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Abstract—The emergence of new computing paradigms such
as Edge Computing, Fog Computing, and Far-Edge Computing
is driven by the increasing demands of modern applications.
Together, these paradigms form the Cloud-Edge Computing
Continuum (CECC), presenting new challenges in resource al-
location and incentive-driven interactions. New stakeholders are
joining the business market to make a profit by selling their
services (i.e., infrastructure resources, applications, or virtual
resources). These actors, namely, infrastructure providers and
service providers, have conflicting goals in terms of making a
profit. There is a need to study and model the business interaction
between these actors, especially considering the distributed na-
ture of continuum. In this paper, we tackle the resource allocation
and pricing problem in the context of CECC. We first propose a
system model of the incentive interactions between actors of the
continuum, where the price of resources varies based on different
factors. Then, we formulate a budget-aware resource bidding
problem where the objective is to jointly maximize the budget
of a service provider and minimize Service Level Agreement
(SLA) violations. To address this challenge, we propose a Deep
Reinforcement Learning (DRL) approach that efficiently balances
budget expenditure and SLA compliance. Our experimental
results demonstrate that the proposed method effectively achieves
a favorable trade-off between budget management and SLA
satisfaction.

Index Terms—Edge Computing, Cloud and Edge Computing
Continuum, Resource Pricing, Deep Reinforcement Learning

I. INTRODUCTION

The emergence of latency-sensitive and bandwidth-intensive
applications imposed heavy expectations on the communica-
tion infrastructure. These new services, such as Metaverse [1],
Holographic Communication [2], and Autonomous Vehicles
[3], require considerable improvements in the overall network-
ing infrastructure. Consequently, this infrastructure evolved
to integrate with caching and computing services to satisfy
these requirements. This resulted in the emergence of new
paradigms that integrate computing and caching in different
parts of the network, intending to address the latency issues
and network bottlenecks. Edge Computing [4], for instance, is
a paradigm that was proposed to bring computing resources
closer to the user, which alleviates the challenges of network
backbone limitations and high latency of cloud services. Fol-
lowing this strategy, Cloudlets [5], Multi-Access Edge Comput-
ing (MEC) [6], Fog Computing [7], and In-Network Computing
(INC) [8] were proposed as paradigms that follow the same
goal, but place computing and caching resources at different

places of the network. However, the stringent service require-
ments of new and innovative applications necessitate the use
of multiple computing paradigms to meet these requirements.
To this end, a promising approach is envisioning a network-
wide architecture, utilizing a continuum of resources across
the network, and combining the capabilities of edge servers,
the cloud, and end devices to create a hierarchical paradigm
known as the Cloud and Edge Computing Continuum (CECC)
[9].

The CECC brings together diverse actors and stakehold-
ers within a unified infrastructure to meet users’ latency
and quality of experience requirements. This heterogeneous
environment, with varying stakeholder goals and incentive
mechanisms, presents significant challenges in business in-
teractions. Given that some infrastructure providers operate
within distinct geographical or administrative domains, a ser-
vice provider may need to engage with multiple providers
across different network points to optimize revenue and SLA
fulfillment. Modeling these interactions across the entire in-
frastructure continuum is complex, necessitating intelligent
strategies for managing incentives and interactions with vari-
ous continuum actors.

The network incentive and resource pricing problem has
been widely investigated by the research community. Based
on the literature, the incentive interaction is generally modeled
using Auction Theory and Game Theory. In the scope of
CECC, the literature is limited to contributions addressing
mainly pricing at the edge computing level, considering cloud,
edge servers, and the end users [10], [11]. To our knowledge,
there are still limited works that address the pricing prob-
lem considering the whole continuum. Additionally, very few
works address the challenge by considering the dynamicity
of user requests, and service providers. In this paper, we
tackle the resource pricing problem considering the whole
continuum. We first model the incentive interactions between
service providers and infrastructure providers by considering
a dynamic environment with varying user requests. We for-
malize the joint problem of SLA violation minimization and
maximization of revenue. Then, we propose a deep reinforce-
ment learning algorithm to solve the problem of jointly max-
imizing the service provider’s budget while minimizing SLA
violations. The contributions of our paper can be summarized
as follows:



• We model the incentive environment considering the
whole cloud and edge computing continuum. We leverage
concepts from auction theory to make service providers
bids on different resource providers.

• We formulate the resource pricing problem with a joint
objective of maximizing the service provider’s budget and
minimizing SLA violations.

