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Abstract—This work introduces a novel method for enhancing
confidence in anomaly detection in Intrusion Detection Systems
(IDS) through the use of a Variational Autoencoder (VAE)
architecture. By developing a confidence metric derived from
latent space representations, we aim to improve the reliability of
IDS predictions against cyberattacks. Applied to the NSL-KDD
dataset, our approach focuses on binary classification tasks to
effectively distinguish between normal and malicious network
activities. The methodology demonstrates a significant enhance-
ment in anomaly detection, evidenced by a notable correlation of
0.45 between the reconstruction error and the proposed metric.
Our findings highlight the potential of employing VAEs for more
accurate and trustworthy anomaly detection in network security.

Index Terms—Trustworthy AI, confidence estimation, varia-
tional autoencoders, intrusion detection

I. INTRODUCTION

In the era of digital advancement, the Internet’s rapid

expansion has been paralleled by a significant increase in

sophisticated cyberattacks and as a result, network security

has become an important domain [1]. These attacks not only

threaten individual privacy and security but also challenge the

integrity of critical infrastructure [2]. Against this backdrop,

Intrusion Detection Systems (IDS) have emerged as an es-

sential tool in the cybersecurity arsenal, designed to detect

and mitigate malicious activities in network traffic [3]. An

IDS identifies unauthorized or harmful attacks that frequently

occur in a network [4]. To address vulnerable attacks, many

tools and mechanisms have been developed over the years,

with a significant focus on learning-aided algorithms [5] [6].

More recently, machine learning (ML) has taken center

stage, to make a categorization of different types of network

attacks [7], employing techniques ranging from supervised

learning, where models are trained on labeled datasets to

recognize specific types of attacks, to unsupervised learning

[8], which detects anomalies without prior knowledge of attack

signatures. Another promising area involves semi-supervised

learning, which combines elements of both to efficiently

handle data with sparse labels [9]. Despite the advantages these

methods offer, each comes with limitations, ranging from high

false positive rates in behavior-based systems to challenges of

keeping supervised models up-to-date with new attack vectors.

In this work, we extend our innovative approach [10] to the

field of network security and intrusion detection, by lever-

aging the capabilities of Variational Autoencoders (VAEs).

VAEs, which are known for their proficiency in generating

new data instances and encoding data into a compact latent

space [11], offer a unique advantage in identifying intricate

patterns indicative of cyberattacks [12]. By employing VAEs,

our methodology not only aims to detect anomalies but also

to assess the reliability of unknown samples before their

evaluation. This is achieved through the development of a

confidence metric that provides insights into the expected

accuracy of anomaly classifications, thereby addressing a

critical challenge in intrusion detection research. Using the

VAE’s architecture, our confidence metric, based on the latent

space representations, and with the core methodology, based

on generating meaningful latent spaces, proved effective in

enhancing the trustworthiness of our predictions.

For instance, consider a scenario where an IDS detects

potential anomalies in network traffic. Traditional methods

may flag these anomalies, but without a measure of confidence,

the system might generate numerous false positives, leading to

unnecessary alerts and wasted resources. By incorporating our

confidence metric, derived from the Mahalanobis distance in

the latent space, we can effectively gauge the trustworthiness

of each detection. Suppose an unknown sample is considered

highly trustworthy based on its proximity to known training

samples in the latent space, we can reduce false positives

and increase the efficiency of our IDS without any additional

manual tuning or complex adjustments. This straightforward

enhancement demonstrates the practical value of our approach

in real-world applications.

In the current study, we adapt and refine our algorithm to ad-

dress the challenges of anomaly detection in IDS. By applying

our method to the NSL-KDD dataset [13], a benchmark dataset

in network security research, we demonstrate its versatility

and effectiveness across diverse data domains. This cross-

disciplinary application underscores the robustness of our

VAE-based technique in generating reliable confidence metrics

for predictions, which is a critical aspect in both environmental

studies and cybersecurity. Through this continuity of research,

we not only validate the universal applicability of our method

but also contribute to the advancement of ML applications

in ensuring data integrity and security in networked environ-

ments. Focusing on binary classification, our work simplifies

the complex landscape of network threats into a dichotomy of

normal and malicious activities. This simplification allows for

a more streamlined and focused approach to identifying and



mitigating cyberthreats.

