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ABSTRACT

Simulation extractability is a strong security notion of zkSNARKs

that guarantees that an attacker who produces a valid proof must

know the corresponding witness, even if the attacker had prior

access to proofs generated by other users. Notably, simulation ex-

tractability implies that proofs are non-malleable and is of funda-

mental importance for applications of zkSNARKs in distributed

systems. In this work, we study sufficient and necessary conditions

for constructing simulation-extractable universal zkSNARKs via the

popular design approach based on compiling polynomial interac-

tive oracle proofs (PIOP). Our main result is the first security proof

that popular universal zkSNARKs, such as PLONK and Marlin, as
deployed in the real world, are simulation-extractable. Our result fills

a gap left from previous work (Faonio et al. TCC’23, and Kohlweiss

et al. TCC’23) which could only prove the simulation extractability

of the “textbook” versions of these schemes and does not capture

their optimized variants, with all the popular optimization tricks in

place, that are eventually implemented and deployed in software

libraries.
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1 INTRODUCTION

Zero-knowledge proofs [22] allow a prover to convince a veri-

fier that a statement is true without revealing any information

beyond that. A notable class of zero-knowledge proofs are zk-
SNARKs (zero-knowledge succinct non-interactive arguments of

knowledge) [6, 32] in which, after an initial setup phase, the prover

can generate proofs that are short and easy to verify, without the

need of any interaction. The simultaneous achievement of these
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properties makes zkSNARKs an unbeatable tool in several applica-

tions, as they enable not only privacy-preserving computation but

also scalability.

The fundamental security property of zkSNARKs is knowledge-

soundness, which essentially states that a prover generating a valid

proof must possess the corresponding witness. However, this notion

only considers provers in isolation. In simpler terms, knowledge-

soundness fails to address attackers who have access to proofs for

certain statements and may exploit this advantage to create a proof

for another statement without possessing its corresponding witness.

This gap in the security definition of zero-knowledge proofs was

identified early on by Sahai [36], who introduced the concept of

simulation soundness, subsequently expanded upon as simulation

extractability (SE, for brevity) [16].

For zkSNARKs, the notion of SE was first studied by Groth and

Maller [24] who proposed a pairing-based construction and an

application to succinct signatures of knowledge for NP (aka Snarky

signatures). Their scheme, however, is of the “first generation”

and requires a trusted setup for a single circuit. In this work, we

focus on the SE of universal zkSNARKs, the emerging generation of

zkSNARKs where the initial setup is reusable for any circuit within

a given size bound, a property that makes their practical application

more versatile.

The state of SE-zkSNARKs. While the last decade has seen tremen-

dous progress in zkSNARKs, producing amultitude of schemes, only

a handful of them are known to be simulation extractable. Many

schemes are in an unknown situation as they lack a security proof

of SE. It is indeed the typical workflow to first focus on proving

knowledge soundness of new schemes (which may already entail

its own challenges) and to leave SE for future work. The reason is

that proving SE is often a challenging task that does not follow via

a straightforward extension of the knowledge-soundness proof.

Several recent results [15, 17, 20, 21, 29], motivated by this state of

affairs, prove the SE of existing zkSNARKs, such as Bulletproofs [8],

Spartan [15], Sonic [31], PLONK [19], Marlin [14], Lunar [10] and

Basilisk [34]. We can divide these results into two main categories:

those such as [15, 20, 21] that prove the SE of specific zkSNARKs;

those like [17, 29] that prove the SE of a broad class of zkSNARKs

such as those built via the popular approach combining polynomial

interactive oracle proofs (PIOPs) and polynomial commitments.

The works in the latter category are of particular interest as they

give an SE recipe that is generic and thus it can benefit both existing

and future schemes.

Given this state of the art, one may therefore ask if there is

more to know about the SE of universal zkSNARKs based on PIOPs.

However, a closer look at the recent results reveals two important
gaps that do not allow concluding that the “real world” versions of
schemes like PLONK and Marlin are simulation extractable.
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https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690351


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Antonio Faonio, Dario Fiore, and Luigi Russo

Theory vs. Implementation The first gap lies in that the

versions of these schemes that offer the best performance and are

eventually implemented in software libraries
1
slightly depart from

the ones obtained through the PIOP-to-zkSNARK vanilla compi-

lation. The difference is in the last step. In order to maximize effi-

ciency, they apply an optimization (that we call linearization trick,
also known as Maller’s optimization) [19, 33] that leverages the

homomorphic properties of the KZG polynomial commitment to

reduce the number of field elements in the proof. This optimization

though changes the zkSNARK verification algorithm in a way that

escapes the SE security analysis in previous work [17, 29].

Delegation phase The second gap is that the aforementioned

frameworks of Faonio et al. [17] and Kohlweiss et al. [29] capture
PIOPs in which some polynomials are evaluated on a random chal-

lenge chosen in the last round. This is however not the case for

Marlin and Lunar in which polynomials involving the witness are

evaluated on a challenge chosen before the last round, which is

witness-independent and needed only for verifier’s efficiency (what

we call a delegation phase). For this reason, the work of [17, 29] can

only argue the SE of small variants of Marlin and Lunar.

Our Results. In this work, we resolve the two limitations above

and we give the first proof of SE of the “real world” optimized

versions of zkSNARKs which include PLONK, Marlin, Lunar, and

Basilisk. To achieve these results, we improve the techniques of [17]

in several ways: (1) we formalize the compilation recipe based on

the linearization trick and we prove that, under a set of minimal

constraints, PIOPs can be compiled to SE-zkSNARKs using the

linearization trick optimization; (2) we refine the set of conditions

to compile a PIOP to a zkSNARK, notably removing the artificial

one from [17] that prevented capturing Marlin and Lunar, and thus

we broaden the class of PIOPs that can be compiled in an SEmanner;

(3) we simplify and generalize the conditions under which KZG can

be proved simulation-extractable.

As a byproduct of (1) and (3), we obtain the first security analysis

of the linearization trick optimization.We show potentially insecure

instantiations as well as a characterization of the conditions that

make it secure even in terms of plain knowledge-soundness, in the

AGM with oblivious sampling (AGMOS) [30].

Some of our definitions and techniques to prove SE may appear

rather convoluted. We would like to note that this is due to the

wish of capturing SE for existing protocols, without introducing

any change, which is a challenging goal. As an example, [17] gave a

simple condition to safely compile a PIOP: that a witness-dependent

polynomial is evaluated on a random challenge chosen in the last

round. However, this condition is not met by some protocols, which

in this work we eventually prove to be SE. This required us to

elaborate more complex conditions to explain why this is possible.