• We propose a Deep Reinforcement Learning approach
to address the problem with a well-defined observation,
action, and reward space to alleviate high-dimensionality
issues that impact the learning stability.

• Finally, we conduct simulation experiments to evaluate
the performance of our proposed method.

The remainder of this paper is organized as follows. Section
II reviews the related work. In Section III, we present our
system model and formulate the optimization problem. We
describe our DRL approach in Section IV. Section V analyses
the performance of our proposal. Finally, Section VI concludes
this work and outlines potential future directions.

II. RELATED WORKS

The emergence of edge computing has enabled various
applications and improved network performance but also in-
troduced new challenges, particularly in pricing, incentives,
and economics within the Cloud-Edge Computing Continuum.
While research has addressed these challenges using ap-
proaches such as Auction Theory, Game Theory, and Machine
Learning, there remains a need for further exploration.

Auction theory [12], a popular economic approach, is lever-
aged to address the economic challenges in edge computing.
Specifically, auction-based mechanisms are promising since
they can fairly and efficiently allocate limited resources of sell-
ers to buyers in a trading form at competitive prices. Effective
auction mechanisms ensure key properties such as truthfulness,
budget balance, and economic efficiency [13]. In an auction
theory model applied to edge computing, the sellers are the
infrastructure providers, and the buyers (bidders) are service
providers or users (end devices). For instance, in the work of
[14], authors tackle the issue of maximizing social welfare in
MEC systems using a combinatorial auction mechanism called
G-ERAP, which allocates virtual machines to end devices. In
the same context, Double auctions, suitable for many-to-many
scenarios, are explored in [11], where a single-round auction
allocates resources based on device preferences and edge
server capacities, mediated by a trusted third party. Similarly,
the authors in [15] propose a multi-participant double auction
model where infrastructure providers sell resources to service
providers, facilitated by an auctioneer to ensure fairness. They
introduce binary search-based algorithms to optimize resource
allocation and ensure bidder truthfulness.

Alternatively, game theory, and especially Stackleberg
games, have been heavily leveraged to model the incentive
interactions between stakeholders. For instance, in [10], a dual
Stackelberg game is employed to design a pricing scheme
for IoT applications involving cloud providers, multi-edge
infrastructure providers, and end devices. The cloud provider

sets the initial price, followed by the edge providers and
end users, who adjust their strategies based on these prices.
A double-label radius KNN algorithm is used to optimize
pricing efficiency. Similarly, [16] models resource allocation
in edge computing through a Stackelberg game, where edge
providers seek profit maximization, and end devices aim to
maximize utility. The problem is solved using an iterative
algorithm. In [17], three dynamic pricing mechanisms (BID-
proportional, uniform, and fairness-seeking) are analyzed to
guide edge service providers on optimal pricing strategies.
A sharing economy-based model is proposed in [18], where
excess resources are shared among users, leading to improved
resource utilization. Additionally, [19] introduces a market-
based framework to allocate resources from geographically
distributed edge nodes to competing services, achieving market
equilibrium through strategic pricing.

In another context, machine learning, especially Reinforce-
ment Learning (RL) proved to be very efficient in tackling
problems in complex environments. While each RL agent can
represent a stakeholder in the game, a multi-agent scenario
might be suitable to maximize the fairness and utility of each
actor. This has been experimented with by the authors of
[20]. The work considers a 5G network scenario where virtual
network functions are allocated across multiple domains. The
authors propose an auction-based approach for inter-domain
resource allocation using a distributed multi-agent RL solution.

Following the literature review conducted in the preceding
section, a noticeable gap is identified in the contextual focus
on CECC. Many of the works that address the challenge of
resource pricing consider cloud computing and edge com-
puting as separate entities, whereas we consider the whole
continuum. Additionally, most of the works primarily address
challenges from the perspective of infrastructure providers. In
our work, we consider a service provider that needs to allocate
resources to satisfy its users and generate revenue. Finally,
some works consider users as participants in the auction, which
is not realistic, since the users interact only with a service
provider. Our approach involves the interaction of various
stakeholders, including cloud providers, service providers, and
fog/far-edge infrastructure providers. In the following section,
we propose our system model and define a resource pricing
problem that aims to jointly maximize revenue and minimize
SLA violations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this section, we describe the system model that we
consider in such a complex environment. Fig. 1 gives a high-
level representation of the incentive interactions between the
different actors. The system operates as an auction, where in-
frastructure providers act as sellers, offering resources at a base
price, while service providers (bidders) submit bids for specific
infrastructure. The auction is managed by the Cloud and Edge
Computing Continuum Manager (CECCM), a central entity
responsible for coordinating interactions, resource manage-
ment, and federation across the continuum. CECCM abstracts



