be aggregated (size of X)
[x]i : i-th secret share of x
x[i] : i-th most significant bit of x where x[0] is the least significant bit
ℓ : Bit length of data points (x)
A[i] : i-th element in the set A
g1, g3 : generator of group G1

g2 : generator of group G2

e : bilinear pairing such that e : G1 ×G2 → GT .
H1 : hash function outputting in mod N2.
H2 : hash function outputting in G1.
eki, ek

′
i : encryption key for Ui, used in Joye-Libert encryption scheme [7] and in Shi-Chan

encryption scheme [23], respectively
tki, tk

′
i : tag key for Ui used in tag computation for input range validation and for aggregator

obliviousness, respectively
ekA, ek

′
A : decryption/aggregation key for A such that ekA = −

∑
eki and ek′

A = −
∑

ek′
i

Λ : set of threshold values for model parameters such that Λ = {λj | 1 ≤ j ≤ nX}
[ekd]i : i-th secret share of the key of d-th user

Table 2. Notation

cτ ← Πn
1 ci,τ = (1 +N

n∑
1

xi,τ )H1(τ)
∑n

1 eki

(H1(τ)
ekAcτ − 1)N−1 =

n∑
1

xi,τ mod N

PUDA: PUDA [12] is a solution providing a mechanism to validate the aggre-
gation result. The steps of the solution are given in Protocol 1 by following the
convention in [10]. The solution needs a trusted key dealer KD for generation of
the following parameters and keying materials in the setup phase.
– Cyclic groups G1 with generator g1, G2 with generator g2, GT , each of prime

order p, a bilinear mapping e : G1 × G2 → GT .
– A hash function H2 : {0, 1}∗ → G1.
– Encryption keys ek′i ∈ Zp for each user and decryption key ek′A = −

∑n
i ek

′
i

known by the aggregator.
– Tag keys tk′i ∈ Zp for each user.
– Verification key V K = (vk1, vk2) = (g

∑
tk′

i
2 , ga2 ) known by the aggregator.

– A group element ga1 for the users where a is a randomly generated number.
ga1 kept secret from the aggregator.
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Protocol 1 PUDA [12, 10]
Parameters. H2, p, g1, g2,G1,G2,GT , e.
Inputs. Ui inputs xi,t, tk′

i, ek′
i and ga1 . A inputs ek′

A. DA inputs the verification key
V K.
Outputs. A outputs sumt =

∑n
i=1 xi,t. DA outputs the result of the verification.

Protocol steps:

1. Each Ui computes ciphertext ci,t = H2(t)
ek′

ig
xi,t

1 and tag value σi,t =

H2(t)
tk′

i(ga1 )
xi,t , and then sends them to A

2. A computes the sum from Vt = (
∏

i ci,t)H2(t)
ek′

A = gsumt
1 and the aggregated tag

σt =
∏

i σi,t = H2(t)
∑

i tk′
i,t(ga1 )

sumt , and then outputs sumt and σt and sends
them to DA.

3. DA check the equation e(σt, g2) == e(H2(t), vk1)e(g
sumt
1 , vk2) and outputs the

check result.

Karakoc et al. secure aggregation protocol: Karakoc et al. proposed a
solution [10] to convert PUDA into a secure aggregation protocol having the
input-range unforgeability. For that purpose, they introduce a threshold obliv-
ious programmable pseudo-random function protocol where the receiver inputs
a value x and the sender inputs a threshold value λ and a secret value a. At the
end of the protocol, the receiver learns the encryption result of gax1 if x ≤ λ. Oth-
erwise the protocol aborts. The sender outputs the key used in the encryption
of gax. Protocol 2 presents the steps of their solution.
Oblivious Transfer (OT) [17] and its extensions can be used for the receiver to
receive a subset of the sender’s items. We employ Functionality 1 for simplicity,
but employ OT-extension implementation [20].

3 Our solutions

In this section, we introduce three new FaULt toLerant Secure Aggregation pro-
tocols called FULLSA1, FULLSA2, and FULLSA3 for Functionality 4. We also
present a new Batch Oblivious Range Verification protocol, realizing Function-
ality 2, which is utilized by FULLSA1 and FULLSA2. While FULLSA1 and
FULLSA2 consider a semi-honest aggregator, FULLSA3 replaces this building
block with range ZKPs in order to be secure against a malicious aggregator.

The first protocol, FULLSA1, realizes the functionality securely against the
following attacks:
– The semi-honest aggregator tries to learn information about the data points

of the users;
– One or more malicious users try to poison the aggregation by providing data

point values which are greater than threshold values set by the aggregator;
– One or more users can drop out (accidentally or maliciously).

FULLSA2 improves FULLSA1 to make the protocol secure against the semi-
honest aggregator who wants to alter the aggregation result after the computa-
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Protocol 2 Karakoc et al. secure aggregation [10]
Parameters. H2, p, g1, g2,G1,G2,GT , e
Inputs. Ui inputs xi,t, tk′

i, ek′
i. A inputs ek′

A and vk1.
Outputs. A aborts the protocol if at least one xi,t is larger than λ, otherwise outputs
sumt =

∑n
i=1 xi,t.

Protocol steps:

1. Each Ui computes ci,t = H2(t)
ek′

ig
xi,t

1 and sends the result to A.
2. A chooses at randomly, runs Protocol 3 with each Ui. Ui learns ooprfi,t =

kopprfi,t(g
a
1 )

xi,t if xi,t ≤ λ, otherwise ooprfi,t becomes a random number.
3. Each Ui computes the tag value σi,t = H2(t)

tk′
iooprfi,t and sends the result to A.