Given the technicalities of the aforementioned gaps and the

compilation strategy of [17], we provide a more comprehensive

explanation of our results in the following section.

1
E.g., https://github.com/dusk-network/plonk, https://github.com/arkworks-rs/marlin

2 A TECHNICAL OVERVIEW OF OUR

RESULTS

2.1 Revisiting PIOP-based zkSNARKs

A common approach to design zkSNARKs is to first construct an

information-theoretic protocol that achieves the desired functional-

ity in an idealized model and then remove the idealized component

by compiling it into a zkSNARK via the use of a computationally-

secure primitive [25, 26]. The most popular instantiation of this

approach uses PIOP [9, 10, 14, 19, 38] for the information-theoretic

part, and polynomial commitments [28] for the computational one.

In a PIOP, the prover uses one oracle to commit to polynomi-

als while the verifier calls a second oracle to query the committed

polynomials. In the compiled PIOP, instead, the prover commits to

polynomials with a polynomial commitment, and then computes

the results of verifier’s queries and uses the evaluation opening
to vouch for their correctness. Finally, to remove interaction the

compiler employs the Fiat-Shamir transformation to obtain the

zkSNARK. The details of the (kind of) verifier’s queries often di-

verge in different implementations of this paradigm. Arguably, the

simplest form of queries is the evaluation of polynomials, namely,

queries checking that a committed polynomial 𝑝 at evaluation point

𝑥 evaluates to 𝑦 = 𝑝 (𝑥); this is the model used in [9, 14]. Other

PIOP variants [10, 19] consider more general queries that state the

validity of polynomial equations over (a subset) of the committed

polynomials.

Our generalization: R-PIOP. To keep all these different notions

of PIOP under the same umbrella, in our work, we define the notion

of R-PIOP where the verifier’s queries are instances belonging to

the oracle relation R. Roughly speaking, an oracle relation is an NP-

relation where the instances can refer to polynomial oracles [13].

Under this definition, Marlin uses an Revl-PIOP, where Revl is the
relation that checks that a polynomial oracle evaluates to 𝑦 at point

𝑥 , while PLONK [19] and Lunar [10] are Rpoly-PIOPs, where Rpoly
is the relation that checks polynomial equations over polynomial

oracles.

How to compile R-PIOPs? Unfortunately, zkSNARKs obtained by

(mechanically) applying compilations from Revl-PIOPs are often
sub-optimal proof systems, due to the fact that one should include

in the proof a field element for each evaluation of a polynomial

oracle. In particular, such compilations cannot leverage on the ho-

momorphic property that many polynomial commitments, such as

KZG [28], have. Thus, subsequent optimizations usually accompany,

and slightly change, the formally analyzed zkSNARKs. Instead, zk-

SNARKs compiled fromRpoly-PIOPs can defer all the optimizations

to the richer and more expressive (sub)-proof systems for Rpoly.2
Yet, in practice, the latter proof systems are often reduced to the

former via a random point evaluation.

One of the most common optimizations, based on homomorphic

commitments, is the so-called linearization trick, sometimes re-

ferred as the Mary Maller’s optmization [19, 33]. This optimization

allows reducing the number of field elements in the final proofs.

2
On the downside, PIOPs based on polynomial equations, while at an informal level

are easier to describe, tend to have harder-to-parse full specifications.

https://github.com/dusk-network/plonk
https://github.com/arkworks-rs/marlin
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For example, to prove that 𝐴(𝑥)𝐵(𝑥) + 𝐶 (𝑥) = 𝑦 holds for com-

mitted polynomials 𝐴,𝐵,𝐶 , and values 𝑥 and 𝑦, one can prove that

𝐵(𝑥) = 𝑦𝑏 for some 𝑦𝑏 , the verifier uses the homomorphism of the

polynomial commitment to obtain the commitment to the lineariza-
tion polynomial 𝐿(𝑋 ) := 𝐴(𝑋 )𝑦𝑏+𝐶 (𝑋 ), and then the prover proves
that 𝐿(𝑥) = 𝑦, saving from naively evaluating all the polynomials

on 𝑥 .

Building on this idea, PLONK [19] describes a general recipe to

compile an Rpoly-PIOP to zkSNARK. The procedure first finds the

minimal sub-set of polynomials that one should evaluate in order to

generate the linearization polynomial, and then it (batch) evaluates

all the polynomials in this subset and the linearization polynomial

on a fresh random point.
3

On the (in)security of the linearization trick. It turns out that this
general recipe is not always sound. In fact, the work of [30] shows

a counter-example to the extractability of the linearization trick

when using the KZG polynomial commitment. In particular, assume

the adversary does not know the representation of a group element

c (using the lingo of [30], c is an obliviously sampled element), and

sets the three polynomial commitments of the example above as

(c𝐴, c𝐵, c𝐶 ) = (c, [𝑏]1 ,−𝑏 · c). According to [30], only the commit-

ment c𝐵 is extractable in the algebraic group model, namely the

adversary can give an algebraic representation (under the basis of

the elements of the SRS) only for c𝐵 . The linearization commitment

would be equal to c𝐿 = c𝑏 − 𝑏c = [0]
1
, which is independent of the

evaluation point 𝑥 . The adversary can clearly provide an evaluation

proof at 𝑥 for c𝐿 , in spite of not knowing the polynomials implicitly

committed in c𝐴 and c𝐶 . In particular, this counter-example shows

that we can only extract the second of the three polynomials, under

the (more realistic) algebraic group model where the adversary gets

to see group elements, besides the SRS, for which it does not know

their algebraic representations.

Here we generalize the attack of [30] by considering the general

case where, for committed polynomials (𝐴𝑖 , 𝐵𝑖 )𝑖∈[𝑛] , we want to
prove that

∑
𝑖 𝐴𝑖 (𝑥)𝐵𝑖 (𝑥) = 𝑦. In particular, we let Rlin be the rela-

tion where the instances are tuples of the form ((a𝑖 , b𝑖 )𝑖∈[𝑛] , 𝑥,𝑦)
such that for field elements 𝑥 and 𝑦, and any 𝑖 , a𝑖 (resp. b𝑖 ) is a
commitment to 𝐴𝑖 (resp. 𝐵𝑖 ) for which the equation above holds.

