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Abstract—As semantic communication advances, the next gen-
eration (6G) communication needs to intelligently manage the
emerging semantic transmission alongside existing bit transmis-
sion to ensure flexibility and efficiency. This study concentrates
on the coexistence of semantic- and bit- communications within
multi-cell multi-user multiple-input multiple-output (MIMO) sys-
tems, aiming to coordinate the efficiency of emerging semantic
communication with the bit-level accuracy of traditional digital
communication. To this end, a multi-objective optimization frame-
work is established to bolster the efficacy of both communication
paradigms while adhering to the constraints of maximum trans-
mit power and permissible transmission delay. To simplify the
complexity of this problem, we apply the ε-constraint method,
effectively converting the multi-objective problem into a single-
objective one. Subsequently, we implement a block coordinate
descent (BCD) algorithm to alternately design the transceiver
beamformer and the compression ratio of semantic communica-
tion alternately. Numerical results demonstrate the superiority
of the proposed approach compared to existing methods. Our
research sheds light on the coexistence and upgrading of future
semantic-bit coexisting communications.

Index Terms—Semantic communications, bit-level transmis-
sion, multi-cell multi-user MIMO, ε-constraint method, block
coordinate descent.

I. INTRODUCTION

With the rapid development of intelligent devices and ex-
plosive growth of multimedia applications, e.g., augmented
reality/virtual reality (AR/VR), intelligent transportation, and
the Internet of Everything, continue to demand faster, more
reliable, and more efficient wireless communication networks.
Semantic communication, as one of the promising technologies
in the upcoming sixth-generation (6G) wireless communica-
tions by leveraging cutting-edge deep learning (DL) algo-
rithms, is anticipated to satisfy the system demands for high
bandwidth and ultra-low latency [1]–[3].

Different from bit-level communication which focuses on the
bit-level precision between transmitters and receivers, semantic
communication is dedicated to conveying the essential meaning
delivery implied in the source messages. Semantic communi-
cation is more effective than bit communication in resource-
limited scenarios and low signal-to-noise ratio (SNR) regimes
[4]–[6]. By designing the effective joint source-channel coding
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(JSCC) framework which directly maps the input source signal
to channel symbols, semantic communication has the potential
to ease spectrum limitation by reducing transmission overhead
[7].

Recent years have witnessed significant progress in semantic
communication from the standpoint of wireless resource man-
agement [8]. Xia et al. [9] developed a bit-rate-to-message-
rate transformation mechanism and a semantic-aware metric
to jointly optimize user association and bandwidth allocation
problems in both perfect and imperfect knowledge matching
scenarios. Feng et al. [10] considered resource blocks and
power allocation in tandem for dual-mode base station (BS),
aiming to minimize energy consumption while taking into
account the channel state information, maximum delay, load,
and user applications. Zhang et al. [11] introduced a deep rein-
forcement learning (DRL) based dynamic resource allocation
model for task-oriented semantic communication networks, and
designed a deep deterministic policy gradient (DDPG) agent to
maximize the long-term transmission efficiency. Han et al. [12]
investigated a semantic-aware resource allocation problem to
balance the trade-off between transmission latency and task
performance in terms of transceiver beamformer design, the
quantity of transmitted semantic symbols, and channel assign-
ment. Wang et al. [13] modeled the text semantic information
by a knowledge graph and formulated an optimization problem
to maximize the total semantic similarity by optimizing the
resource allocation policy and determining the partial semantic
information to be transmitted. Nevertheless, it is worth noting
that although these pioneering works demonstrate promising
performance results, their adoption in practical systems is
challenging as they require new standardized protocols and
hardware design.

This motivates researchers to investigate a more practical
and gradual transition approach to technology updates by
exploiting the coexistence of both semantic communication and
bit communication. Mu et al. [14] exploited a heterogeneous
semantic and bit transmission framework and proposed three
multiple access schemes, where an access point (AP) simul-
taneously sends the semantic and bit streams. Yu et al. [15]
inserted the encoded semantic information into bit information
for transmission by utilizing the same spectrum resources,
and conducted experiments in a pluto-based software defined
radio (SDR) platform in a real wireless channel. Zhang et



al. [16] employed orthogonal/nonorthogonal multiple access
techniques for serving multiple users and proposed channel
& user demand-based transmission protocols where a joint
optimization mode selection problem is formulated. Xia et al.
[17] jointly investigated user association, semantic or bit mode
selection, and bandwidth allocation problems to maximize the
overall message throughput.