4. A, computes sumt from Vt = (
∏

i ci,t)H2(t)
ek′

A = gsumt
1 , and computes σt =∏

i(σi,t/kopprfi,t) = H2(t)
∑

i tk′
i,t(ga1 )

sumt .
5. A checks the equation e(σt, g2) == e(H2(t), vk1)e(g

sumt
1 , ga2 )

6. If the verification fails, A aborts the protocol. Otherwise A outputs sumt.

Functionality 1 Oblivious Transfer FOT

Inputs. Sender inputs x0, x1, receiver inputs a bit b.
Outputs. Receiver outputs xb, sender outputs nothing.

Functionality 2 Batch Oblivious Range Verification FBORF

Parameters. g, G, nX .
Inputs. P2 inputs a set of items X = {xj | 1 ≤ j ≤ nX}, P1 inputs a set of threshold
values Λ = {λj | 1 ≤ j ≤ nX}, a set of weights W = {wj | 1 ≤ j ≤ nX}, and a key k.
Outputs. If ∀j xj ≤ λj then P2 learns a masked weighted sum wsum = k × g

∑
xjwj ,

otherwise P2 learns ⊥. P1 outputs nothing.

tion of the aggregation. FULLSA3 improves FULLSA2 to make it secure against
a malicious aggregator.

3.1 Batch Oblivious Range Verification

We first introduce a Batch Oblivious Range Verification protocol with Proto-
col 3, realizing Functionality 2, which is utilized by FULLSA1 and FULLSA2.
The batch oblivious range verification protocol is based on the oblivious graph
evaluation technique used for private set membership protocol in [4] and later
utilized for oblivious equality testing in [9] and oblivious comparison protocol in
[10]. Details of the protocol are presented in Protocol 3. This solution can also
be used as a standalone building block for other purposes.

Figure 1 visualizes such a constructed graph with an example where λ1 =
(100) and λ2 = (010). Also, Figure 2 illustrates potential message exchanges
between the user and the aggregator when X = {(010), (001)} and Λ =
{(100), (010)}.
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Protocol 3 Batch Oblivious Range Verification
Parameters. A generator g of a group G and the set size nX of the receiver P2.
Inputs. P2 inputs a set of items X = {xj | 1 ≤ j ≤ nX}, P1 inputs a set of threshold
values Λ = {λj | 1 ≤ j ≤ nX}, a set of weights W = {wj | 1 ≤ j ≤ nX}, and a key k.
Outputs. If ∀j xj ≤ λj then P2 learns wsum = k × g

∑
xjwj .

Protocol steps:

1. P1 prepares (S0
j,i,S1

j,i) for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ nX as follows:
(a) For 1 ≤ j ≤ nX chooses symmetric keys k<

j,ℓ−1, k=
j,ℓ−1, k>

j,ℓ−1, and okj,ℓ−1

randomly and a random value rj and then computes S0
j,ℓ and S1

j,ℓ as follows:

S0
j,ℓ =

{
{k=

j,ℓ−1, g
0×2ℓ−1wj r

okj,ℓ−1

j } if λj [ℓ− 1] = 0

{k<
j,ℓ−1, g

0×2ℓ−1wj r
okj,ℓ−1

j } otherwise

S1
j,ℓ =

{
{k>

j,ℓ−1, g
1×2ℓ−1wj r

okj,ℓ−1

j } if λj [ℓ− 1] = 0

{k=
j,ℓ−1, g

1×2ℓ−1wj r
okj,ℓ−1

j } otherwise

(b) For i = ℓ − 1 to 1 and for each j ∈ {1, ..., nX} chooses four symmetric keys
k<
j,i−1, k

=
j,i−1, k>

j,i−1, and okj,i−1 randomly and computes S0
j,i and S1

j,i as fol-
lows.
– If λj [i− 1] = 0,

S0
j,i = {Ek<

j,i
(k<

j,i−1), Ek=
j,i
(k=

j,i−1), Ek>
j,i
(k>

j,i−1), g
0×2i−1wj r

okj,i−1

j }

S1
j,i = {Ek<

j,i
(k<

j,i−1), Ek=
j,i
(k>

j,i−1), Ek>
j,i
(k>

j,i−1), g
1×2i−1wj r

okj,i−1

j }

– Otherwise,

S0
j,i = {Ek<

j,i
(k<

j,i−1), Ek=
j,i
(k<

j,i−1), Ek>
j,i
(k>

j,i−1), g
0×2i−1wj r

okj,i−1

j }

S1
j,i = {Ek<

j,i
(k<

j,i−1), Ek=
j,i
(k=

j,i−1), Ek>
j,i
(k>

j,i−1), g
1×2i−1wj r

okj,i−1

j }

2. P1 and P2 run ℓ×j oblivious transfer protocols where in the (j, i)-th OT P1 inputs
(S0

j,i, S
1
j,i) and P2 inputs xj [i− 1] and P2 learns S

xj [i−1]

j,i .

3. P2 first sets result =
∏nX

j=1 g
2ℓ−1xj [ℓ−1]wj r

okj,ℓ−1

j from the received messages

S
xj [ℓ−1]

j,ℓ for 1 ≤ j ≤ nX . P2 also sets k′
j,ℓ−1 as the key in the received messages.

Then performs the following operations for i = ℓ− 1 to 1

(a) P2 sets result = result ×
∏nX

j=1 g
2i−1xj [i−1]wj r

okj,i−1

j from the received mes-

sages S
xj [i−1]

j,i for 1 ≤ j ≤ nX . P2 will also be able to decrypt only one of the
ciphertexts in the received (j, i)-th message using k′

j,i and sets k′
j,i−1 as the

decryption result.