Fig. 1: Cloud and Edge Computing Interactions.

management processes into a unified layer, ensuring stan-
dardized interactions via APIs from organizations like GSMA
OPG and CAMARA. Inspired by initiatives like GAIA-X [21],
which promotes secure and trusted data exchange, the CECCM
plays a neutral role as auctioneer, handling payments and
resource allocation. It determines the auction winner for each
infrastructure provider and allocates resources accordingly.
Once services are deployed, users offload their requests to
access these services. Service providers aim to efficiently
allocate resources by bidding within their budget constraints.
The following sections describe the detailed system model,
focusing on infrastructure and service providers.

1) Infrastructure: We consider a Cloud and Edge Com-
puting Continuum infrastructure composed of heterogeneous
infrastructure providers. Each entity encompasses a set of
computing resources centralized in data centers located in
a specific region. We consider three types of infrastructure
providers, namely, Cloud providers, Edge/Far-Edge providers,
and Fog providers. Consequently, we model the infrastructure
as a graph G = (R,L) such that R represents the set of
infrastructure providers (nodes of the graph), and L represents
the network links. Each node r in the infrastructure has a set
of resources Nr = {Nr,v | v ∈ V } such that Nr,v represents
the amount of resources of type v of node r. For instance, if
it is a CPU resource then the value represents the cycles per
time. A link l = (p, r) represents a physical or virtual link
between the nodes p and r. It is identified by a bandwidth
amount EBw

l and a propagation delay EPd
l . Fig. 2 gives a

high-level representation of the infrastructure nodes, links as
well as the auction system. It is worth mentioning that the
infrastructure includes a set of special nodes referred to as
access nodes (base stations, wireless access points) that don’t
have resources ( Nr = {0 | v ∈ V }). At the start of the

auction, the infrastructure providers announce their base prices
Pr,v which represents the price per unit for a certain type of
resource. Table I presents the main notations used in this work.

r

r

r

l

l

r
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Bidding & Resource
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Fig. 2: High-Level Representation of the auction system.

2) Service Provider: Let’s consider a set of service
providers denoted as S = {s1, s2, ...sn}, where |S| = S. We
assume that each service provider has a set of users, namely
subscribers. The service provider needs therefore to allocate a
set of resources to satisfy their SLA requirements. For each
round, the infrastructure providers announce their unit prices,
this value increases whenever we get closer to the access
nodes. Let us define a set of users as U , assuming that each
user can utilize only one service at any given time. The users
of a specific service provided by the service provider s are
represented as Us, where U = {Us | ∀s ∈ S}.



Symbol Description

S Set of service providers {s1, s2, ...sn}
R,L, V Set of nodes, links and resource types

Nr,v , N ′
r,v Total amount of resources of type v in node r

and the available resources

EBw
l , EPd

l Bandwidth and propagation delay of link l

Pr,v Base price for a unit of v resource on the
infrastructure provider r

Us Set of users of the service provider s

Qs
u Request of user u to service si

MDATA, MCPU Average data size of a request message, and
average work, measured in CPU instructions, to
process a request message.

λs Service Level Agreement’s deadline of service
provider s

Bs, bs(.) Initial budget and remaining budget of a service
provider s

Fs,v(.), ls,r Function to calculate amount of resource re-
quired based on the request rate, and the user
load of service provider s on node r

X, xr,v The bidding strategy, and the bid value on node
r and resource type v

W s
r (X) Result of auction of service provider s on node

r based on its bidding strategy

asr,v(X) Allocated budget of service provider s on node
r based on the bidding strategy

θs(X), Ds(r,X) The average deadline violation of all deploy-
ments, and the average deadline violation on a
node r

TABLE I: System Model Notations

The service provider’s user sends requests to the deployed
services. These requests are characterized by the number of
resources required to process the request and the data size of
the request message. We define the user request as follows
Qs

u = (MDATA,MCPU ), where MDATA is the average data
size of a request message, and MCPU is the average work,
measured in CPU instructions, to process a request message.
The users of a certain service provider have agreed on a certain
latency that we define as λs. The users’ requests need to
respect this agreement and the service provider’s goal is to
minimize the SLA violations. On the other hand, Each service
provider enters the market with an initial budget Bs, aiming
to maximize this budget and maintain market presence. The
service provider is also subject to SLA violation constraints,
therefore the SLA violations need to be minimized. The
service providers engage in a bidding process with different
infrastructure providers to allocate resources and provision
services to serve users’ requests, based on the prices pro-
posed by the infrastructure providers. Similarly, infrastructure
providers seek to maximize their budgets by offering resources
at competitive prices. We consider the time divided into a set
of periods, such that the price to pay is defined per period.
This means that the budget represents the amount of money
that the service provider will be paying each period. This is
very close to cloud computing subscriptions, where resource

prices are paid on a per-hour price.