What we call (the zkSNARK for) the linearization trick for KZG is

the proof system that proves 𝑦𝑖 = 𝐴𝑖 (𝑥) for any 𝑖 and then, using

the homomorphic property of KZG, generates the linearization

commitment c𝐿 =
∑
𝑖 𝑦𝑖 · b𝑖 , and proves 𝐿(𝑥) = ∑

𝑖 𝑦𝑖𝐵𝑖 (𝑥) = 𝑦.
Our generic attack works whenever the polynomials 𝐴𝑖 are lin-

early dependent. The attacker can set, for example, the commit-

ments for the polynomials 𝐵𝑖 to b𝑖 = 𝛼𝑖 · c, for an obliviously

sampled group element c and for carefully chosen values (𝛼𝑖 )𝑖 such
that

∑
𝑖 𝛼𝑖𝐴𝑖 (𝑋 ) = 0. It is easy to see that this adversary can gener-

ate a proof for

∑
𝑖 𝐴𝑖 (𝑥∗)𝐵𝑖 (𝑥∗) = 0, for any 𝑥∗, without knowing

all the polynomials 𝐵𝑖 .

We do not formalize this attack further in our paper as we use

it mainly as a motivation for our constructive results. Indeed, we

use the intuition behind this counter-example in order to show that

the independence of the polynomials 𝐴𝑖 is the missing piece of the

puzzle to prove extractability of (the zkSNARK defined from) the

3
Such a random point is needed to reduce polynomial identity tests into equations

over field elements, through the Schwartz-Zippel Lemma.

linearization trick. In particular, the correct recipe for the general

compiler proposed by [19] should look not only for the sub-set

that minimizes the number of polynomials to open, but should

also make sure that the polynomials in such a sub-set are linearly

independent. Luckily, the linear independence holds for the subset

of polynomials chosen for this optimization in PLONK.
4
We obtain

a formalization of this security claim as a corollary of our results

on the SE of KZG (see next section).

To summarize, our first set of results deals with proving that the

linearization trick for KZG is, under certain conditions, simulation-

extractable. We do this in two main steps. First, we consider the SE

of KZG evaluation proofs in which the commitment is obtained by

a linear combination of other commitments (cf. Sections 2.2 and 4.1).

Second, we analyze the sufficient conditions on the 𝐴𝑖 polynomials

that make the linearization trick simulation extractable (cf. Sections

2.3 and 4.2).

2.2 SE of KZG for linearized commitments

The work of [17] introduces the notion of policy-based SE, that,

roughly speaking, ensures that a zkSNARK is simulation-extractable

whenever the adversary complies with a pre-defined policy. This

generalized notion of SE is convenient (and necessary) to formalize

the simulation-extractable properties of malleable schemes such as

KZG.

We summarize the security game of SE for KZG in the algebraic

group model. The adversary obtains a list of obliviously-sampled

commitments c1, . . . , c𝑛 where c𝑖 ∈ G1 and it has oracle access to

a simulation oracle that, upon input tuples (c, 𝑥,𝑦), outputs simu-

lated proofs 𝜋 = (c − [𝑦]
1
) (𝑠 − 𝑥)−1

. Additionally, the adversary

has oracle access to a random oracle.
5
Eventually, the adversary

outputs its forgery 𝜋∗ for an instance (c∗, 𝑥∗, 𝑦∗). Standard simula-

tion extractability would just require that the instance was never

queried to the simulation oracle. [17] additionally requires that:

(1) The queries of the adversary do not create an algebraic in-

consistency in terms of the proved statements. For example,

the adversary cannot obtain simulated proofs for (c, 𝑥,𝑦) and
(c, 𝑥,𝑦′) with 𝑦 ≠ 𝑦′. This constraint is strictly necessary to

prove SE for KZG.

(2) The evaluation points 𝑥 for the simulation queries belong to

an arbitrary, but fixed ahead of time, set Q𝑥 . This property is

called semi-adaptive queries.

(3) The group elements c asked in the simulation queries could not

be (algebraically) derived using previously obtained simulated

proofs.

(4) The forgery’s evaluation point 𝑥∗ must be random and inde-

pendent of c∗. To enforce this, we check that 𝑥∗ is derived by

applying the random oracle to a string that contains an encod-

ing of c∗.
In this paper, we substantially simplify the policy above by remov-

ing the second and third constraints. Besides providing a cleaner

4
Here we are simplifying: the verification in PLONK uses the linearization trick on a

mix of polynomials that comes both from the prover and the indexer (i.e., polynomials

committed in the specialized reference string). Indexer’s polynomials are trivially

extractable as they are part of the statement, thus we can refine the property of linear

independence by focusing on the polynomials that are not coupled with indexer’s ones.

5
This is not strictly necessary, and it could bemodeled differently. However, it is a conve-

nient model since the PIOP-to-zkSNARK compiler uses the Fiat-Shamir transformation.
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and simpler notion of security, removing these constraints has two

extra benefits: Removing the second constraint allows proving the

PIOP-to-zkSNARK compiler secure in the non-programmable ran-
dom oracle model; removing the third constraint allows extending

the PIOP-to-zkSNARK compiler to work with commit-and-prove
relations (namely, the relation proved by the zkSNARK can have

commitments as part of the instance). One limitation of our tech-

nique to remove the second constraint is that we need to make a

stronger cryptographic assumption than the 𝑞-SDH assumption

that we call one-more 𝑞-SDH assumption. This assumption addi-

tionally provides an oracle that can be adaptively queried on field

element 𝑥 and (small) natural number 𝑖 and returns

[
(𝑠 − 𝑥)−𝑖

]
1
.

We show that the one-more 𝑞-SDH assumption holds in the generic

group model and that we can reduce a non-adaptive version of the

one-more SDH to the plain 𝑞-SDH assumption.

Moreover, we generalize the fourth constraint from [17]. Specifi-

cally, we change the constraint by allowing c∗ to be a commitment

to a linearization polynomial. To do so we check that 𝑥∗ is derived
from the random oracle with inputs commitments (b𝑖 )𝑖 and polyno-
mials

6 (𝐴𝑖 )𝑖 and that c∗ =
∑
𝐴𝑖 (𝑥∗)b𝑖 . Proving SE using the latter

generalization turns out to be the necessary heavy lifting to perform

in order to, then, show that the linearization trick is (policy-based)

simulation-extractable, as summarized in the following theorem.

Informal Statement of Theorem 4.3. The evaluation proof of
KZG polynomial commitment is (policy-based) simulation-extractable
in the algebraic group model under our simplified and generalized
policy where the forgery can contain a commitment to a linearization
polynomial.

The obliviously-sampled commitments c1, . . . , c𝑛 not only allow

to give an interesting notion of SE in the algebraic group model,

they also naturally extend our model to include the algebraic group

model with obliviously-sampled elements, as considered in [30]. For

this reason, by proving SE of the linearization trick for KZG w.r.t.

this new set of constraints, we can derive the following Corollary

by considering the subclass of adversaries that do not query the

simulation oracle.