4. P1 computes mask = k ×
∏nX

j=1 r
−

∑ℓ−1
i=0 okj,i

j and divides mask into nX shares
skj such that

⊕
skj = mask. Also computes {Ek<

j,0
(skj) | 1 ≤ j ≤ nX} and

{Ek=
j,0

(skj) | 1 ≤ j ≤ nX}, and sends the encryption results to P2.
5. P2 will be able to decrypt one of the ciphertexts, only, for each j received in

Step 4 using k′
j,0. Finally, after obtaining the secret shares skj via decryption, P2

constructs mask and computes result = result×mask and outputs result.
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Fig. 1. Graph representation of key encryptions executed by the aggregator for λ1 =
(100) (left) and λ2 = (010) (right).

Fig. 2. Execution of Protocol 3 for X = {(010), (001)} and Λ = {(100), (010)}.

Fig. 3. Optimization for λ = (011).
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Algorithm 1 Aggregation result verification algorithm.
1: if ∀j e(σ′

j,t, g2) == e(H2(t, j), vk1)e(g
sumj,t

1 , vk2) then
2: Output that the aggregation result has not been altered
3: else
4: Output that the aggregation result has been altered
5: end if

Optimization. Note that the threshold values in Λ do not always need to
be hidden from the users. In that case, there is an opportunity to optimize the
protocol to increase its performance both in terms of communication and com-
putation. For example, if the last l bits of λi are all ’1’ then there is no need to
execute encryption and OT operations for the last l bits mainly because all po-
tential inputs will inherently be smaller than λi. This optimization is visualized
in Figure 3 for which λ = (011). Only the first bit will need encryption and OT
operations and all the remaining bits are automatically considered as being less
than or equal to 1.

3.2 FULLSA1

We provide detailed steps of our first secure aggregation protocol in Protocol 5
together with FULLSA2 because the latter consists of an extension of FULLSA1
with operations and parameters that are highlighted in blue. Indeed, FULLSA1
addresses aggregator obliviousness in the semi-honest adversary model and user
drop-out cases whereas FULLSA2 additionally allows the verification of the ag-
gregation result (highlighted in blue).

Before the execution of the protocol, some operations need to be performed,
beforehand. Protocol 4 describes this setup phase for FULLSA1 and FULLSA2
and mainly includes the generation of parameters and keys to be used in the
protocol. FULLSA1 mainly consists of executing Protocol 3 with each online
user in order to obliviously verify the range of their inputs and provide the
relevant integrity material if nothing malicious is detected. Regarding dropped
users, the aggregator is able to reconstruct their encrypted values together with
thir tags thanks to the shares received by online users.

3.3 FULLSA2

FULLSA2 improves FULLSA1 by allowing anyone, who holds the verification
key V K = (vk1, vk2) = (g

∑
tk′

i
2 , ga2 ), to verify the aggregation result by running

Algorithm 1. The additional steps on top of FULLSA1 are marked with blue in
Protocol 5.

In addition to the setup steps of FULLSA1, another tag key (tk′i) should

be created by each user and the verification key V K = (vk1, vk2) = (g
tk′

i,t

2 , ga2 )
should be generated for the setup for FULLSA2 as shown in step 6 of Protocol
4. Also, the users should know ga1 , and ga2 can be known by anyone who wants
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Protocol 4 Setup protocol for FULLSA1. Additional steps for FULLSA2 are shown
in blue.

1. The users and the aggregator agree on cyclic groups G1, G2 and GT of prime order
p with a bilinear mapping e : G1 × G2 → GT where g1 and g2 are respectively
generators of G1 and G2.

2. The users and the aggregator agree on a hash function H : {0, 1}∗ → G1.
3. The users create encryption keys (eki) from Zp randomly and the aggregator learns

the decryption key (ekA = −
∑

eki). A trusted party, who does not need to be
online during the execution of the protocol, can be used for this operation or a
secure computation protocol can be used.

4. The users create tag keys (tki) from Zp randomly and send gtki
2 to the aggregator.

5. Each Ui also creates secret shares for their encryption and tag keys such that by
using a threshold secret sharing scheme such as [22] and sends the secret shares
to other users so that at least t users can compute encryption of ’0’ and tag
computation of ’0’ on behalf of the user.

6. Each user creates another tag key tk′
i and a verification key pair V K = (vk1, vk2) =

(g
∑

tk′
i

2 , ga2 ) is generated and published. A trusted party, who does not need to be
online during the execution of the protocol, can be used for this operation or a
secure computation protocol can be used.

to verify the aggregation result. This information helps prevent the aggregator
from sending an incorrect aggregate result.

3.4 FULLSA3

FULLSA3 improves FULLSA2 by making it secure against a malicious secure
aggregator. To achieve this, the semi-honest secure batch verification protocol
is replaced with a zero-knowledge protocol. As stated in [13], there seem to be
only two ways to achieve security against malicious aggregators 1) needing more
than one server where at least one of them should be semi-honest secure (non-
colluding), or 2) utilization of zero-knowledge proofs. The former one is followed
in some constructions such as ELSA[18], but since at least one of the servers
should be semi-honest secure, so one could argue that at the end the protocol
cannot be claimed to be secure against a malicious aggregator. Thus, it seems
that zero-knowledge proofs become the only option to have a secure aggregation
protocol in the full malicious adversary setting (i.e., all the participants can
behave maliciously). Therefore, we utilize zero-knowledge proofs in FULLSA3
and integrate Bulletproofs as range proofs [3] as a realization of the protocol like
in the Rofl solution [13].

