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Information Entropy-Based Node Importance

• Probability of an edge connecting node 𝑣𝑖 and 𝑣𝑗 with degree 𝑑𝑖 and 𝑑𝑗.

• Compute self-information of the edge 𝒲 𝑣𝑖 , 𝑣𝑗 connecting node 𝑣𝑖 and 𝑣𝑗.

• Compute 𝒲 𝑣𝑖 representing the sum of self-information of edges with 𝑣𝑖 as one of its

endpoints.

• Compute 𝒲+ 𝑣𝑖 representing the sum of self-information of edges that 𝑣𝑖 and its

neighbors are one endpoint of these edges.

• Probability corresponding to node 𝑣𝑗 denoted by 𝑃 𝑣𝑗 is computed as

• Information entropy of node 𝑣𝑖

𝑃 𝑣𝑖 , 𝑣𝑗 =
1

𝑑𝑖𝑑𝑗

𝒲 𝑣𝑖 , 𝑣𝑗 = − log2 𝑃 𝑣𝑖 , 𝑣𝑗 = log2 𝑑𝑖𝑑𝑗

𝒲 𝑣𝑖 = ෍

𝑣𝑗𝜖𝜓 𝑣𝑖

𝒲 𝑣𝑖 , 𝑣𝑗 𝑁 𝑣𝑖 : Set of neighbors of node 𝑣𝑖

𝒲+ 𝑣𝑖 = ෍

𝑣𝑗𝜖𝜓 𝑣𝑖

𝒲 𝑣𝑗 where, 𝜓 𝑣𝑖 = 𝑁 𝑣𝑖 ∪ 𝑣𝑖

𝑃 𝑣𝑗 =
𝒲 𝑣𝑗
𝒲+ 𝑣𝑖

Such that σ𝑣𝑗𝜖𝜓 𝑣𝑖

𝒲 𝑣𝑗

𝒲+ 𝑣𝑖
= 1

𝐸 𝑣𝑖 = − ෍

𝑣𝑗𝜖𝜓 𝑣𝑖

𝑃 𝑣𝑗 log2 𝑃 𝑣𝑗

Base Topology Partition into Collision-free Sets

Base topology divided into 𝑞 subsets: 

▪ 𝑆𝑖 = 𝑉𝑖 , 𝐸𝑖

▪ ∪𝑖=1
𝑞

𝑉𝑖 = 𝑉

▪ 𝑉𝑖 ∩ 𝑉𝑗 = ∅, ∀𝑖 ≠ 𝑗

▪ ∪𝑖=1
𝑞

𝐸𝑖 = 𝐸

▪ 𝐸𝑖 ∩ 𝐸𝑗 = ∅, ∀𝑖 ≠ 𝑗

Problem Formulation

• The optimization objective is to find parameter vector 𝑥 ∈ ℝ𝑑

that minimizes the global loss function 𝐹 𝑥

𝐹 𝑥 =
1

𝑁
෍

𝑖=1

𝑁

𝐹𝑖 𝑥

where 𝐹𝑖 𝑥 =
1

𝒮𝑖
σ𝑠∈𝒮𝑖

ℓ 𝑥; 𝑠

Motivations

Training a global machine learning model in decentralized settings requires networked nodes

to exchange model parameters regularly with their neighbors to achieve a learning algorithm's

convergence. This frequent information exchange among networked nodes results in huge

communication overheads. Thus, communication cost becomes a bottleneck for wireless

networks facing resource scarcity in terms of limited bandwidth and energy. The

communication cost in terms of the number of transmission slots per communication round can

be reduced by exploiting graph sparsification for communication-efficient decentralized

learning, as ”not all links are equally important in a graph”. This translates to having the more

important links activated more often than the less important links to achieve convergence.

Further, it is also the fact that ” not all nodes are equally important in a graph”; therefore, more

critical nodes should communicate more frequently than the trivial nodes.

• Different methods exist to compute node importance in a connected graph, where

betweenness centrality methods provide more accurate node ranking in terms of their

importance than any other centrality method.

• The betweenness centrality method does not capture crucial nodes in densely connected

topologies.