B. Problem Formulation

At the start of a certain period, the infrastructure providers
announce their base price for the resources they are sell-
ing as well as the amount of available resources to the
CECCM. The service providers need, therefore, to compete
for these resources by participating in the auction to allocate
resources for a given price. The goal of service providers is
to satisfy their users while minimizing their budget spending.
The service providers need to decide upon the unit price of
resources to bid and the amount of resources to allocate.
To simplify the process of resource allocation, we model
the resource demand as a function of the request rate [22].
Fs = {Fs,v(x) | v ∈ V } describes the scalable resource
demands. More specifically, Fs,v(x) is a function expressing
the amount of resource v ∈ V that must be allocated to
an instance of the service s to handle an incoming load x,
which is the average request arrival rate at this instance. Once
a request is sent by the user, it gets routed to the closest
computing node based on the network distance with the user.
The service provider’s decision will mainly concern the unit
price to bid on each node of the infrastructure. The resource
bidding scheme is referred to as X = {xr,v | v ∈ V, r ∈ R }
such that xr,v represents a unit price that service provider is
willing to pay for an infrastructure provider r over the usage
of resources.

The service provider’s bidding strategy will affect the
amount of money that it will spend. The auction will decide
on the winner based on the highest bid price. The service
provider has an estimated budget to be spent, which is the
maximum budget that it can spend Bs. The budget that is
left is calculated based on the bids it won. W s

r (X) represents
whether a service provider has won the auction on a certain
infrastructure provider r. The service provider will be allocated
resources from the bids it wons depending on the budget. The
CECCM will analyze the capacity of a service provider to
pay and cancel its bid in case the budget is not available.
Therefore Ws(X) represents the set of auction results of
a service provider based on the bidding strategy such that
Ws(X) = {W s

r (X) | r ∈ R , W s
r (X) ∈ {0, 1}} . On the

other hand, once a service provider wins a bid on a certain
infrastructure provider, it will allocate most of the resources
that satisfy its resource demand. We denote the amount of
budget allocated by service provider s on node r as asr,v(X).
The allocated budget is calculated based on the load received
at a node r denoted as ls,r. We also denote the remaining
budget for the service provider after the auction as bs(X).
Equation 1a specifies how the final budget will be calculated
based on the initial budget and the bidding strategy.

bs(X) = Bs −
∑
r∈R

∑
v∈V

W s
r (X) asr,v(X) (1a)

asr,v(X) = min {N ′
r,v, Fs,v(ls,r)} xr,v (1b)

On the other hand, the service provider is constrained by
deadline violations. The deadline violation θs(X) is calculated



based on the average deadline violation of all requests to
each deployed instance. Equation 2a calculates the average
deadline violation over all the deployed instances of service s.
Ds(r,X) represents the weighted average deadline violation
of the instance deployed on node r. Moreover, 1(x) is an
indicator function equal to 1 if x > 0 and 0 otherwise.

θs(X) =
1

|R|
∑
r∈R

Ds(r,X) W r
s (X) (2a)

Ds(r,X) =
1 (RT (s, r)− λs) ls,r∑

r∈R ls,rW r
s (X)

(2b)

Where RT (s, r) is the average response time of an instance
of service s deployed in node r.

We can now formulate the joint resource pricing problem for
a service provider that aims to minimize the budget spending
and minimize QoS violations as follows:

P : min
X

wθs(X) + (1− w)(Bs − bs(X)) (3a)

s.t.
∑
v∈V

xr,sN
′
r,v < Bs ∀r ∈ R (3b)

xr,s ≥ 0 ∀r ∈ R (3c)

Where w ∈ [0, 1] is a constant weight that defines the
importance of both objectives. Constraint (3b) ensures that the
service provider can not make bids that go above its budget.
Constraint (3c) restricts bidding negative values for each node
of the infrastructure.