The implications of our findings are important. By en-

hancing the reliability and accuracy of anomaly detection,

our approach contributes to the development of more robust

and effective IDS systems. In a broader context, this research

addresses the urgent need for advanced cybersecurity measures

in an increasingly interconnected world.

II. SYSTEM MODEL

We leverage the architecture of VAEs and their proficiency

in generating novel data instances. A VAE is a Directed Prob-

abilistic Graphical Model (DPGM) that has a posterior that

is approximated by a neural network having an autoencoder-

like architecture [14]. The encoder Enc(·) operates on the

input data X, which encompass features such as security,

temporal, and protocol among others, to encode them into

a new representation projected within the latent space, i.e.,

Enc(X) = Z. Subsequently, the decoder Dec(·) utilizes this

latent space representation Z as input to generate new data

X̂, i.e., Dec(Z) = X̂. These generated data instances are

accompanied by a reconstruction error R̂e.

Mathematically, the VAE consists of an encoder network

qφ(Z|X) and a decoder network pθ(X|Z), where:

• X is the input data,

• Z is the latent representation,

• φ and θ are the parameters of the encoder and decoder

networks, respectively.

The encoder approximates the posterior distribution p(Z|X)
and the decoder reconstructs the input data from the latent

representation:

qφ(Z|X) ≈ p(Z|X). (1)

The objective of training a VAE is to maximize the Evidence

Lower Bound (ELBO), which is given by

L(θ, φ;x) = Eqφ(Z|X)[log pθ(X|Z)]− KL(qφ(Z|x)‖p(Z))
(2)

where KL(·‖·) denotes the Kullback-Leibler (KL) divergence

between the approximate posterior qφ(Z|X) and the prior

p(Z).
The first term of the ELBO is the reconstruction loss, which

ensures that the decoder can effectively reconstruct the input

data from the latent representation. The second term is the KL

divergence loss, which regularizes the latent space to follow a

prior distribution, typically a standard normal distribution.

A. Optimization Problem

The optimization problem we address is to find the optimal

parameters θ and φ of the VAE that minimize the negative

ELBO, i.e.,

min
θ,φ

−L(θ, φ;x). (3)

Additionally, we aim to minimize the reconstruction error

for normal data while ensuring that the latent space provides

a meaningful representation for detecting anomalies. This

involves finding the right balance between the reconstruction

loss and the KL divergence loss.

The complete objective function for training the VAE can

thus be written as:

Ltotal = LRe + βLKL (4)

where β is a hyperparameter that controls the trade-off be-

tween the reconstruction loss LRe and the KL divergence

loss LKL. So it captures the trade-off between accuracy and

generalization. By optimizing this objective function Ltotal, we

ensure that the VAE can effectively reconstruct normal data

and provide a reliable measure for detecting anomalies based

on the reconstruction error.

B. Anomaly Detection

In this work, we focus on a reconstruction-based anomaly

detection method. Reconstruction-based methods try to iden-

tify anomalies by comparing the original input data to the data

reconstructed by the model. The underlying assumption is that

anomalies are not well-represented by the latent space learned

from the normal data, and thus will have higher reconstruction

errors.

Given an input sample x, the VAE projects it to the latent

space to obtain z, and then reconstructs it back to x̂. The

reconstruction error R̂e is computed as

R̂e = ‖x− x̂‖2. (5)

To perform anomaly detection, we set a predefined threshold

T on the reconstruction error. This threshold setting is crucial

as it directly influences the sensitivity and specificity of the

anomaly detection. If the reconstruction error for a given

sample exceeds this threshold, the sample is flagged as an

anomaly:

ŷ =

{

1 if R̂e > T

0 otherwise.
(6)

III. PROPOSED METHODOLOGY

In this study, our objective is to introduce a methodology

that assesses the reliability of an unknown sample for anomaly

detection before subjecting it to evaluation. Our goal is to

derive a confidence metric, C, which is informative regarding

each unknown instance’s Xun expected error ê and therefore

the final classification as an anomaly or not, given the train

set Xtrain and the predictor P (·). The confidence metric can

be expressed mathematically as

C(Xun|Xtrain, P (·)) ∝ ê . (7)

A. Prediction Error Calculation and Post Hoc Classification

The expected prediction error ê is defined as the absolute

value of the difference between the label ytrue and the

normalized reconstruction error, R̂e, obtained from the VAE:

ê = |ytrue − R̂e|. (8)

This means that when the instance is labeled as an anomaly,

we strive for a reconstruction error that is as high as possible,

and when the instance is labeled as normal, we want the

reconstruction error to be as low as possible. Our approach

treats this error as a continuous variable.