Furthermore, some researchers have proposed a semantic-bit
coexistence framework, which benefits from high efficiency
and low complexity [18]. The following reasons drive our
proposal of this framework: First, semantic communication
demonstrates remarkable performance in low and moderate
SNR regimes, while bit communication outperforms in high
SNR regimes [19]. It is advantageous to investigate a hy-
brid network that fully utilizes bit communication as well
as semantic communication given their distinct characteristics
and proficiencies. Second, the practical channel conditions and
user requirements may change rapidly and drastically in the
upcoming 6G communications. The coexistence of semantic-
bit communication paradigms can provide users with flexible
and enhanced service quality in resource-limited systems.

This paper investigates the optimization design of semantic-
bit coexisting communications over multi-cell multi-user
multiple-input multiple-output (MIMO) systems. The main
contributions are summarized as follows:

• We formulate a multi-objective optimization problem to
maximize the semantic similarity for semantic communi-
cation and minimize expected mean-square error (MSE)
for bit communication simultaneously, subject to the max-
imum transmit power and maximum allowable transmis-
sion delay constraints.

• To make the problem tractable, we utilize the ε-constraint
method to transform it into a single-objective problem,
and then employ the block coordinate descent (BCD)
method to optimize all variables alternately. Specifically,
we propose a constrained successive convex approxima-
tion (SCA)-based algorithm to optimize the transceiver
beamformer and the exhaustive search method to search
the optimal length of extracted features of semantic com-
munication.

• To validate the effectiveness of the proposed strategy
and algorithm, we conducted extensive experiments using
two real-world datasets for image transmission tasks. The
results demonstrate that our semantic-bit coexisting com-
munications strategy for multi-cell multi-user MIMO out-
performs traditional image compression and pure JSCC-
based semantic transmission strategies in terms of trans-
mission efficiency and accuracy.

Notations: We adopt x, x, and X to denote a scalar,
vector, and matrix, respectively. Superscripts ∗, T , and H
stand for the conjugate, transpose, and conjugate transpose,
respectively. Cm×n denotes an m by n dimensional complex
space. Re(·) denotes the real part of complex vectors or
matrices. CN (µ, σ2) denotes the circularly symmetric complex
Gaussian (CSCG) distribution with mean µ and variance σ2.
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Fig. 1. Example of the proposed semantic-bit coexisting communication for
the multi-cell multi-user MIMO system.

II. SYSTEM MODEL

In this section, we describe the transmission model of
the considered semantic-bit coexisting communication system.
Then, a multi-objective optimization problem is formulated to
maximize semantic similarity for the semantic communication
paradigm and minimize the expected MSE for the bit commu-
nication paradigm simultaneously.

A. Semantic-Bit Coexisting Communication Systems

As illustrated in Fig. 1, we consider an L-cell multi-user
MIMO wireless communication system, where the BS l, l =
1, 2, · · · , L equipped with N transmit antennas serves Kl =
K1
l +K

2
l single-antenna users in cell l, including K1

l semantic
users and K2

l bit users. Let us define K1 and K2 to be the set
of all semantic users and the set of all bit users, respectively.
Then, we have |K1| =

∑L
l=1K

1
l and |K2| =

∑L
l=1K

2
l . Let kl

denote the k-th user in cell l. Without loss of generality, we
assume that the size of the information sources fkl is identical
for all semantic users and for all bit users, represented by M1

and M2 respectively.
As shown in Fig. 2, the main process of both communication

paradigms contains three parts: transmitter, MIMO channel,
and receiver. Next, we will introduce each part.

Transmitter: 1) Semantic Communication Paradigm: The
variable-length JSCC encoder, E1

θ (·) : RM1×1 7→ CMkl
×1,

maps the source information into the channel input symbols,
i.e., skl = E1

θ (fkl),∀kl ∈ K1, where Mkl represents the size of
extracted semantic symbol vectors for user kl and θ denotes the
trainable parameters. The varying values of Mkl correspond to
distinct levels of system compression ratio. Let M denote the
set of all possible lengths of Mkl .

2) Bit Communication Paradigm: The conventional separate
source-channel coding (SSCC) encoder and the modulator,
E2(·) : RM2×1 7→ CM×1, maps the source information into
the channel input symbols, i.e., skl = E2(fkl),∀kl ∈ K2,
where M represents the size of transmit symbol vectors after
modulator.
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Fig. 2. Comparison between the semantic communication paradigm and the bit communication paradigm.