We first give the zero knowledge functionality, which is needed in FULLSA3,
in Functionality 3 and then present our malicious secure fault tolerant secure
aggregation protocol (FULLSA3) with Protocol 6.
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Protocol 5 Our secure aggregation protocols FULLSA1 (in black) and FULLSA2 (in
black and blue).
Parameters. H1, H2 p, g1, g3, G1, g2, G2, GT , e.
Inputs. Each non-dropped user Ui inputs Xi,t, eki, tki and tk′

i, {[ekd]i | 1 ≤ d ≤ n},
and ga1 . A inputs ekA, {gtki

2 | 1 ≤ i ≤ n} and Λ.
Outputs. The A outputs an alert if ∃xi,j,t. such that xi,j,t > λj , otherwise outputs
{sumj,t | 1 ≤ j ≤ nX sumj,t =

∑nA
i=1 xUA[i],j,t}.

Protocol steps:

1. A executes Protocol 3 with each non-dropped Ui. In the protocol A and Ui re-
spectively assume the role of P1 and P2. A randomly generates a weight set
Wt = {wj,t | 1 ≤ j ≤ nX} and inputs W and Λ to the protocol. Ui in-
puts Xi,t. At the end of the protocol A learns ki,t and Ui learns oi,t such that
oi,t = ki,t × g

∑
xi,j,twj,t

1 if ∀xi,j,t ≤ λj . Otherwise, oi,t becomes a random value.
2. Each non-dropped Ui selects a set of random values {ri,j,t | 1 ≤ j ≤ nX}, computes

the set of ciphertexts {yi,j,t | 1 ≤ j ≤ nX} and the tag values σi,t and σ′
i,j,t as

follows:
yi,j,t = (1 + (xi,j,t + ri,j,t)N)H1(t, j)

eki mod N2

σi,t = H2(t)
tkioi,tg

∑
ri,j,t

1

σ′
i,j,t = H2(t, j)

tk′
i(ga1 )

xi,j,tg
ri,j,t
3

and then sends {yi,j,t}, σi,t and {σ′
i,j,t} to A.

3. A broadcasts UD.
4. Each non-dropped Ui sends its random number set {ri,j,t} and ciphertext sets

{{[yd,j,t]i | 1 ≤ j ≤ nX , 1 ≤ d ≤ nD} and tag values {[σd,t]i | 1 ≤ d ≤ nD} and
{[σ′

d,j,t]i | 1 ≤ j ≤ nX , 1 ≤ d ≤ nD} for the dropped users such that

[yd,j,t]i = H1(t, j)
[ekd]i mod N2

[σd,t]i = H2(t)
[tkd]i

[σ′
d,j,t]i = H2(t, j)

[tk′
d]i

5. A performs the following steps:
(a) constructs yd,j,t, σd,t and σ′

d,j,t for the dropped users by using the
ShareCombine function presented in [15].

(b) for each dropped user, checks if the following equation holds e(σd,t, g2) =
e(H2(t), g

tkd
2 )

(c) computes sums for each data point and the weighted sum as follows:

sumj,t = (H1(t, j)
ekA

n∏
i=0

yi,j,t)N
−1 mod N −

nA∑
i=0

rUA[i],j,t

sumt =

nX∑
j=0

sumj,t × wj

(d) computes the aggregated tag value as follows:

σt = (

nA∏
i=0

σUA[i],t × g
−

∑nX
j=0 rUA[i],j,t

1 × k−1
UA[i],t)× (

nD∏
i=0

σUD [i],t)

(e) checks the equation e(σt, g2) = e(H2(t), g
∑

tki
2 )e(gsumt

1 , g2)
(f) computes the following and publishes {sumj,t, σ

′
j,t}.

σ′
j,t = (

nA∏
i=0

σ′
UA[i],j,t × g

−rUA[i],j,t

3 )× (

nD∏
i=0

σ′
UD [i],j,t)

6. Anyone holding the verification key (vk1, vk2) can check if the aggregation results
(sumj,t for 1 ≤ j ≤ nX) have been altered, by running Algorithm 1 where vk1 =

g
∑

tk′
i

2 and vk2 = ga2 .
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Functionality 3 NIZK for input validation FNIZK

Parameters. H2, generators g1 and g3 of the group G1, t.
Inputs. The prover inputs a set of items X = {xj | 1 ≤ j ≤ nX}, a set of random
values {rj | 1 ≤ j ≤ nX} and an encryption key ek′, the verifier inputs a set of threshold
values Λ = {λj | 1 ≤ j ≤ nX} and a set of ciphertexts {cj | 1 ≤ j ≤ nX}.
Outputs. The verifier outputs SUCCESS if cj = H2(t, j)

ek′
g
xj

1 g
rj
3 and xj ≤ λj for

1 ≤ j ≤ nX . Otherwise returns an error.

4 Security

Similar to [18], we present an ideal functionality for secure aggregation that is
fault-tolerant and has input-range unforgeability (also called verified inputs [21]
or input validation [1]). Unlike [18], we also present the aggregator as an entity
other than the functionality so that one can consider a malicious aggregator as
well. The ideal functionality is defined in Functionality 4.

Note that step 2 of FAGG ensures input-range unforgeability. Aggregator
obliviousness is satisfied since the aggregator only learns the sum from the func-
tionality. Aggregate unforgeability would be satisfied as long as Υ = 1.

Moreover, we can provide a threshold parameter τ > 1 such that if the
number of users that did not send ⊥ (essentially |UA| in our case) is less than
τ , then the functionality sets sumj,t = ⊥. In the protocols, this would mean
that when the aggregator announces dropped users UD, each user checks this
threshold, and stops if |UA| < τ . To simplify the definition, protocols, and proofs,
we present them without this detail. Security of the following theorem is proven
via ideal-real indistinguishability.