Fig. 1: The main components of our VAE architecture

B. Mahalanobis distance

Since we evaluate the reliability of unknown observations in

latent space, we choose to use the Mahalanobis distance [15].

The Mahalanobis distance offers several key advantages over

the Euclidean distance.

Mathematically, the Mahalanobis distance between a point

x and a distribution with mean µ and covariance matrix Σ is

defined as:

DM (x) =
√

(x− µ)TΣ−1(x− µ). (9)

Here, x is the latent representation of an observation, µ is

the mean vector of the training latent representations Ztrain,

and Σ is the covariance matrix of Ztrain.

The Mahalanobis distance accounts for the distribution of

the data by incorporating the covariance structure of the

latent representations. This metric effectively normalizes the

distances based on the variance along each dimension, making

it sensitive to the correlation between features. Consequently,

it scales the distance measurements appropriately according to

the actual spread of the data.

In contrast, the Euclidean distance treats all dimensions

equally, ignoring the potential variability and correlations that

exist in the data, which can lead to misleading results in high-

dimensional spaces where features may have different scales

and variances.

By using the Mahalanobis distance, we improve our ability

to discern how anomalous a new observation is relative to the

training data, leading to a more robust and reliable confidence

metric for anomaly detection. This method allows us to assess

the reliability of each unknown sample before subjecting it to

evaluation, ultimately improving the overall trustworthiness of

our IDS.

C. Confidence Metric Calculation

To calculate the confidence metric C using the Mahalanobis

distance, we incorporate the covariance structure of the la-

tent space. First, we train the VAE model to obtain latent

representations of the training data, Ztrain, and the unknown

observations, Zun. Once trained, we use the model as an

evaluator for the inference data we have. During evaluation,

the model generates new instances based on the features of the

inference data. We consider that the unknown observations that

are closer to representations of training points Ztrain are more

trustworthy.

The distance C for the j-th unknown observation can be

written as:

Cj =
√

(zjun − (z+j,1)
TΣ−1

train(z
j
un − (z+j,1)) (10)

where

• z
j
un is the latent representation of the j-th unknown

observation,

• z+j,1 is the nearest representation to the j-th unknown

observation,

• Σtrain is the covariance matrix of Ztrain,

• Σ−1
train is the inverse of the covariance matrix.

D. Evaluation Metric

To evaluate if the proposed confidence metric C is informa-

tive with the error, we measure its correlation with prediction

error ê

r = corr(C, ê) . (11)

IV. EXPERIMENTAL RESULTS

A. The NSL-KDD Dataset

Among the datasets employed to benchmark IDS perfor-

mance, the NSL-KDD dataset [13] has gained prominence.

As an improved and standardized version of the KDD Cup

99 dataset [16], it addresses several of its predecessor’s

shortcomings, offering a more reliable foundation for research

in intrusion detection and network security. The NSL-KDD

dataset’s widespread acceptance underscores its relevance and

utility in fostering advancements within this domain.

Although the NSL-KDD dataset traditionally encompasses

multi-class labels, in our experiments we focus on using

it as a binary classification task. Specifically, from the 41
features that the dataset includes, regarding the attack, we

consolidate all instances of network intrusions into a single

class labeled as ’1’, while normal network traffic is labeled



as ’0’. This decision allows us to simplify the classification

task and focus our efforts on detecting malicious activities

effectively. Analyzing the dataset, we observe that the training

set comprises 46.54% instances of network intrusions and

53.46% instances of normal traffic. Similarly, the testing set

contains 56.92% instances of network intrusions and 43.08%

instances of normal traffic, showcasing the prevalence of

malicious activities in both training and testing data.