MIMO Channel: Let vkl ∈ CN×1 denote the transmit
beamformer at BS l to convey the semantic or bit signal skl . It
is important to note that we allocate only a single data stream
skl , which is one of the elements of skl , for transmission at
each time slot. Consequently, the transmit signal at BS l is

xl =

Kl∑
k=1

vklskl , (1)

where skl has zero mean and E[sklsHkl ] = 1, the symbols
desired for different users are independent of each other [16].
Thus, the discrete-time signal received at user kl is

ykl =

L∑
j=1

hHj,klxj + nkl = hHl,klvklskl

+ hHl,kl

Kl∑
i=1,i6=k

vilsil︸ ︷︷ ︸
intracell interference

+

L∑
j=1,j 6=l

hHj,kl

Kj∑
i=1

vijsij︸ ︷︷ ︸
intercell interference

+nkl ,
(2)

where hl,kl ∈ CN×1 denotes the channel state information
(CSI) between the BS l and user kl; nkl ∼ CN (0, σ2) models
the additive noise with zero mean and variance σ2. Consider
the linear receive beamforming strategy so that the estimated
signal at user kl is given by

ŝkl = u∗klykl , (3)

where ukl represents the receive beamformer. Based on (2),
the signal-to-interference-plus-noise ratio (SINR) experienced
at user kl is obtained as

γkl ,
|hHl,klvkl |

2∑
(i,j)6=(k,l)

|hHj,ijvij |2 + σ2
. (4)

Furthermore, the achievable rate and the transmission delay at
user kl are, respectively, given by

Rkl = log2(1 + γkl), (5a)

Tkl =

{ Mkl

BRkl

, kl ∈ K1,
M

BRkl

, kl ∈ K2,
(5b)

where B is the bandwidth in the system.
Then, the problem of interest is to optimize the hybrid se-

mantic and bit transmission scheme detailed later, subject to the
maximum transmit power Pmax,∀l and maximum transmission
delay Tmax

kl
,∀kl:

Kl∑
k=1

‖vkl‖2 ≤ Pmax,∀l, (6a)

Tkl ≤ Tmax
kl

,∀kl. (6b)

Combining Eqs. (4), (5b), and (6b), we can derive that the
maximum transmission delay constraint is equivalent to

γkl ≥ γmin
kl

,

{
2Mkl

/(BTmax
kl

) − 1 kl ∈ K1,

2M/(BTmax
kl

) − 1 kl ∈ K2.
(7)

Receiver: After receiving all ŝkl and combining them into
ŝkl , the decoding process of both communication paradigms
is, respectively, described as follows:

1) Semantic Communication Paradigm: The variable-length
JSCC decoder, D1

θ(·) : CMkl
×1 7→ RM1×1, maps the channel

output symbols into the reconstructed information, i.e., f̂kl =
D1
θ(ŝkl),∀kl ∈ K1, where θ denotes the trainable parameters

at the receiver.
2) Bit Communication Paradigm: The conventional SSCC

decoder and the demodulator, D2(·) : CM×1 7→ RM2×1, maps
the source information into the channel input symbols, i.e.,
f̂kl = D1(ŝkl), ∀kl ∈ K2.

B. System Performance Metrics

To evaluate the performance of semantic and bit communi-
cation, we adopt different metrics:

1) Semantic Similarity for Semantic Communication: The
semantic similarity between the source information fkl and
reconstructed information f̂kl is defined as [19]:

ξkl = E

[
Bλ(fkl)Bλ(f̂kl)

T

‖Bλ(fkl)‖‖Bλ(f̂kl)‖

]

≈ 1

I

I∑
i=1

Bλ(f
(i)
kl

)Bλ(f̂
(i)
kl

)T

‖Bλ(f (i)kl )‖‖Bλ(f̂
(i)
kl

)‖
,

(8)



where Bλ(·) represents the downstream task execution module,
and we utilize the cosine similarity of the inference outcomes to
quantify the feature semantic similarity. The greater the seman-
tic similarity, the more task-relevant information is retained in
the reconstructed features. However, calculating the true feature
semantic similarity is often impractical in real-world scenarios.
Instead, this can be effectively approximated with the Sample
Average Approximation (SAA) method. Here, I denotes the
total number of samples, and the pair of fkl and f̂kl represents
an individual sample within the dataset.

Remark 1: Most neural networks can be trained with
gradient-based methods as the gradients with respect to the
network’s parameters can be effectively computed with auto-
matic differentiation tools. That implies ∂ξkl

∂ukl

and ∂ξkl

∂vkl

can be
effectively computed.