Corollary 2.1. PLONK and Marlin are knowledge-sound in the
AGMOS.

2.3 SE of the linearization trick

Unfortunately, when the adversary can make simulation oracle

calls, the condition of linear independence, sufficient and necessary

to restore the (plain) knowledge extractability of the linearization

trick, is not sufficient. In fact, consider an adversary, holding an

obliviously sampled group element c, that asks for a simulated

proof on (c, 0, 0), namely a proof that the polynomial committed

in the commitment c evaluates to 0 at point 0. Let 𝜋 = c/𝑠 be
the simulated proof. The adversary can generate an instance for

Rlin that is not extractable even if the polynomials 𝐴𝑖 are linearly

independent. It could set the polynomials 𝐴1 (𝑋 ) = 1 and 𝐴2 (𝑋 ) =
−𝑋 , thus (c𝐴1

, c𝐴2
) = ( [1]

1
, [−𝑠]

1
), and then sets (c𝐵1

, c𝐵2
) =

(c, 𝜋) as the (un-extractable) commitments to the polynomials 𝐵1

and 𝐵2 respectively. Now, for any arbitrary 𝑥∗ it can generate a

forgery, by setting the forged proof 𝜋∗ to c/𝑠 . Its validity follows

6
Technically, we treat these latter polynomials as auxiliary information that the adver-

sary must “declare” before seeing 𝑥∗ .

from the fact that 1 · c − 𝑥∗c/𝑠 = (𝑠 − 𝑥∗)c/𝑠 . The reason why this

attack works is that KZG proofs and KZG commitments belong to

the same domain; thus a proof can be reinterpreted as a commitment.

Through this lens, the simulation oracle allows the adversary to

push down the degree of the un-extractable polynomials. Looking

at the counter example from the perspective of formal polynomials,

we have that:∑︁
𝑖=1,2

𝐴𝑖 (𝑋 )𝐵𝑖 (𝑋 ) = 𝐴1 (𝑋 ) ·c+𝐴2 (𝑋 ) · c𝑋 = 𝐴1 (𝑋 ) ·c+ 𝐴2 (𝑋 )
𝑋
·c = 0.

The problem is that, while 𝐴1 and 𝐴2 are linearly independent, the

polynomials 𝐴1 (𝑋 ) and 𝐴2 (𝑋 )/𝑋 are not so.

As our technical contribution, we show that higher-degree lin-
ear independence between the polynomials 𝐴𝑖 is necessary and

sufficient to obtain SE of the linearization trick for the KZG com-

mitment scheme. In particular, instead of defining independence of

the polynomials 𝐴𝑖 as the condition
∑
𝛼𝑖𝐴𝑖 ≠ 0 for any choice of

𝛼𝑖 ∈ F, we define their independence w.r.t. any of 𝛼𝑖 ∈ F≤𝜈 [𝑋 ], for
a parameter 𝜈 ∈ N.

It remains to understand how to set such a parameter 𝜈 . To do

so, we define a notion of level for proofs of proofs that, roughly
speaking, indicates how many times the adversary sequentially

queried the simulation oracle on an obliviously sampled group

element or elements algebraically derived from it. For example,

the level of an obliviously sampled element is zero, the level of a

proof on it is one, and the level of a proof of a proof could possibly

increase to two if we queried twice on the same evaluation point,

or remain the same otherwise
7
, and so on.

Informal Statement of Theorem 4.5. The linearization trick for
KZG polynomial commitment is (policy-based) simulation-extractable
in the AGM under our simplified and generalized policy and assum-
ing that the extracted polynomials 𝐴1, . . . , 𝐴𝑛 are independent for
a parameter 𝜈 and the maximum level reached by simulated proofs
queried by the adversary is smaller or equal to 𝜈 .

The above theorem completes the set of results that we need to

obtain SE when instantiating the PIOP-to-zkSNARK compiler with

KZG. Next, we address the SE requirements at the PIOP level.

2.4 Capturing PIOPs with delegation phase

The work of [17] showed that only a subset of all the PIOPs can

be compiled to SE-zkSNARKs. For example, if we take a PIOP for

the product relation R ×R which, internally, sequentially runs two

instances of a PIOP for R, we can incur copy-paste attacks that re-

use a simulated proof for the first instance in R and honestly prove

the knowledge for the second instance. To avoid these pathological

cases, [17] introduced the notion of compilation-safeness that gives
a sufficient condition for a PIOP to be compiled to SE-zkSNARK. In

a nutshell, a PIOP is compilation-safe if it has a witness-dependent
last round. Here, by “witness-dependent round”, we mean that the

polynomials sent at such a round store information that depends

on the witness and are necessary to extract the full witness at the

PIOP level.

However, Marlin [14] and other proof systems [10, 34] based on

Checkable Subspace Sampling Arguments [34] are not compilation-

safe. They have a two-phase algorithm for the prover where the first

7
Briefly, the reason why the level does not increase in this case is because the rational

function 1/( (𝑋 − 𝑥1 ) (𝑋 − 𝑥2 ) ) is in the linear span of (𝑋 − 𝑥1 )−1
and (𝑋 − 𝑥2 )−1

.
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phase is witness-dependent, while the second phase, which we call

delegation phase, is witness-independent, and in particular is per-

formed to enable succinct verification. For PIOPs with delegation,

we need a more careful compilation strategy. To avoid copy-paste

attacks that would copy the witness-dependent transcript from a

simulated proof and compute a fresh witness-independent suffix for

the forgery, we need to make sure that (1) the polynomial oracles

sent during the delegation phase are committed using a determin-

istic commitment and that (2) the delegation phase is unique at

the PIOP level, namely, there is only one possible answer that any

malicious prover for the PIOP can send in the delegation phase,

once fixed the messages of all the previous rounds
8
. With this

characterization of PIOPs we can prove the following theorem:

Informal Statement of Theorem 6.2. PIOPs with delegation
phase can be compiled to simulation-extractable commit-and-prove
zkSNARKs with the linearization trick optimization. Also, security
holds in the algebraic group model with oblivious sampling and in
the non-programmable random oracle assuming the one-more q-SDH
assumption.

In the informal theorem above we swept under the rug many

details. In particular, the reader may wonder about the connection

of the independence parameter 𝜈 for the security of the linearization

trick and the requirements for the compilation above. What we

show in the proof of the compiler is that the parameter 𝜈 can be

kept very low. In fact, the reduction from SE-zkSNARK to the SE

of the linearization trick (obliviously) samples fresh commitments

for each simulation query made by the adversary and, assuming

that the PIOP is zero-knowledge, the reduction needs to query

(linearization trick) simulated proofs only for this fresh batch of

commitments, thus bounding the level of proof of proofs to, at

maximum, the number of evaluations needed by a single execution

of the PIOP.