IV. A DEEP REINFORCEMENT LEARNING APPROACH

The resource pricing problem can be framed as an Integer
Linear Problem (ILP), which is often difficult to solve with
traditional methods due to complexities like dynamic end-
user behavior (e.g., mobility) and variable delays based on
deployment. To overcome these challenges, we propose a deep
reinforcement learning (DRL) approach to solve problem P ,
avoiding the need for explicit modeling of these parameters.

Reinforcement learning excels in dynamic environments,
adapting to unseen scenarios. By leveraging this, a service
provider can delegate financial decisions to the DRL agent,
which aims to maximize revenue while minimizing deadline
violations. Service providers will compete for resources, seek-
ing an optimal balance between budget expenditure and SLA
compliance.

The action space that the DRL agent will explore includes
X, the set of bidding prices for each infrastructure provider.
This means that the service provider needs to take into
consideration the whole continuum nodes to make a decision.
Such an approach can be improved, leading to reduced action
space for the DRL agent and resulting in a stable learning.
To reduce the action space of the DRL agent, we follow a
progressive auction system. This can alleviate issues due to
large action space that can affect the model’s learning. At the
start of each time step t, we explore the infrastructure node
by node. The service providers need to iteratively make a bid
on the resources of an infrastructure provider. The episode

will end when we arrive at the last node. Consequently, the
CECCM will decide on the winner of the auction and allocate
resources. In what follows, we present our state, action, and
reward space.

A. State Space

The agent will explore the topology node by node, the
current node is denoted as rt. Consequently, the state space S
of the agent includes the following:

• N ′
rt = {N ′

rt,v| v ∈ V }, which represents the amount of
available resources on the current node.

• DISrt = {DIS(rt, r)| r ∈ Raccess}, which represents
the network delay between the current node and all the
access nodes that users connect through.

• F s
t = {F s

t,v| v ∈ V }, which represents the current
resource demand.

• λs, the service provider’s deadline, specified in the SLA.
• θst represents the current deadline violation with the

current won bids and allocated resources. This value is
calculated based on the users’ requests and current allo-
cated services. Every time the service provider allocates
resources the deadline violation is prone to change. It
either decreases or stays the same. It decreases only if
the service was allocated in a better node that can satisfy
users more than the other previously deployed services.

• bst , the current remaining budget, based on the last bids
won and allocated resources.

• asrt−1,v , representing the latest payment made. This is
calculated based on the auction result of the last node
and the bid price.

• TY PErt , this is the node type that can be either edge/far-
edge node, fog node or cloud node.

• Prt,v , which is the base price announced by the current
infrastructure provider.

B. Action Space

The agent’s action is to select a bidding price for each
node progressively at each time step. The bid price needs
to be, therefore, greater than 0 and less than its remaining
budget divided by the amount of resources it will allocate. For
simplicity, we define a [0, a] space for the service provider just
to alleviate the problem of dynamic action space. The variable
a denotes the upper limit of this action space, corresponding
to the maximum price the agent is allowed to bid.

C. Reward Space

To help the agent learn a proper policy, we design a progres-
sive reward function. The reward function we are employing
is presented as follows:

R(t) = wA(t) + (1− w)B(t) (4a)

A(t) =

{
(θst−1 − θst ) If W s

rt = 1

0 Otherwise
(4b)

B(t) =

{
1

1+(Bs−bst )
If t = |T | − 1

0 Otherwise
(4c)



The instant reward that the agent receives after taking an action
is R(t). It is composed of two main building blocks. First part
A(t) represents the difference between the previous deadline
violation θst−1 and the new deadline violation θst . The value
means that the action realized by the agent in the last step
which mean deploying a new service resulted in an improved
SLA satisfaction. If the service provider didn’t won the bid,
then this part of the reward will be 0. We leveraged this in
order to encourage the agent to bid higher and satisfy the user
SLAs. On the other hand, B(t) which is the second part of
the reward include (Bs − bs(t)) which refers to the amount
of spent budget at time step t. The service provider needs to
minimize this value. Both A(t) and B(t) have values in the
range [0, 1], the B(t) is given to the agent at the end of the
episode, contrary to A(t) which is given at each time step. We
leverage w as a weight variable in order to balance between
budget minimization and SLA satisfaction.