2) Expected MSE for Bit Communication: The conventional
bit communication is concentrated on recovering the accuracy
of information, which is usually measured by MSE [20]

ek , E
[
|ŝkl − skl |2

]
(9)

= σ2|ukl |2 + 1 +
∑
i,j

|u∗klh
H
j,kl

vij |2 − 2Re(u∗klh
H
l,kl

vkl).

Remark 2: The MSE function exhibits element-wise convexity
with respect to u∗kl and vkl , yet it is not jointly convex.

C. Problem Formulation

In this paper, we aim to maximize the semantic similarity
for semantic users and minimize the expected MSE for bit
users by jointly designing the transceiver beamformer and
the compression ratio, subject to the SINR requirements and
the transmit power constraints. Let v , (v1,v2, · · · ,vKL

),
u , (u1, u2, · · · , uKL

), M , (M1,M2, · · · ,MKL
), ξ ,

(ξ1, ξ2, · · · , ξKL
), and e , (e1, e2, · · · , eKL

). The joint per-
formance maximization problem is formulated as

max
u,v,M

{ξ, e}, (10a)

s.t.
Kl∑
k=1

‖vkl‖2 ≤ Pmax,∀l, (10b)

γkl ≥ γmin
kl

,∀kl, (10c)

Mkl ∈M,∀kl ∈ K1. (10d)

Transforming a multi-objective optimization problem into a
single-objective one is a priori approach, essentially creating a
single-objective optimization problem whose optimal solutions
correspond to the Pareto optimal solutions of the original multi-
objective problem. In this study, we utilize the ε-constraint

method as our scalarization technique [21]:

max
ukl

,vkl
,Mkl

∑
kl∈K1

ξkl , (11a)

s.t.
Kl∑
k=1

‖vkl‖2 ≤ Pmax,∀l, (11b)

γkl ≥ γmin
kl

,∀kl, (11c)

Mkl ∈M,∀kl ∈ K1, (11d)

ekl ≤ emax,∀kl ∈ K2, (11e)

where the weight emax represents the maximum allowable
MSE. The problem is challenging mainly due to the noncon-
vexity of the objective function (11a) and the constraints (11c)-
(11e), which is an obstacle for the development of an optimal
solution.

III. BLOCK COORDINATE DESCENT METHOD FOR
SEMANTIC-BIT COEXISTING SYSTEMS

The BCD method decomposes the optimization variables
into multiple blocks. During each iteration, it optimizes one
block while keeping the other blocks fixed.

A. Transmit Beamformer Design
According to the principle of BCD, we first investigate

the optimization of transmit beamformer vkl for fixed Mkl

and receive beamformer ukl . The transmit beamformer design
problem accordingly reduced to

max
vkl

∑
kl∈K1

ξkl , (12a)

s.t.
Kl∑
k=1

‖vkl‖2 ≤ Pmax,∀l, (12b)

γkl ≥ γmin
kl

,∀kl, (12c)

ekl ≤ emax,∀kl ∈ K2. (12d)

Next, we propose to leverage the constrained SCA [22] tech-
nique to update the transmit beamformer. The key to the
success of constrained SCA lies in constructing a surrogate
function satisfying gradient consistency for the objective func-
tion (12a) and a surrogate function satisfying the upper bound
property for constraint (12c). On one hand, we adopt the
first-order expansion to approximate (12a), and the surrogate
function is constructed at vkl = v

(n)
kl

as follows:

f̃(vkl ,v
(n)
kl

) ,
∑
kl∈K1

−∇ξ(n)i

(
vkl − v

(n)
kl

)
. (13)

On the other hand, the constraint (12c) is equivalent to

g(vkl) ,
∑

(i,j)6=(k,l)

|hHj,ijvij |
2 + σ2 − γmin

kl
|hHl,klvkl |

2 ≤ 0,

(14)
and we adopt partial linearization [23, Eq. (10)] to approximate
it, i.e.,

g̃(vkl ,v
(n)
kl

) ,
∑

(i,j)6=(k,l)

|hHj,ijvij |
2 + σ2

− 2γmin
kl

Re((v
(n)
kl

)Hhl,klh
H
l,kl

vkl),

(15)



Therefore, the surrogate problem is given by

v̂
(n)
kl

, argmin
vkl

f̃(vkl ,v
(n)
kl

) (16a)

s.t.