• Also, betweenness centrality is unsuitable for computing node importance for irregular

topologies as the BC value of a degree one node is zero.

Decentralized machine learning scenario.

Mixing Matrix Properties and Design

• Distributed averaging at iteration step t: 𝑥 𝑘 + 1 = W𝑥 𝑘

• Necessary and sufficient conditions for the convergence to 
1

𝑁
11𝑇𝑥 0

▪ Each row/column sum up to one: 𝑊1 = 1, 1𝑇𝑊 = 1𝑇

▪ Spectral radius: 𝜌 𝑊 − 𝐽 < 1

• Common choice of mixing matrix: W 𝑘 = 𝐼 − 𝛼𝐿 𝑘

where 𝐿 𝑘 = 𝐷 𝑘 − 𝐴 𝑘 symmetric Laplacian Matrix of a graph

Probabilistic Sampling of Collision-free Subsets

• Let 𝑏𝑖 denotes the 𝑖𝑡ℎ node’s importance such that σ𝑖=1
𝑁 𝑏𝑖 = 1

Subset importance 𝑆𝑗: 𝑏𝑆𝑗 = σ𝑖=1
𝑁 𝑏𝑖1 𝑖𝜖𝑣𝑗

• Sampling probabilities:

𝑃𝑆𝑗 = 𝑚𝑖𝑛 1, 𝛾𝑏𝑆𝑗

𝛾 is chosen such that σ𝑖=1
𝑞

𝑃𝑆𝑖 = ℬ

Decentralized Stochastic Gradient Descent (D-SGD)

• Every iteration of the D-SGD algorithm consists of two steps:

1. Stochastic gradient update:  𝑥
𝑖

𝑘+
1

2 = 𝑥𝑖
𝑘
− 𝛾𝑔𝑖

𝑘

e.g., 𝑔𝑖
𝑘
= ∇𝐹𝑖 𝑥𝑖

𝑘
; 𝜉𝑖

𝑘
, with 𝜉𝑖

𝑘
⊆ 𝒮𝑖 being a randomly sampled mini-batch of data

2. Consensus averaging: 𝑥𝑖
𝑘+1

= σ𝑗=1
𝑁 𝑊𝑖𝑗 𝑥𝑗

𝑘+
1

2 Mixing Matrix: 𝑊 𝑘 = 𝑊𝑖𝑗 𝑘 𝑖,𝑗𝜖 𝑁

Node Scheduling: Sampling Columns of Adjacency Matrix

𝐴𝑝 = መ𝐴 𝑘 = 𝑄 𝑘 𝐴𝑄 𝑘

Symmetric

෠𝐿 𝑘 = 𝑑𝑖𝑎𝑔 መ𝐴 𝑘 𝑢 − መ𝐴 𝑘
Non-symmetric

• Laplacian in 𝑘-th iteration

• Related mixing matrix is

W 𝑘 = 𝐼 − 𝛼෠𝐿 𝑘

Scheduling Probabilities and Mixing Matrix

min
𝑃𝑆1 ,…,𝑃𝑆𝑞

𝔼 𝑊2 𝑘 −
1

𝑁
11𝑇

2
;

min
𝑠,𝛼,𝛽

𝑠

s.t. 𝛼2 − 𝛽 ≤ 0

𝐼 − 2𝛼𝔼 ෨𝐿𝑇 𝑡 ෨𝐿 𝑡 + 𝛽 𝔼 ෨𝐿𝑇 𝑡 ෨𝐿 𝑡 −
1

𝑁
11𝑇 ≼ 𝑠𝐼

• Nodes scheduling vector for 𝑘-th communication round

𝔼 𝑄 𝑘 = 𝑑𝑖𝑎𝑔 𝑝1, … , 𝑝𝑁 𝑝𝑖 = 𝑃𝑆𝑗if 𝑖 ∈ 𝑉𝑟

• The subset probability had been optimized under constrained communication

s.t.    σ𝑙=1
𝑞

𝑃𝑆𝑙 = ℬ and 0 ≤ 𝑃𝑆𝑙 ≤ 1, ∀𝑙

• The solution of the above convex problem is

b  

b  

a  

a a 