Theorem 1. Assuming that the underlying oblivious transfer protocol is secure
against malicious receiver and the underlying encryption scheme is semantically-
secure, then our Batch Oblivious Range Verification protocol achieves function-
ality FBORF against malicious P2.

Proof (of Theorem 1). We present a simulator that interacts with malicious P2

in the real world, and simulates it in the ideal world.
In step 1, the simulator acts as in the protocol. In step 2, acting as FOT

against malicious P2, the simulator learns its real inputs xj . The simulator sends
those in the ideal world to FBORF . In return, the simulator receives wsum = k×
gΣxjwj if ∀j we have xj ≤ λj , or wsum = ⊥ otherwise. Then in step 4, if wsum ̸=
⊥ the simulator performs according to the protocol. Otherwise (wsum = ⊥), the
simulator picks a random mask and continues. This is indistinguishable by P2

since if the values are within the bounds, the simulator acted exactly as an
honest P1 in FOT hybrid model, and if some value is out of bounds, then P2

will reconstruct a random value at step 5, which is indistinguishable from the
real random value it would obtain due to the semantic security of the underlying
encryption scheme.

Finally, the simulator outputs whatever the adversary outputs. ⊓⊔
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Protocol 6 Our secure aggregation protocol FULLSA3.
Parameters. H1, H2, p, g1, g3, G1, g2, G2, GT , e.
Inputs. Each non-dropped user Ui inputs Xi,t, eki, ek′

i, tk′
i, and {[ekd]i | 1 ≤ d ≤ n}.

A inputs ekA, ek′
A, {gtki

2 | 1 ≤ i ≤ nX}, and Λ.
Outputs. A outputs an alert if ∃xi,j,t such that xi,j,t > λj , otherwise outputs {sumj,t |
1 ≤ j ≤ nX} where sumj,t =

∑nA
i=1 xUA[i],j,t.

Protocol steps:

1. Each non-dropped Ui selects a set of random values {ri,j,t} and computes and
sends {yi,j,t}, {σ′

i,j,t} and {ci,j,t} for 1 ≤ j ≤ nX such that

yi,j,t = (1 + (xi,j,t + ri,j,t)N)H1(t, j)
eki mod N2

σ′
i,j,t = H2(t, j)

tk′
i(ga1 )

xi,j,tg
ri,j,t
3

ci,j,t = H2(t, j)
ek′

ig
xi,j,t

1 g
ri,j,t
3

2. A acts as the verifier in a zero knowledge protocol realizing Functionality 3 with
each non-dropped user Ui acting as the prover. This way, users prove that their
xi,j,t values are within bounds.

3. A broadcasts UD.
4. Each non-dropped Ui sends their random number set {ri,j,t} and ciphertext sets

{{[yd,j,t]i | 1 ≤ j ≤ nX , 1 ≤ d ≤ nD} and {[cd,j,t]i | 1 ≤ j ≤ nX , 1 ≤ d ≤ nD}, and
tag values {[σ′

d,j,t]i | 1 ≤ j ≤ nX , 1 ≤ d ≤ nD} for the dropped users such that

[yd,j,t]i = H1(t, j)
[ekd]i mod N2

[cd,j,t]i = H2(t, j)
[ek′

d]i mod N2

[σ′
d,j,t]i = H2(t, j)

[tk′
d]i

5. A performs the following steps:
(a) constructs yd,j,t, cd,j,t and σ′

d,j,t for the dropped users by using the
ShareCombine function presented in [15].

(b) for each dropped user, and for 1 ≤ j ≤ nX , checks if the following equation
holds e(σ′

d,j,t, g2) = e(H2(t, j), g
tk′

d
2 )

(c) computes sums for each data point and the weighted sum as follows:

sumy
j,t = (H1(t, j)

ekA

n∏
i=0

yi,j,t)N
−1 mod N

sumc
j,t = (H2(t, j)

ek′
A

n∏
i=0

ci,j,t)

(d) checks if the equation holds g
sum

y
j,t

1 = sumc
j,t

(e) computes sumj,t = sumy
j,t −

∑nA
i=0 rUA[i],j,t and sumt =

∑nX
j=0 sumj × wj

(f) computes the following and publishes {sumj,t, σ
′
j,t}.

σ′
j,t = (

nA∏
i=0

σ′
UA[i],j,t × (ga1 )

rUA[i],j,t)× (

nD∏
i=0

σ′
UD [i],j,t)
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Functionality 4 Secure Aggregation Ideal Functionality FAGG

Parameters. Unforgeability parameter Υ .

1. Each user Ui sends its value set Xi,t for the time step t, or ⊥. Here, ⊥ means
that the user is not available for that time step (used for fault-tolerance). The
aggregator sends the public bounds Λ for inputs.

2. The functionality then verifies each xi,j,t ∈ Xi,t where Xi,t ̸= ⊥ against bounds
λj ∈ Λ and calculates the aggregate output sumj,t = Σixi,j,t only if all verifications
pass (∀i, j xi,j,t ≤ λj). Otherwise, sets sumj,t = ⊥. Then, the functionality sends
sumj,t to the aggregator.

3. The aggregator has three options. It can respond with ABORT or CONTINUE,
or it can return a different sum′

j,t.
4. If the aggregator returns ABORT , then the functionality sends ABORT to each

user. If the aggregator returns CONTINUE, then the functionality sends sumj,t

to each user. If the aggregator returns sum′
j,t and the unforgeability parameter

Υ = 0, then the functionality sends sum′
j,t to each user. If the aggregator returns

sum′
j,t ̸= sumj,t and Υ = 1, then the functionality sends INV ALID to each user.

Theorem 2. Assuming that the underlying oblivious transfer protocol is secure
against semi-honest sender, then our Batch Oblivious Range Verification protocol
achieves functionality FBORF against semi-honest P1.