TABLE II: Experimentation Parameters

Parameter Value
CPU Resource Nr,v

(×109IPS)
Edge/Far-Edge: [5,10], Fog: [10,50],
Cloud: 1000

Bandwidth EBw
l

(Mbps)
Edge, Far-Edge, Fog: [100, 200],
Cloud: [1000]

Propagation delay
EPd

l (ms)
Edge, Far-Edge, Fog: [1, 10], Cloud:
[10,15]

Base Price Pr,v

(10−2 $/h)
Edge/Far-Edge: [40,70], Fog: [20,40],
Cloud: [10]

Deadline λs (s) [0.04, 0.08]

Initial service
provider’s budget
Bs ($/h)

[3, 4.5]

User request rate 1.0 request/s

User distribution Zipf(k), k = [1.4, 3.0]

Data MDATA (Kb) [1, 10]

CPU Work MCPU [1, 10]× 106 CPU Instructions

DRL Hyperparameter
Learning rate 0.0004

Discount factor γ = 0.99

Batch size 32

Total timesteps 3× 104

[a, b]: a value is chosen randomly within this range.

V. PERFORMANCE EVALUATION

A. Experiment Setup

To train and evaluate the performance of our proposed sys-
tem, we use YAFS [23], a fog computing simulator that mod-
els infrastructure as a graph and simulates network routing,
service computation, and latency. Experiments and training
were conducted on a PC with a Core-i7 CPU and 32GB of
RAM. For real-world topology simulation, we utilized Zoo
topologies [24], which provides network data from publicly
available sources. The deep reinforcement learning agent was
built using the Stable Baselines library [25]. The training

process begins by generating a topology from Zoo topologies,
which is augmented with base prices and compute resources
for each node. User requests, modeled with a Zipf distribution,
simulate varying service demands. Service providers compete
for infrastructure resources, with requests routed to the nearest
compute node that hosts the service. In our setup, 10 service
providers bid on resources—9 bid at the base price with
random variations, while 1 follows a specific policy. We set the
value of w to 0.8, prioritizing deadline violations, which led
to improved performance under higher user loads. Experiment
parameters are summarized in Table II, and we evaluate the
following policies:

• Cloud-only The service provider bids a higher price on
the cloud nodes.

• Edge-only The service provider follows a greedy ap-
proach, by bidding on the edge nodes primarly.

• Random The service provider follows a random policy
and bids randomly with a random price.

• DRL-DQN The deep reinforcement learning agent based
on Deep Q-Network.

B. Results and Discussion

The experimentation was conducted on a CECC infrastruc-
ture with 20 nodes of different types, varying both the number
of users and their deadline requirements. Below, we discuss
the results and performance of our approach.

Fig. 3a shows the budget spent as the number of users
increases. For each user count, we ran 10 trials with varying
deadlines and averaged the results. The cloud-only agent
performs best in terms of budget minimization, as it bids
only on inexpensive cloud nodes. In contrast, the edge-only
agent is the most costly, frequently exhausting its budget since
edge resources are more expensive. The DRL agent strikes
a balance, dynamically bidding based on user requests and
resource types, minimizing budget use efficiently.

In terms of deadline violation, Fig. 3b illustrates the nor-
malized deadline violation of the users’ requests by varying
the number of users. The cloud-only agent consistently un-
derperforms, with nearly 100% violations due to high latency
from distant cloud nodes. The edge-only agent performs well
initially but struggles with high user loads, as limited edge
resources force requests into queues. After 400 users, the DRL
agent outperforms, balancing resource allocation across edge
and fog nodes, thereby maintaining a better trade-off between
budget and performance.

Finally, in Fig. 3c, we illustrate the amount of spent budget
based on the deadline requirement specified in the experi-
mentations. These results aggregate all the experimentations
with different numbers of users. As deadlines are relaxed,
the DRL agent spends less, reallocating resources across
more cost-effective nodes, unlike the edge-only agent, whose
costs remain fixed. Overall, the DRL agent optimizes budget
use while reducing deadline violations, effectively learning a
policy that balances both factors based on user demand and
infrastructure pricing.



(a) Budget spent by service provider. (b) Normalized deadline violation. (c) Budget spent with varying deadline requirements.

Fig. 3: Experiment results considering 20 nodes and a varying number of users

VI. CONCLUSION AND FUTURE WORKS

In this paper, we tackled the resource pricing problem
within the CECC framework. We modeled an auction system
where service providers bid on infrastructure resources to meet
user demands. We formalized the joint problem of budget
optimization and deadline violation minimization, proposing
a deep reinforcement learning algorithm that demonstrated
effective results. Future work will explore multi-agent rein-
forcement learning to simulate a competitive market, as well
as hierarchical reinforcement learning, where smaller agents
manage decisions across different infrastructure regions.
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