Kl∑
k=1

‖vkl‖2 ≤ Pmax,∀l, (16b)

g̃kl(vrl ,v
(n)
rl

) ≤ 0,∀kl ∈ K1, (16c)

ekl ≤ emax,∀kl ∈ K2, (16d)

and the transmit beamformer v(n+1)
kl

is updated according to

v
(n+1)
kl

= v
(n)
kl

+ γkl(v̂
(n)
kl
− v

(n)
kl

), (17)

where γkl is the iterative step size for updating vkl . It is evident
that the problem is also a convex quadratic programming (QP)
problem, which can be effectively solved by the CVXPY.

B. Receive Beamformer Design
For fixed Mkl and transmit beamformer vkl , the problem of

designing receive beamformer accordingly reduces to

max
ukl

∑
kl∈K1

ξkl (18a)

s.t. ekl ≤ emax,∀kl ∈ K2. (18b)

Similar to transmit beamformer design, the surrogate function
for objective function is constructed as ukl = u

(n)
kl

as follows:

f̃(ukl , u
(n)
kl

) ,
∑
kl∈K1

−∇ξ(n)i

(
ukl − u

(n)
kl

)
, (19)

Then, the surrogate problem is given by

û
(n)
kl

, argmin
vkl

f̃(ukl , u
(n)
kl

) (20a)

s.t. ekl ≤ emax,∀kl ∈ K2, (20b)

and the receive beamformer u(n+1)
kl

is updated according to

u
(n+1)
kl

= u
(n)
kl

+ γkl(û
(n)
kl
− u(n)kl

), (21)

where γkl is the iterative step size for updating ukl . It is evident
that the problem is also a convex QP problem, which can be
effectively solved by the CVXPY.

C. Compression Ratio Design
For fixed transceiver beamformer ukl and vkl , the problem

of designing compression ratio accordingly reduces to

max
Mkl

∑
kl∈K1

ξkl , (22a)

s.t. γkl ≥ γmin
kl

,∀kl ∈ K1, (22b)

Mkl ∈M,∀kl ∈ K1. (22c)

We utilize an exhaustive search algorithm to address the above
problem. It is important to highlight that the computational
complexity is acceptable, attributed to the finite set M. This
approach ensures a meticulous examination of all potential
solutions, thereby delivering optimal performance without in-
curring excessive computational demands.

The details of the proposed algorithm are presented in
Algorithm 1.

Algorithm 1 BCD Method for Semantic-Bit Coexisting Com-
munication Systems
Input: All channel matrices hl,kj , γmin

kl
, and emax. Output:

vkl , ukl , and Mkl .
1: for κ = 1, 2, ... do
2: for n = 1, 2, ... do
3: Given v

(n)
kl

and construct the surrogate functions w.r.t.
vkl according to Eq. (19).

4: Solve the surrogate problem (20).
5: Update transmitter beamformer v

(n+1)
kl

according to
Eq. (21).

6: end for
7: for n = 1, 2, ... do
8: Given u(n)kl

and construct the surrogate functions w.r.t.
ukl according to Eqs. (13) and (15).

9: Solve the surrogate problem (16).
10: Update transmitter beamformer u(n+1)

kl
according to

Eq. (17).
11: end for
12: Search the optimal compression ratio in the problem

(22).
13: end for

D. Convergence and Complexity Analysis

Convergence analysis: Based on the constrained SCA al-
gorithm for transceiver beamformer design and the exhaustive
algorithm for compression ratio design, a stationary point is
guaranteed for each subproblem. Therefore, the initial equiva-
lent function is guaranteed to increase monotonically, and our
proposed algorithm is convergent.

Complexity analysis: The complexity of updating vkl and
ukl at each iteration of the subproblem is O((|K1|+|K2|)2N2)
andO((|K1|+|K2|)2). The complexity of updating Mkl at each
iteration of the subproblem is O(|M|).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed algorithm in a 4-cell multi-user MIMO system.

A. Experimental Setups

1) Datasets: For wireless image transmission, we adopt the
Cityscapes [24] dataset for training and the CVRG-Pano [25]
dataset for testing. Cityscapes is a street scene images dataset
that is captured under similar weather and lighting conditions in
50 different locations. CVRG-Pano dataset is a 360◦ outdoor
panoramic image dataset including 600 RGB images with a
resolution of 1664× 832.

2) Parameters and Deployment Details: Our experiment
considers the multi-cell multi-user MIMO system with four
users, two transmitter antennas, and two receiver antennas.
The path loss is modeled as 128.1 + 37.6 log[d(km)] dB with
the standard deviation of shadow fading 6 dB. The power
spectral density of Gaussian noise is -174 dBm/Hz and the
total bandwidth is 5 MHz. For model training, we utilize a
variable learning rate, which decreases step-by-step from 1e-4



to 2e-5. The experiments are conducted on RTX4090 GPUs.
The whole framework is optimized with Adam [26]. The batch
size is set as 16.