Proof (of Theorem 2). We present a simulator that simulates the view and out-
put of P1, only by knowing its input and output. The input of P1 is essentially
the bounds Λ and weights W and a random k. Its output is nothing.

The only interaction from P2 to P1 in the protocol is during the oblivious
transfer. But, in FOT -hybrid world, P1 receives nothing from FOT . Thus, the
simulator acts exactly as in the protocol, outputs nothing as the view, and
outputs nothing as the output. This is indistinguishable from real. ⊓⊔

Theorem 3. Assuming that the underlying Batch Oblivious Range Verification
protocol is secure, then FULLSA1 achieves functionality FAGG with Υ = 0
against malicious users.

Proof (of Theorem 3). We present a simulator that interacts with malicious users
in the real world, and simulates them in the ideal world.

In step 1, acting as FBORF against malicious users, the simulator learns their
real inputs.

During the remaining steps of the protocol, the simulator acts according to
the protocol on behalf of honest users and the aggregator. For honest users, the
simulator performs the simulation internally with random valid inputs (less than
or equal to the bounds), but this is invisible to the adversary. If, at some point
acting as the aggregator, some value is missing (not received from malicious
users) or any of the verification checks in step 5 of Protocol 5 fails regarding
malicious users, then the simulator sets that malicious user’s input as ⊥. If all
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checks proceed, then the simulator sets that malicious user’s input as the one
learned as FBORF in step 1.

The simulator then sends those in the ideal world to FAGG. In return, the
simulator receives sumj,t values. The simulator publishes the received aggregate
as the real aggregator.

The simulator is indistinguishable from real honest entities as far as the
adversary is concerned, and it outputs whatever the adversary outputs. ⊓⊔

Theorem 4. Assuming that the underlying Batch Oblivious Range Verification
protocol and the Threshold Joye-Libert encryption scheme are secure, and the De-
cisional Diffie-Hellman assumption holds in G1, then FULLSA1 achieves func-
tionality FAGG with Υ = 0 against a semi-honest aggregator in the Random
Oracle model.

Proof (of Theorem 4). We present a simulator that simulates the view and out-
put of the aggregator, only by knowing its input and output. The aggregator’s
input is essentially the bounds Λ, and its output is the sumj,t values.

Knowing sumj,t, the simulator splits them among the users to calculate Xi,t

sets for each user Ui so that all the bounds are satisfied: ∀i, j s.t. xi,j,t ∈ Xi,t and
λj ∈ Λ, we have xi,j,t ≤ λj . Then, acting as the users and the aggregator, the
simulator performs the steps exactly as in the protocol. Finally, the simulator
outputs the view of the aggregator, and the output sumj,t values it received.

The view output by the simulator is indistinguishable from the aggregator’s
view from its interaction with real users due to the following:
– In step 1 of Protocol 5, functionality FBORF hides the users’ inputs from

the aggregator.
– In step 2 of the protocol, we provide a sketch of indistinguishability, due to

space. Due to the security of the Threshold Joye-Libert encryption scheme
(which relies on the hash function H1 being a random oracle, and the Discrete
Composite Residuosity assumption [16]), the adversary cannot distinguish
xi,j,t values hidden within yi,j,t values. Moreover, due to ri,j,t values inside
σi,t values, xi,j,t values are information-theoretically hidden.

– In step 4 of the protocol, when the random numbers ri,j,t are given to the
adversary, the adversary can get rid of the randomness in yi,j,t and σi,t.
But, information about xi,j,t can only be recovered after aggregation due
to H1(t, j)

eki in yi,j,t and H2(t)
tki in σi,t. Remember that to get rid of

H1(t, j)
eki in yi,j,t, values from multiple users need to be aggregated and

canceled out with ekA. A formal reduction would be very similar to the
proof of aggregator obliviousness in PUDA [12], which relies on H1 being a
random oracle and the Decisional Diffie-Hellman assumption holding in G1.

– In step 4 of the protocol, regarding the dropped users, the simulation is
exactly the same as an honest user interaction. The adversary already knows
that 0 is the value used for dropped users. ⊓⊔
Note that, a semi-honest aggregator proof does not cover aggregate unforge-

ability, since the adversary performs the computation correctly. But, FULLSA1
does not provide a verification mechanism for the aggregate sumj,t values the
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aggregator outputs. Therefore, if the adversary outputs some sum′
j,t ̸= sumj,t,

then the simulator forwards it to FAGG with Υ = 0. Thus, FULLSA1 does not
achieve aggregate unforgeability.

Theorem 5. Assuming that the underlying Batch Oblivious Range Verification
protocol is secure, then FULLSA2 achieves functionality FAGG with Υ = 1
against malicious users.

Proof (of Theorem 5). Proof is the same as that of Theorem 3.

Theorem 6. Assuming that the underlying Batch Oblivious Range Verification
protocol and the Threshold Joye-Libert encryption scheme are secure, and the De-
cisional Diffie-Hellman assumption holds in G1, then FULLSA2 achieves func-
tionality FAGG with Υ = 1 against a semi-honest aggregator in the Random
Oracle model.

Proof (of Theorem 6). The same argument in Theorem 4 apply, with Υ = 1, with
some difference: Regarding the indistinguishability of the view produced by the
simulator against the view of the aggregator against honest users, FULLSA2 now
additionally includes σ′

i,j,t values. But, again assuming that ga1 and g3 generate
the same group, xi,j,t values are again information-theoretically hidden at step
2. Similarly, at step 4, H2(t, j)

tk′
i in σ′

i,j,t ensures that xi,j,t values cannot be
recovered individually. A formal reduction would again be very similar to the
proof of aggregator obliviousness in [12, 10], which relies on H2 being a random
oracle and the Decisional Diffie-Hellman assumption in G1.