In Section 5.3 we show that PLONK and Marlin have PIOPs

fulfilling our requirements. Combining this with the theorem above,

we obtain our main results on the SE of these schemes.

3 PRELIMINARIES

A function 𝑓 is negligible in 𝜆 (wewrite 𝑓 ∈ negl(𝜆)) if it approaches
zero faster than the reciprocal of any polynomial. For an integer

𝑛 ≥ 1, we use [𝑛] to denote the set {1, 2, . . . , 𝑛}. Calligraphic letters
denote sets, while set sizes are written as |X|. Lists are represented
as ordered tuples, e.g. 𝐿 := (𝐿𝑖 )𝑖∈[𝑛] is a shortcut for the list of 𝑛
elements (𝐿1, . . . , 𝐿𝑛). To get a specific value from a list, we also

use the “dot” notation; e.g., we use 𝐿.𝑏 to access the second element

of the list 𝐿 = (𝑎, 𝑏, 𝑐). The difference between lists and vectors is

that elements of vectors are of the same type.

Definition 3.1. Let A = {𝐴𝑖 }𝑖∈[𝑛] be a set of polynomials in

F[𝑋 ] and 𝜈 ∈ N. We say that A are 𝜈-independent polynomials if

∀(𝛼 𝑗 ) 𝑗 ∈ F≤𝜈 [𝑋 ]:
∑
𝑗 𝛼 𝑗𝐴 𝑗 (𝑋 ) ≠ 0.

Asymmetric Bilinear groups. An asymmetric bilinear group is

a tuple (𝑞,G1,G2,G𝑇 , 𝑒, 𝑃1, 𝑃2), where G1,G2 and G𝑇 are groups

8
For example, Marlin compiled using hiding KZG, or with FRI-based polynomial

commitments, is provably not strong simulation extractable, while it could still be

proved weak simulation extractable.

of prime order 𝑞, the elements 𝑃1, 𝑃2 are generators of G1,G2 re-

spectively, 𝑒 : G1 × G2 → G𝑇 is an efficiently-computable non-

degenerate bilinear map, and there is no efficiently computable

isomorphism between G1 and G2. Let GroupGen be some proba-

bilistic polynomial-time (PPT) algorithm which on input 1
𝜆
, where

𝜆 is the security parameter, returns a description ppG of a bilinear

group. Elements in G𝑖 , 𝑖 ∈ {1, 2,𝑇 }, are denoted in implicit notation

as [𝑎]𝑖 := 𝑎𝑃𝑖 , where 𝑃𝑇 := 𝑒 (𝑃1, 𝑃2). Every element in G𝑖 can be

written as [𝑎]𝑖 for some 𝑎 ∈ Z𝑞 , but note that, given [𝑎]𝑖 , it is
in general hard to compute 𝑎 (discrete logarithm problem). Given

𝑎, 𝑏 ∈ Z𝑞 we distinguish between [𝑎𝑏]𝑖 , namely the group element

whose discrete logarithm base 𝑃𝑖 is 𝑎𝑏, and [𝑎]𝑖 ·𝑏, namely the exe-

cution of the multiplication of [𝑎]𝑖 and 𝑏, and [𝑎]1 · [𝑏]2 = [𝑎 ·𝑏]𝑇 ,
namely the execution of a pairing 𝑒 ( [𝑎]1, [𝑏]2). We do not use the

implicit notation for variables, e.g., c = [𝑎]
1
indicates that c is a

variable name for the group element whose logarithm is 𝑎.

Exp(𝑛,𝑑 )-OMSDHGroupGen,A (𝜆)

Q𝑥 ← ∅; ppG ←$ GroupGen(1𝜆 ) ; 𝑠 ←$ F𝑞

(𝑥∗, y∗ ) ← AO𝑠 (ppG,
[
1, 𝑠, . . . , 𝑠𝑑

]
1

, [1, 𝑠 ]
2
)

return 𝑥∗ ∉ Q𝑥 ∧ y∗ =
[
(𝑠 − 𝑥∗ )−1

]
1

Oracle O𝑠 (𝑥, 𝑖)
if 𝑖 > 𝑛 :

return ⊥
Q𝑥 ← Q𝑥 ∪ {𝑥 }

return
[
(𝑠 − 𝑥 )−𝑖

]
1

Figure 1: The OMSDH experiment.

Definition 3.2 ((𝑛,𝑑)-OMSDH). Consider the experiment in Fig. 1.

The 𝑛-one-more 𝑑-strong DH assumption holds for a bilinear group

generator GroupGen if for every PPT adversary, making at most 𝑛

oracle queries, the following advantage is negligible in 𝜆:

Adv(𝑛,𝑑 )-OMSDHGroupGen,A (𝜆) := Pr

[
Exp(𝑛,𝑑 )-OMSDHGroupGen,A (𝜆) = 1

]
With the lingo of [2], OMSDH is a special case of an adaptive

Uber Assumption for Rational Fractions. When the set of points

Q𝑥 is fixed before the experiment starts, the assumption falls back

to an Uber Assumption for Rational Fractions and Flexible Target,

as defined in [2], that is reducible to discrete log in the AGM. We

defer the proof to [18].

An algorithm A is algebraic if for all group elements z that A
outputs (either as returned by A or by invoking an oracle), it addi-

tionally provides the representation of z relative to all previously
received group elements. That is, if elems is the list of group ele-

ments thatA has received so far, thenA must also provide a vector

𝒓 such that z = ⟨𝒓, elems⟩. Since in our work we mostly focus on

algebraic adversaries receiving as input a structured refererence

string of the form (
[
𝑠𝑖−1

]
1
)𝑖∈[𝑑 ] , we parse the first 𝑑 coefficients of

𝒓 as an encoding of the polynomial 𝑓 (𝑋 ) := ⟨(𝑟𝑖 )𝑖∈[𝑑 ] , (𝑋 𝑖−1)𝑖∈[𝑑 ] .
Finally, in our work we consider distributions that are witness

samplable [27] and Aff-MDH-secure [17]. We give their formal

definition in [18].

3.1 SE CP-SNARKS in the AGM

We define a PT relation R verifying triple (pp,x,w) as in [23].