3) Comparison Benchmarks: The semantic-bit coexisting
system adopts DeepJSCC [27], a pioneering framework of
JSCC based on autoencoder for end-to-end wireless image
transmission. We compare the proposed design with the fol-
lowing baselines:
• ZF: This baseline scheme utilizes commonly adopted

zero-forcing (ZF) and water-filling algorithm as beam-
forming, and maintains the DeepJSCC network un-
changed.

• BPG + LDPC + QPSK: For the separate source-channel
coding scheme, the benchmark employs BPG for source
coding, low-density parity-check (LDPC) for channel cod-
ing, QPSK modulation, and ZF for beamforming. Here,
we consider LDPC with code rates 3/4 and 1/2, which
are denoted by “BPG + 3/4LDPC + QPSK” and “BPG +
1/2LDPC + QPSK”, respectively.

4) Evaluation Metrics: We utilize the widely used pixel-
wise metric peak signal-to-noise (PSNR) and the perceptual
metric multi-scale structural similarity index (MS-SSIM) [28]
as measurements for the reconstructed image quality. Higher
PSNR and MS-SSIM values indicate better reconstruction
performance.

B. Results Analysis

1) Performances for Different Power Budget: We first eval-
uate the image reconstruction quality of the semantic-bit coex-
isting scheme and other baselines with 8 users. As shown in
Fig. 3(a), it can be observed that PSNR performance improves
with the increase of assignable power for all schemes. This
is because when sufficient transmission power is available,
both semantic and conventional codec schemes can achieve
significant coding gain. In addition, for different power levels,
the proposed scheme consistently surpasses the benchmarks,
which indicates the superiority of the proposed beamforming
strategy. For example, when the power = 50 dBm, the proposed
scheme achieves about 2 dB performance gains compared to
the proposed scheme with the traditional ZF algorithm. In
Fig. 3(b), the coexisting scheme achieve better reconstruction
results in terms of MS-SSIM compared to the traditional digital
coding schemes. This result indicates that the satisfying visual
perception quality is ensured through extracting semantics
inside the original image signals where the DL-based semantic
communication preserves even more high-frequency image
details compared to the bit-only scheme.

2) Performances for Different Number of Users: Fig. 4
demonstrates the performance versus different user numbers
at a fixed total power Pmax = 60dBm to demonstrate a
better view of the relationship between proposed algorithm
performance and user numbers. As shown in Fig. 4(a), it is
observed that the coexisting scheme generally outperforms bit-
only schemes in all user numbers for PSNR metric in MIMO
transmission scenarios. This is because given a fixed power
for image transmission, the semantic-bit coexisting system can
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Fig. 3. Performance comparison of the reconstructed image quality under
different total power over the CVRG-Pano dataset.

provide more resources to the high-quality demand users given
the optimized transmit symbol values. Specifically, in Fig.
4(b), the traditional beamforming scheme perform inferior to
the proposed algorithm which implies that special design of
beamforming for coexisting systems is required. The proposed
algorithm outperforms the three benchmark schemes in all
user number settings. According to the optimized strategy,
the proposed framework can adaptively adjust the source and
channel coding rate based on deep JSCC structure, ensuring
that it can obtain efficient performance gains. As the user num-
ber increases, the coexisting scheme still achieves relatively
satisfying performances compared to other benchmarks, which
validates the superiority of the proposed algorithm for efficient
data compression and transmission.

V. CONCLUSION

In this paper, we focus on semantic-bit coexisting commu-
nications of multi-cell multi-user MIMO systems and aim to
enhance the system performance metrics, i.e., semantic simi-
larity for semantic transmission and MSE for bit transmission.
We first establish a multi-objective optimization framework to
enhance the performance of both semantic and bit communica-
tion paradigms for multi-cell multi-user MIMO systems. Fur-
thermore, we employ the ε-constraint method to simplify the
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Fig. 4. Performance comparison of the reconstructed image quality under
different numbers of users over the CVRG-Pano dataset.

multi-objective problem into a single-objective one, facilitating
the design of a BCD algorithm for the alternating optimization
of the transceiver beamformer and the compression ratio of
semantic communication. Simulation results confirmed the
huge potential of semantic-bit coexisting communication in
improving the performance of future communications systems.
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