Considering Algorithm 1, published sumj,t and σ′
j,t values can be verified to

ensure aggregate unforgeability (which is the reason that Υ = 1). The verification
for each j works as follows:

e(σ′
j,t, g2) == e(H2(t, j), vk1)e(g

sumj,t

1 , vk2) (1)

e(σ′
j,t, g2) == e(H2(t, j), g

Σtk′
i

1 )e(g
sumj,t

1 , ga2 ) (2)

e(H2(t, j)
Σtk′

i(ga1 )
sumj,t , g2) == e(H2(t, j), g

Σtk′
i

1 )e(g
sumj,t

1 , ga2 ) (3)

This ensures aggregate unforgeability for FULLSA2 (and FULLSA3). ⊓⊔

Theorem 7. Assuming that the underlying zero-knowledge protocol is ex-
tractable against malicious provers, then FULLSA3 achieves functionality FAGG

with Υ = 1 against malicious users.

Proof (of Theorem 7). The proof is very similar to the proof of Theorem 3.
The only difference is that the simulator learns the adversarial inputs acting as
FNIZK instead of FBORF .

We present a simulator that interacts with malicious users in the real world,
and simulates them in the ideal world.

In step 2, acting as FNIZK against malicious users, the simulator learns their
real inputs and sets accordingly (or ⊥ if a bound check fails).
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During the remaining steps of the protocol, the simulator acts according to
the protocol on behalf of honest users and the aggregator. For honest users, the
simulator performs the simulation internally with random valid inputs (less than
or equal to the bounds), but this is invisible to the adversary. If, at some point
acting as the aggregator, some value is missing (not received from malicious
users) or any of the verification checks in step 5 of Protocol 6 fails regarding
malicious users, then the simulator sets that malicious user’s input as ⊥. If all
checks proceed, then the simulator sets that malicious user’s input as the one
learned as FNIZK in step 2.

The simulator then sends those in the ideal world to FAGG. In return, the
simulator receives sumj,t values. The simulator publishes the received aggregate
as the real aggregator. ⊓⊔

Theorem 8. Assuming that the underlying Threshold Joye-Libert encryption
scheme is secure and the NIZK scheme is zero-knowledge, and the Decisional
Diffie-Hellman assumption holds in G1„ then FULLSA3 achieves functionality
FAGG with Υ = 1 against a malicious aggregator in the Random Oracle model.

Proof (of Theorem 8). We present a simulator that interacts with the malicious
aggregator in the real world and simulates it in the ideal world.

Note that, acting as the aggregator in the ideal world, the simulator learns
the sumj,t values from FAGG.

Then, knowing sumj,t, the simulator splits them among the users to calculate
Xi,t sets for each user Ui so that all the bounds are satisfied: ∀i, j s.t. xi,j,t ∈ Xi,t

and λj ∈ Λ, we have xi,j,t ≤ λj . Then, acting as the users, the simulator performs
the steps exactly as in the protocol.

During this interaction, if the adversarial aggregator aborts at any stage,
the simulator sends ABORT to FAGG. Otherwise, the simulator sends
CONTINUE and stops by outputting whatever the adversary outputs.

Note that, it is possible for the adversarial aggregator to output some
sum′

j,t ̸= sumj,t. In that case, the simulator forwards those to FAGG, which
may send INV ALID to the users. In our protocol, this corresponds to the users
detecting an inconsistency during the verification of sumj,t, σ

′
j,t values, as ex-

plained before for FULLSA2.
The actions of the simulator is indistinguishable from the aggregator’s inter-

action with real users due to the following:
– In step 1 of the protocol, we provide a sketch of indistinguishability, due to

space. Due to the security of the Threshold Joye-Libert encryption scheme
(which relies on the hash function H1 being a random oracle, and the Discrete
Composite Residuosity assumption [16]), the adversary cannot distinguish
xi,j,t values hidden within yi,j,t values. Moreover, due to ri,j,t values inside
σ′
i,j,t values, xi,j,t values are information-theoretically hidden (as long as ga1

and g3 generate the same group).
– In step 2 of the protocol, xi,j,t values are hidden due to the zero-knowledge

property of the underlying NIZK protocol.
– In step 4 of the protocol, when the random numbers ri,j,t are given to the

adversary, the same argument as in the previous proofs apply, which relies
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on H2 being a random oracle and the Decisional Diffie-Hellman assumption
holding in G1.

– In step 4 of the protocol, regarding the dropped users, the simulation is
exactly the same as an honest user interaction. The adversary already knows
that 0 is the value used for dropped users. ⊓⊔

5 Performance Analysis

In the performance analysis, we consider G1 implementation as an elliptic curve
group. To estimate the cost of our protocols, we use experimental measurements
of the various operations such as group operations, hash computation and ex-
ponentiation operation in mod N2. These operations are executed on a regular
personal computer (4 GB RAM, Intel i5-430M 2.27 GHz CPU, UBUNTU 18.04
operating system running on a USB stick). To evaluate the cost of group opera-
tions in our execution environment, we use an open-source library4. The group
operations are in BN224 curve, the hash function is SHA-256, and the length of
N is 2048 bits. The results observed by taking the average of 10 executions are
presented in Table 3.

Table 3. Cost of operations. The hash operation is SHA-256, the group operations are
in BN224 curve, and the length of N is 2048 bits.