We pay close attention to the NSL-KDD dataset’s details,

especially how it organizes network information into different

features. These features include basic details about network

connections and more advanced information that helps us

understand the flow of network traffic better. By looking at

these features, we can tell apart normal network activities from

those that might be harmful.

When we use the NSL-KDD dataset to separate normal

activities from possible threats, it is not just about the features

themselves but also about how these features interact with

each other. This interaction helps us spot suspicious patterns.

Before even starting our experiments, we prepare the dataset

carefully, i.e., we make sure that all data are on a similar scale

so that our analysis is accurate.

B. VAE Architecture and Training Curriculum

The VAE architecture utilized in our study consists of two

main components: an encoder and a decoder, each structured

with five fully connected layers. The encoder is responsible

for transforming the input data into a lower-dimensional latent

space representation. It begins with an input layer that matches

the dimensionality of the input data, followed by a sequence of

linear layers with respective dimensions of 512, 384, 256, and

128 neurons, each activated by Rectified Linear Unit (ReLU)

functions. The final layer in the encoder outputs two sets of

values: one for the mean and one for the log variance of the

latent space distribution, each with a dimension equal to twice

the latent dimension size to accommodate the mean and log

variance parameters.

The decoder, on the other hand, reconstructs the original

input data from the latent space representation. It starts with

a linear layer that takes the latent dimension as input and

expands it to 128 neurons, followed by layers of 256, 384, and

512 neurons, each activated by rectified linear unit (ReLU)

functions. The final layer in the decoder maps the 512-

dimensional representation back to the original input dimen-

sion.

Given the unsupervised nature of our task, the data consists

only of features without explicit labels. During the training

phase, we iterate over 30 epochs, using an initial learning

rate of 0.001, dynamically adjusted by a StepLR scheduler.

The optimization process employs the Adam Optimizer. The

VAE’s loss function combines the Mean Squared Error (MSE)

loss, which quantifies the difference between the reconstructed

output and the original input, with the KL divergence loss.

Figure 2 illustrates the latent space projections of both

train and test data, once the predictor is trained with the

available Xtrain. The color coding in the figure helps depict

(a) Train Set (b) Test Set

Fig. 2: T-SNE Visualization of the latent space for both train

and test sets.

the prediction error of each observation, providing a visual

representation of how well the VAE model manages to cluster

and differentiate between normal and anomalous instances.

C. Adjusting Model Parameters

Two main parameters affect the performance of our confi-

dence metric: (i) the dimension of the latent space, and (ii)

the β parameter that controls the trade-off between accuracy

and generalization. The selection of those optimal parameters

can be seen as a multivariate problem and can be approached

with alternating optimization, by optimizing iteratively one

parameter at a time.

1) Latent Space Dimension: In determining the appropriate

dimension for the latent space, as we can observe in Table

I, we carefully consider the trade-off between computational

efficiency and the efficacy of our model’s performance metrics.

Following a series of experiments, we conclude that setting

the latent space dimension to 20 and the default β= 1 yields

near-optimal results.

TABLE I: Latent Space Dimension Correlations

LS Dimension General Corr Corr FN Corr FP

5 26% 3% 50%

10 39% 2% 17%

20 42% 6% 55%

30 41% 12% 52%

The results of our correlation analysis underscore the signif-

icant potential of employing the Mahalanobis distance in the

latent space for improving the reliability of anomaly detection

in IDSs. The general correlation of r = 42% between the latent

space distance and the proposed prediction error highlights the

effectiveness of the latent space representation in capturing

substantial variability within the data. This indicates that the

VAE model is proficient at distinguishing between normal

and anomalous instances. The high correlation associated

with false positives suggests that the latent space excels in

capturing features of normal network traffic, which reduces

the number of benign instances misclassified as attacks. This

is further evidenced by the model’s high precision score of

0.90, demonstrating a strong ability to correctly identify true

positive instances of network intrusions.



2) KL weight β: In our experiments, we adjust the KL

divergence weight, denoted as β in equation (4), to observe

its impact on the performance of the VAE. The KL weight

controls the balance between the reconstruction loss and the

regularization term in the VAE’s loss function. By varying β,

we aim to find the optimal trade-off that enhances the model’s

ability to detect anomalies.