We say thatw is a witness to the instance x being in the relation

defined by the parameters pp when (pp,x,w) ∈ R (equivalently,
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we sometimes write R(pp,x,w) = 1). For example, pp could be

the description of a bilinear group or additionally contain a com-

mitment key or a common reference string. A (non-interactive)

proof system for a relation R (and group generator GroupGen) is
a tuple of algorithms Π := (KGen, Prove,Verify) where: (1) KGen
is a probabilistic algorithm that takes as input the group parame-

ters ppG ←$ GroupGen(1𝜆) and outputs srs := (ek, vk, pp), where
ek is the evaluation key, vk is the verification key, and pp are the

parameters for R. (2) Prove takes as input an evaluation key ek, a
statement x, and a witnessw s.t. R(pp,x,w) holds, and returns a

proof 𝜋 . (3) Verify takes as input a verification key vk, a statement

x, and either accepts (𝑏 = 1) or rejects (𝑏 = 0) the proof 𝜋 .

If the running time of Verify is poly(𝜆 + |x| + log |w|) and the

proof size is poly(𝜆 + log |w|), we say that Π is succinct. Basic no-

tions for a non-interactive proof systems are completeness, (knowl-

edge) soundness and zero-knowledge. Informally, knowledge sound-

ness means that any PPT prover producing a valid proof must know

the corresponding witness. We omit the formal definition of this

property as it is implied by simulation extractability that we present

in the next section.

Zero-Knowledge in the SRS (and RO) model. The zero-knowledge
simulator S of a CP-SNARK is a stateful PPT algorithm that can

operate in three modes: (1) (srs, stS) ← S(0, ppG) takes care of
generating the parameters and the simulation trapdoor (if neces-

sary) (2) (𝜋, stS) ← S(1, stS,x) simulates the proof for a state-

ment x (3) (𝑎, stS) ← S(2, stS, 𝑠) answers random oracle queries.

The state stS is updated after each operation. In the case of non-
programmable random oracle model, S is notified of the RO queries

but cannot control the answers.

Informally, the (perfect) zero-knowledge property states that no

(unbounded) adversary on input the srs can distinguish whether it

is interacting with the simulator S or with the real prover and the

random oracle. We defer the formal definition to [18].

Commitment Schemes. A commitment scheme with message

spaceM (and group parametersGroupGen) is a tuple of algorithms

CS := (KGen,Com,VerCom) where: (1) KGen takes as input group

parameters ppG ←$ GroupGen(1𝜆) and outputs a commitment key

ck. (2) Com takes the commitment key ck, and a message𝑚 ∈ M,

and outputs a commitment c and an opening 𝑜 . (3) VerCom takes as

input the commitment key ck, a commitment c, a message𝑚 ∈ M
and an opening 𝑜 , and it accepts (𝑏 = 1) or rejects (𝑏 = 0). We con-

sider polynomial commitment schemes where the message space is

F≤𝑑 [𝑋 ] for a degree parameter 𝑑 given as additional input to KGen.
For the basic security properties of binding and hiding see [18].

CP-SNARKs. Commit-and-Prove SNARKs, or simply CP-SNARKs,

are proof systems whose relations verify predicates over commit-

ments [12]. We refer to a CP-SNARK for a relation R and a commit-

ment schemeCS as a tuple of algorithms Π := (KGen, Prove,Verify)
whereKGen(ck) → srs is an algorithm that takes as input a commit-

ment key ck forCS and outputs srs := (ek, vk)9; ek is the evaluation

9
Often, such an algorithm simply and deterministically (re)-parses ck as (ek, vk) , in
this case we can omit the algorithm from the description of the proof system.

key, vk is the verification key, and pp are the parameters for the rela-

tion R (which include the commitment key ck). Moreover, if we con-

sider the key generation algorithm KGen′ that, upon group parame-

ters ppG, runs ck←$ CS.KGen(ppG) and srs←$ Π.KGen(ck), and
outputs srs; then the tuple (KGen′, Prove,Verify) defines a SNARK.

RO transcript. In our work, we often need to enforce that a

point 𝑥 is random and independent w.r.t. a bunch of elements.

To capture this scenario, we check that 𝑥 is derived by apply-

ing the random oracle (RO) to a string that either (i) contains an

encoding of the elements or (ii) the output of another RO query

that satisfies the first condition, and so on. We use the shortcut

(𝑥1, . . . 𝑥𝑛 ;𝑦1, . . . , 𝑦𝑚) →RO 𝑎 to indicate that there is a list of tu-

ples (𝑠1, aux1), . . . , (𝑠𝑘 , aux𝑘 ) and a list (𝑎𝑖 )𝑖∈[𝑘−1] such that

(1) ∀𝑖 ∈ [𝑘 − 1] : RO(𝑠𝑖 , aux𝑖 ) = 𝑎𝑖 , and RO(𝑠𝑘 , aux𝑘 ) = 𝑎
(2) ∀𝑖 ∈ [𝑘 − 1] : 𝑎𝑖 is a substring of 𝑠𝑖+1
(3) ∀𝑗 ∈ [𝑛], ∃𝑖 ∈ [𝑘] : 𝑥 𝑗 is a substring of 𝑠𝑖
(4) ∀𝑗 ∈ [𝑚], ∃𝑖 ∈ [𝑘] : 𝑦 𝑗 is contained in aux𝑖

3.2 Policy-Based Simulation Extractability

We recall the definitional framework of [17]. A policy is a tuple

Φ := (Φ0,Φ1) of PPT algorithms. The Φ-simulation extractability

experiment starts by running the policy algorithm Φ0, which gen-

erates public information ppΦ. The public information may contain

parameters that define the constraints later checked by Φ1. In the

case of commit-and-prove proof systems, the public information

may contain a list of commitments coms := (c𝑖 )𝑖 for which the

adversary does not know openings (i.e., obliviously sampled), but

on which it can query simulated proofs. Therefore, we feed ppΦ to

the adversary. After receiving a forgery from the adversary, the se-

curity experiment runs the extraction policy Φ1. The policy Φ1 is a

predicate that decides whether the attack is legitimate, e.g., it is not

a trivial one such as returning a proof received by the simulation

oracle. To decide this, Φ1 takes as input: (i) The public parameters

ppΦ; (ii) The forged instance and proof (x, 𝜋); (iii) The view view
of the experiment that contains the public parameters, the set of

simulated instances and proofs Qsim, and the set QRO of queries

and answers to the random oracle
10
; (iv) Auxiliary information

auxΦ which might come along with the forged instance.
11

Weextend the definitional framework of [17] to theF -extractability
setting, introduced by [3], where the extractor extracts a function

of the witness. Notice that the simulation policy may depend on the

function F . Clearly, when F is the identity function, we obtain the

policy-based notion of simulation extractability defined by [17]. We

define the policy-based SE game in Fig. 2. In the figure, the extrac-

tion policy Φ takes as input the public view of the adversary view
(namely, all the inputs received and all the queries and answers to

its oracles). The set Qsim is the set of queries and answers to the

simulation oracle. The set QRO is the set of queries and answers

to the random oracle. The set Qaux is the set of all the auxiliary
information sent by the adversary (depending on the policy, this

set might be empty or not). All these sets are initially empty and

10
As noted in [17], even if the given NIZK is not in the ROM it still makes sense to

assume the existence of the set QRO (e.g., to model security for NIZK protocols that

eventually are used as sub-protocols in ROM-based protocols)

11
We recall that the presence of auxΦ is exploited to provide the adversary an interface

with the policy, namely, to provide evidences that the forgery belongs to set of instances

for which the SE is guaranteed.
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stored in the state of the simulator. The oracles S1 and S2 deal

respectively with the simulation queries and the random oracle

queries of A.

