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motivations \

G\formation Entropy-Based Node Importance

* Probability of an edge connecting node v; and v; with degree d; and d;.

Training a global machine learning model in decentralized settings requires networked nodes 1

P(vl,v]) = 4d
« Compute self-information of the edge W(vl, v]) connecting node v; and v;.

W(vi,vj) = —log, P(vi, vj) = logz(didj)

to exchange model parameters regularly with their neighbors to achieve a learning algorithm's
convergence. This frequent information exchange among networked nodes results in huge

communication overheads. Thus, communication cost becomes a bottleneck for wireless

« Compute W(v;) representing the sum of self-information of edges with v; as one of its

networks facing resource scarcity Iin terms of limited bandwidth and energy. The .
endpoints.

W(v;) = z W(vi:vj) N (v;): Set of neighbors of node v;

vieyp(vy)

« Compute W*(v;) representing the sum of self-information of edges that v; and its
neighbors are one endpoint of these edges.

W)= ) W(y)  where, p(v) = N(w) U v
viep(vy)

- Probability corresponding to node v; denoted by P(v;) is computed as
wW(v;) w(v;))
P(vj) = W+(7]7i) i) W+(;i) =1
\ E(v) = — z P(v;)log, P(v;)

viep(vy)

communication cost in terms of the number of transmission slots per communication round can
be reduced by exploiting graph sparsification for communication-efficient decentralized
learning, as "not all links are equally important in a graph”. This translates to having the more
Important links activated more often than the less important links to achieve convergence.
Further, it is also the fact that ” not all nodes are equally important in a graph”; therefore, more

critical nodes should communicate more frequently than the trivial nodes.

Such that Zvja/)(v

« Information entropy of node v;

AN

/Probabilistic Sampling of Collision-free Subsets

- Let b; denotes the i*® node’s importance such that ¥V, b, = 1

Decentralized machine learning scenario.

« Different methods exist to compute node Importance in a connected graph, where

Subset importance S;: bs; = Xi2q bil{iey )
« Sampling probabilities:

betweenness centrality methods provide more accurate node ranking in terms of their |
PS]. = min {1,yb5j} i

Importance than any other centrality method. _
\ y is chosen such that ¥, Ps, = B

 The betweenness centrality method does not capture crucial nodes in densely connected

VAN

topologies. i /Scheduling Probabilities and Mixing Matrix
 Also, betweenness centrality is unsuitable for computing node importance for irregular . Nodes scheduling vector for k-th communication round
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