Fig. 3: Weights for the KL loss and correlation

As we can observe in Figure 4, the optimal value of β is

0.25. The results indicate that this value yields the highest

correlation for our metric of 45%. As β goes higher we can

see that the correlation drops significantly, indicating that too

much regularization can hinder the model’s effectiveness in

capturing meaningful patterns in the latent space for anomaly

detection.

This choice strikes as well a balance between computational

complexity and the ability of the model to effectively capture

the underlying structure of the data, resulting in favorable

outcomes across our proposed evaluation metric.

D. Optimal Threshold and Anomaly Predictions

To determine the optimal threshold for the reconstruction

error and subsequent classification, we conduct an analysis

aiming to maximize the F1 score on the training data by having

the dimension of the latent space equal to 20 and β = 0.25.

Through this process, we identify an optimal threshold T value

of approximately T = 0.07. We can observe the evaluation

metrics below.

• Precision: 0.9093

• Recall: 0.6444

• F1-score: 0.7543

• Accuracy: 0.7610.

Despite its seemingly small magnitude, this threshold ef-

fectively balances precision and recall, resulting in robust

classification performance on the training dataset.

It is also interesting to examine the results of the confusion

matrix:

Table II presents the correlation analysis between the con-

fidence metric and various error types (False Positives, False

Fig. 4: Confusion Matrix

TABLE II: Correlations of Latent Space Dimension with

Different Error Types

LS Dim. Corr

FP

Corr

FN

Corr

TP

Corr

TN

Gen.

Corr

20 57% 7% 15% 19% 45%

Negatives, True Positives, and True Negatives) for the optimal

latent space dimension of 20. The correlation values indicate

how well the confidence metric, derived from the latent space

distance, aligns with the actual classification errors in the

anomaly detection task.

The correlation for False Positives (FP) is notably high

at 57%, suggesting that the confidence metric is particularly

effective in identifying normal instances that are incorrectly

classified as anomalies. This high correlation indicates that the

metric can help reduce false positives by providing a reliable

measure of how similar an instance is to the training data.

In contrast, the correlation for False Negatives (FN) is

relatively low at 7%, implying that the confidence metric

is less effective in detecting anomalous instances that are

incorrectly classified as normal. This indicates a potential area

for improvement in the model’s ability to correctly identify

true anomalies.

The correlations for True Positives (TP) and True Negatives

(TN) are 15% and 19%, respectively, showing a moderate

relationship between the confidence metric and these correct

classifications. The general correlation across all error types

is 45%, reflecting the overall effectiveness of the confidence

metric in capturing the variability in the data for anomaly

detection.

These results underscore the importance of the confidence

metric in improving detection accuracy, particularly in re-

ducing false positives, and highlight the need for further

refinement to enhance the detection of true anomalies.



E. Experiment with Choquet–Mahalanobis distance

In addition to our primary approach, we conduct experi-

ments comparing the effectiveness of the Mahalanobis and

the Choquet Integral Operator [17]. The Choquet integral is a

sophisticated aggregation operator that can capture interactions

between features in a more refined manner. This method is

particularly advantageous in scenarios where feature inter-

actions are complex and not easily captured by traditional

distance measures. For this experiment, we implement the

Choquet integral to aggregate the distances between the latent

representations of the training and test sets.

Our findings indicate that the Choquet–Mahalanobis dis-

tance can achieve a general correlation of 45% between the

confidence metric and the prediction error. However, it is

important to note that the Choquet integral, while effective,

proved to be significantly more computationally expensive

compared to the Mahalanobis distance. The increased compu-

tational cost arises from the complexity involved in computing

the Choquet integral, which requires more intensive calcula-

tions to capture the interactions between features.

F. Evaluation of the Confidence Metric

To evaluate the effectiveness of our confidence metric in

assessing anomaly detection, we conduct a comprehensive

analysis across multiple dimensions. In addition to assessing

the distance in the Latent Space (LS), we also calculated

distances in the Feature Space (FS).