Exp(Φ,F)-𝑠𝑒A,S,E (𝜆)

ppG ←$ GroupGen(1𝜆 )
ppΦ ←$ Φ0 (ppG )
(srs, stS ) ← S(0, ppG )

(x, 𝜋, auxE , auxΦ )←AS1,S2 (srs, ppΦ )
wF ← E(srs,x, 𝜋, auxE )
view← (srs, ppΦ, Qsim, QRO, Qaux )
𝑏Φ←Φ1 ( (x, 𝜋 ), view, auxΦ )

𝑏𝑉 ←VerifyS2 (srs,x, 𝜋 )
𝑏E←∀w : F(w) ≠wF ∨ (pp,x,w) ∉R
return (𝑏Φ ∧ 𝑏𝑉 ∧ 𝑏E )

S1 (x, aux)
𝜋, stS←S(1, stS,x, aux)
Qsim←Qsim∪{ (x, aux, 𝜋 ) }
return 𝜋

S2 (𝑠, aux)

if �aux, 𝑎 : (𝑠, aux, 𝑎) ∈ QRO :

𝑎, stS ← S(2, stS, 𝑠, aux)
QRO←QRO∪{ (𝑠, aux, 𝑎) }

return 𝑎

Figure 2: The (Φ, F )-SE experiments in ROM.

Definition 3.3 (Φ-Simulation F -extractability). A NIZK Π for a

relation R and simulator S is (Φ, F )-simulation extractable in the

SRS model if for every PPT adversary A there exists an efficient

extractor E such that the following advantage is negligible in 𝜆:

Adv(Φ,F)-𝑠𝑒
Π,A,S,E (𝜆) := Pr

[
Exp(Φ,F)-𝑠𝑒

Π,A,S,E (𝜆) = 1

]
Moreover, given a family of policies 𝚽 and a family of functions F,

we say that a NIZKΠ is (𝚽, F)-simulation-extractable ifΠ is (Φ, F )-
simulation-extractable for any Φ ∈ 𝚽 and F ∈ F. We say that Π is

𝚽-simulation-extractable if Π is (𝚽, 𝑖𝑑)-simulation-extractable and

𝑖𝑑 is the identity function.

Finally, we say that a CP-SNARK Π is (Φ, F )-SE in the AGM if

the definition above holds when enumerating over all PT algebraic

adversaries.

3.3 SE for KZG-based CP-SNARKs

We recall the (non-hiding version of the) commitment scheme of

Kate, Zaverucha and Goldberg [28] that is a fundamental building

block of all our CP-SNARKs. KZG is a polynomial commitment

scheme defined over a bilinear groupG that consists of the following

algorithms:

• KGen(ppG, 𝑑) outputs ((
[
𝑠 𝑗
]

1
) 𝑗∈[0,𝑑 ] , [1, 𝑠]2) where 𝑠 ←$ F𝑞 .

• Com(ck, 𝑓 (𝑋 )) outputs a commitment c := [𝑓 (𝑠)]
1
.

• VerCom(ck, c, 𝑓 (𝑋 )) outputs 1 iff c = [𝑓 (𝑠)]
1
.

KZG commitment scheme allows for simple and efficient evaluation
proofs which, in the framework of [12], is a CP-SNARK Πevl for

the relation Revl ((c, 𝑥,𝑦), 𝑓 ) = 1 iff 𝑓 (𝑥) = 𝑦 ∧ c = [𝑓 (𝑠)]
1
. We

describe such a CP-SNARK below:

• Proveevl (ek,x = (c, 𝑥,𝑦),w = 𝑓 ) outputs 𝜋 := [𝜋 (𝑠)]
1
, where

𝜋 (𝑋 ) is the polynomial such that 𝜋 (𝑋 ) (𝑋 − 𝑥) ≡ 𝑓 (𝑋 ) − 𝑦.
• Verifyevl (vk,x = (c, 𝑥,𝑦), 𝜋) outputs 1 iff 𝑒 (c − [𝑦]

1
, [1]

2
) =

𝑒 (𝜋, [𝑠 − 𝑥]
2
).

The above CP-SNARK is knowledge extractable in the AGM [14]

and in the AGMOS [30]. The ZK simulator is S := (S0,S1), where
S0 outputs the trapdoor 𝑠 together with the srs, and S1 simulates

proofs for x := (c, 𝑥,𝑦) outputting 𝜋 := (c − [𝑦]
1
) (𝑠 − 𝑥)−1

.

KZG-based CP-SNARKs. Informally, we say that a CP-SNARK

is KZG-based if it internally calls, implicitly or explicitly, the CP-

SNARK Πevl defined in the previous paragraph. This definition is

rather informal, thus, we give below a formal notion that includes

all the KZG-based CP-SNARKs.

Definition 3.4 (KZG-based CP-SNARK). We say that Π is KZG-

based if Π is a CP-SNARK (for some relation R and) for the KZG

commitment scheme, where: the proofs can be parsed as vectors

of elements in G1 and F, and the verification on (x, 𝜋) consists of
equations of the form:∑

𝑖 𝑒 (x𝑖 , [𝑝𝑖 (𝑠)]2) +
∑
𝑖 𝑒 (q𝑖 , [𝑝′𝑖 (𝑠)]2) = [𝑝

′′ (𝑠)]𝑇
where (x𝑖 )𝑖 are the G1-elements of the instance x, (q𝑖 )𝑖 are the

G1-elements of the proof 𝜋 , and the (linear) polynomials 𝑝𝑖 , 𝑝
′
𝑖
and

𝑝′′ are functions of the instance x, the proof 𝜋 , and possibly of the

random oracle.