Operation ID Operation Required time
O1 Multiplication in G1 2.54 ms
O2 Multiplication in G2 7.65 ms
O3 Multiplication in GT 0.04 ms
O4 Pairing 10.77 ms
O5 Hash operation 0.003 ms
O6 Multiplication in mod N2 0.02 ms
O7 Exponentiation in mod N2 28 ms

Another primitive used in our secure aggregation protocols is the
ShareCombine function. At the server side, ShareCombine needs to be exe-
cuted for each dropped client. The overhead of ShareCombine, the additional
operation executed in the user drop out case, is depicted in Table 4. The thresh-
old in the table denotes the number of users that should contribute their shares
so that the dropped users’ zero-value can be integrated into the aggregate. The
machine used has an Intel i7-7800X 3.50GHz processor and 126 GB of RAM.
Interestingly, the number of dropped users nD does not affect the time much
which is good news for the aggregator. On the other hand, the dimensionality
nX of the data plays a linear role, as expected.

In the cost estimation of the protocols, we don’t count the operations that
can be done offline without knowing the execution specific inputs X, Λ, and W .
4 https://github.com/IAIK/pairings_in_c
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Table 4. Overhead of ShareCombine (O8) at step 5 of our aggregation protocols.

n threshold nX nD Time (ms)
50 33 1,000 1 0.2531
50 33 1,000 10 0.2530
50 33 5,000 1 1.2554
50 33 5,000 10 1.2508
50 33 10,000 1 2.5160
50 33 10,000 10 2.5089
100 66 1,000 1 1.2141
100 66 1,000 10 1.2126
100 66 5,000 1 6.0138
100 66 5,000 10 6.0341
100 66 10,000 1 12.0465
100 66 10,000 10 12.0602
150 100 1,000 1 3.1347
150 100 1,000 10 3.1436
150 100 5,000 1 15.9199
150 100 5,000 10 15.7185
150 100 10,000 1 31.1136
150 100 10,000 10 31.1930

Table 5 depicts the estimations for the computational cost of the protocols for
different set size values. The cost analysis of each protocol is explained in the
following paragraphs.

Batch Oblivious Range Verification. Main operations in this protocol are pub-
lic key operations for the base oblivious transfer that is used for OT-extension,
symmetric key encryption operations, and multiplication operations in G1. Note
that base oblivious transfer can be executed in advance (offline) before the exe-
cution of the protocol, so the communication and computation cost of the base
OT can be ignored for the online phase. When the cost of multiplication in G1

and the cost of symmetric key encryption are compared, it is observed that group

Table 5. Estimated approximate total runtime at the client side (C) and at the server
side (S) per client, based on the most costly operations, for our Batch Oblivious Range
Verification Function (BORF), FULLSA1 and FULLSA2. In the FULLSA2 column,
the cost for additional operations on top of FULLSA1 is given. Estimated costs for
different values of nX is computed under the values n = 150 and nD = 10.

nX BORF FULLSA1 FULLSA2
C

nX
- 2nXO6 +nXO1

S nXO1 (2nDO4 + 3O4 + 3nDO8)/n + nXO6 + (nX + 1)O1 +nXO1

C 1000 - 40 ms +2540 ms
S 2540 ms 2565 ms +2540 ms
C 5000 - 200 ms +12700 ms
S 12700 ms 12807 ms +12700 ms
C 10000 - 400 ms +25400 ms
S 25400 ms 25610 ms +25400 ms
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multiplication becomes the dominant operation in terms of computation cost as
seen in Table 3. The group multiplication operations in Protocol 3 are executed
only in Step 1 by the aggregator. Thus the server needs to perform ℓ × 2 × nX

group multiplication operations. When the optimization for the oblivious graph
explained in Section 3.1 is followed, then the cost in the server side becomes
2 × nX . Also note that the number of group multiplication operations in Step
1 of the protocol can be reduced to nX because the operations to generate ran-
dom masks (rokj,

j ) can be done offline, without knowing the actual data. With
all these optimizations, the complexity at the server side becomes only nX .

FULLSA1. FULLSA1 presented in Protocol 5 requires each client to perform
2 × nX multiplication operations in mod N2 to compute yi,j,t for 1 ≤ j ≤ nX .
Note that the operations H2(t)

tki and g
∑

ri,j,t
1 can be done offline. In addition

to the execution of ShareCombine function for the dropped users, the server
also needs to perform two pairing operations for each dropped user. The server
should also perform nX multiplication operations in mod N for each client, one
multiplication in G1 per client and three pairing operations only once. Also note
that the cost of step 1 is nX multiplication in G1.

FULLSA2. FULLSA2 presented in Protocol 5 is constructed by including some
additional steps, shown in blue in the protocol, on top of FULLSA1. These
additional steps introduce a cost of nX multiplication operations in G1 for com-
putation of (ga1 )xi,j,t to each client. The server additionally needs to perform nX

multiplication in G1 per client to compute g
−rUA[i],j,t

3 .

Remark. It is worth noting that the impact of dropouts in the accuracy of the
model is out of the scope of this paper as it was the case for all papers tackling
the same problem.

Discussion. We don’t provide expected costs for FULLSA3, but it is obvious that
the overhead of FULLSA3 becomes considerably high compared to FULLSA2
because it involves zero-knowledge proofs to make the protocol secure against
a malicious aggregator. Also Step 5.b of FULLSA3 (Protocol 6) requires 2nX

pairing operations for each dropped user. Instead of this amount of pairing op-
erations, zero knowledge proofs can be used for ensuring of encryption of ’0’ for
the dropped users.

As seen from Table 5, although there is no considerable cost on top of batch
oblivious range verification for execution of FULLSA1, to make the protocol
secure against the potential malicious behavior of changing the aggregation result
by the aggregator, the cost doubles in FULLSA2. Since each solution in the
literature has different properties and different setup for experiments, we couldn’t
find a fair way to compare the performance of our protocols with the existing
solutions.
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