1) Comparison of different distances: In our analysis, we

evaluate the effectiveness of three different distance metrics:

Mahalanobis, Euclidean, and Cosine. The Mahalanobis dis-

tance, which as stated before, takes into account the covari-

ance structure of the latent space, demonstrates the highest

correlation of 45% with the error metric. This suggests that

the Mahalanobis distance is particularly effective in capturing

the intricate patterns in the latent space that are indicative

of anomalies. The Euclidean distance, a more straightforward

metric, shows a correlation of 38%. While it is computa-

tionally less complex, it does not account for the underlying

data distribution, which may lead to less accurate anomaly

detection compared to Mahalanobis distance. The Cosine

distance, which measures the cosine of the angle between

two vectors, exhibits a correlation of 32%. This metric is

often used for high-dimensional spaces and can be useful

when the magnitude of the vectors is less important than their

direction. However, in our context, it proves to be less effective

than both Mahalanobis and Euclidean distances. Overall, the

Mahalanobis distance provided the best performance in terms

of correlation with the error metric, indicating its superiority

for our specific use case in IDS anomaly detection.

TABLE III: Comparison of different distances

Mahalanobis Euclidean Cosine

Correlation 45% 38% 32%

2) Computational Complexities of Mahalanobis Distance

in LS vs. FS: When implementing Mahalanobis distance,

the computational complexity for the LS and the FS can

vary significantly. This disparity primarily arises due to the

dimensional differences and the covariance matrix computa-

tion. In latent space, where the dimensionality is typically

much lower due to the compressed representations learned

by the VAE, the computation of the covariance matrix and

its inverse is computationally less demanding. Consequently,

calculating Mahalanobis distances in this space tends to be

faster, as evidenced by the observed execution time of ap-

proximately 8 minutes. In contrast, the feature space often

retains the high-dimensional nature of the original data. This

increases the computational burden associated with estimating

the covariance matrix, regularizing it, and performing matrix

inversion. Additionally, the high dimensionality amplifies the

cost of pairwise distance calculations, leading to a noticeable

increase in processing time, with the feature space calcula-

tions taking around 37 minutes. This significant difference

highlights the practical advantage of using latent space rep-

resentations for distance calculations, which not only provide

meaningful lower-dimensional embeddings but also enhance

computational efficiency.

V. DISCUSSION

This research extends an innovative use of Variational Au-

toencoders to the critical field of network security, demonstrat-

ing the VAE’s capability not only to distill complex network

traffic data into a meaningful latent space but also to enhance

the reliability of anomaly detection in Intrusion Detection

Systems. The introduction of a reliable confidence metric

derived from latent space representations marks a significant

leap forward in our methodology, offering a refined approach

to evaluating the trustworthiness of IDS predictions.

The notable correlation observed in the latent space under-

lines the VAE model’s profound ability to capture and interpret

the complex patterns indicative of cyberthreats. This correla-

tion is not merely a numerical assessment but a reflection of

the intrinsic data structure, which significantly contributes to

the confidence in anomaly detection. The higher correlation

values in the latent space, compared to those in the feature

space, underscore the latent space’s critical role in identifying

and distinguishing between normal and malicious network

activities.

Our findings demonstrate the latent space’s potential beyond

dimensionality reduction, establishing it as a pivotal element

for ensuring prediction reliability in cybersecurity applications.

This methodology bridges the gap between raw network

data and actionable insights, enhancing the IDS capability to

safeguard against sophisticated cyberattacks while fostering

trust in ML-based security solutions.

Comparing our approach to traditional methods of anomaly

detection, which often rely on either predefined rules or su-

pervised learning models, our VAE-based methodology offers

a dynamic solution capable of adapting to new and evolving

threats. Unlike many existing models that struggle with high



false positive rates or require extensive labeled datasets, our

method effectively utilizes unsupervised learning to identify

intricate patterns indicative of cyberattacks, as supported by

the correlation metrics presented in our results.

Future research should aim to further validate and refine

the proposed methodology across a broader range of datasets

and network environments. Investigating the scalability of

this approach to handle multi-class classification tasks and

exploring ways to reduce computational overhead are critical

next steps. Additionally, integrating our confidence metric with

real-time monitoring systems could offer new insights into its

practical applicability and effectiveness in operational settings.
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