Algebraic Consistency. Faonio et al. [17] defines a necessary prop-
erty to achieve extractability in the presence of a simulation oracle

for any KZG-based SNARKs. The property is motivated by the

generalization of the simple attack where, for a commitment c, an
adversary is given two simulated KZG evaluation proofs 𝜋1, 𝜋2 on

the same evaluation point 𝑥 and for two different evaluation values

𝑦1 and𝑦2. By the homomorphic property of KZG, the adversary can

forge an evaluation proof on the statement ((𝛼 + 𝛽)c, 𝑥, 𝛼𝑦1 + 𝛽𝑦2)
by setting the proof 𝛼𝜋1+𝛽𝜋2. This attack can be generalized when-

ever the adversary can leverage algebraic inconsistencies provided
by simulated proofs, as we explain hereafter.

Let 𝑨 ∈ F[𝑋 ]𝑚×𝑛 , and let 𝒃 ∈ F[𝑋 ]𝑚 . We have that (𝑨∥𝒃)
describes a linear system of polynomial equations that admits a

solution if there exists a vector 𝒛 ∈ (F[𝑋 ])𝑛 such that 𝑨 · 𝒛 = 𝒃 .

Definition 3.5 (Algebraic Consistency). Let Π be a KZG-based

CP-SNARK. Let view be the view of A at the end of the SE game

Exp(Φ,F)-𝑠𝑒
Π,A,S,E for an adversary A. We say that the view view is alge-

braic consistent if the linear system 𝑆 of polynomial equations, that

we describe next, admits a solution.

Let coms be the list of simulated commitments in ppΦ, where
coms := (c𝑘 )𝑘 and ∀𝑘 : c𝑘 ∈ G1, and proofs be the list of simulated

proofs proofs := (𝜋𝑘 )𝑘 (where 𝜋𝑘 := (q𝑘,𝑗 ) 𝑗 ,𝒚𝑘 and ∀𝑘, 𝑗 : q𝑘,𝑗 ∈
G1, 𝑦𝑘,𝑗 ∈ F) included in the view view. We assign to each simulated

commitment c𝑘 in view a formal variable (defining a polynomial)

𝑍𝑘 , similarly we assign to each G1-group element of the simulated

proofs q𝑘,𝑗 formal variables (defining polynomials) 𝑄𝑘,𝑗 ∈ F≤𝑑 [𝑋 ].
For each simulation query we define new equations derived by the

verification equations ofΠ and from the algebraic representations of

the instances queried to the simulation oracle. In particular, for the

𝑘-th simulation query with instance x𝑘 and whoseG1-elements are

(x𝑘,𝑗 ) 𝑗 and simulated proof 𝜋𝑘 , we can associate the polynomials of

the verification equation 𝑝𝑘,𝑖 , 𝑝
′
𝑘,𝑖

and 𝑝′′
𝑘
and we add the following

equation to the linear system of polynomial equations 𝑆 :∑
𝑖

(
𝑓𝑘,𝑖 (𝑋 ) + ⟨𝒄𝑘,𝑖 ,𝒁⟩ + ⟨𝒐𝑘,𝑖 ,𝑸⟩

)
𝑝𝑘,𝑖 (𝑋 )+

∑
𝑖 𝑄𝑘,𝑖 ·𝑝′𝑘,𝑖 (𝑋 ) = 𝑝

′′
𝑘
(𝑋 )
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where 𝒁 is the vector of all variables𝑍 𝑗 for any 𝑗 and𝑸 is the vector

of all the variables𝑄𝑖, 𝑗 for any 𝑖, 𝑗 , and the algebraic representation

of x𝑘,𝑖 is (𝒇𝑘,𝑖 , 𝒄𝑘,𝑖 , 𝒐𝑘,𝑖 ) and 𝑓𝑘,𝑖 (𝑋 ) =
∑
𝑗 (𝒇𝑘,𝑖 ) 𝑗𝑋 𝑗 .

As a concrete example, for the KZG-based CP-SNARKΠevl, from

the 𝑘-th simulation query with instance (c, 𝑥,𝑦) we can derive and

add to the linear system of polynomial equations the equation:

(𝑓 (𝑋 ) + ⟨𝒄,𝒁⟩ + ⟨𝒐,𝑸⟩) − 𝑦 −𝑄𝑘 (𝑋 − 𝑥) = 0,

where c = [𝑓 (𝑠)]
1
+ ⟨𝒄, coms⟩ + ⟨𝒐, proofs⟩.

4 SIMULATION EXTRACTABILITY OF KZG

We give our new results on the simulation extractability of KZG.

First, we show that (a batched version of) Πevl is simulation ex-

tractable in the presence of linearized commitments (cf. Section 4.1),

thus extending the result of [17]. Then we show that the lineariza-

tion trick is simulation-extractable (cf. Section 4.2).

4.1 SE of batched KZG

We consider a batched version of Πevl described in Section 3.3 that

we name Πm-evl. This batched version, given in the ROM, follows

from [19, 31] and relies on the linearity of the polynomials and the

homomorphic properties of KZG.

• Provem-evl (ek,x = (𝑥, (c𝑖 , 𝑦𝑖 )𝑖∈[𝑛] ),w = (𝑓𝑖 )𝑖∈[𝑛] ) computes

for 𝑖 ∈ [𝑛] : 𝜋𝑖 ← Proveevl (ek, (c𝑖 , 𝑥,𝑦𝑖 ), 𝑓𝑖 ), 𝜌 ← RO(vk∥x)
and returns

∑
𝑖 𝜌
𝑖−1𝜋𝑖 .

• Verifym-evl (vk,x = (𝑥, (c𝑖 , 𝑦𝑖 )𝑖 ), 𝜋) computes c ← ∑
𝑖 𝜌
𝑖−1c𝑖 ,

𝑦 ← ∑
𝑖 𝜌
𝑖−1𝑦𝑖 , 𝜌 ← RO(vk∥x), and returnsVerifyevl (vk, (𝑥, c, 𝑦)).

We describe our extraction policy. First, we notice that to prove

simulation extractability for the KZG-based CP-SNARK Πm-evl (and

in general for any KZG-based CP-SNARK), we can consider the

(stronger) SE experiment where the simulation oracle returns simu-

lated proofs for Πevl. In fact, we can consider the reduction that,

at any simulation oracle call for Πm-evl from the adversary, would

first call the simulation oracle for Πevl and then assemble a valid

simulated proof for Πm-evl.

To enable the adversary to ask simulation proofs for commit-

ments c whose representation depends on previously obtained sim-

ulated proofs (what we call a proof of a proof ), we need to introduce
the following definition.

Definition 4.1 (Nesting level of a proof). Let view be the view

of an adversary at the end of the SE game for a KZG-based CP-

SNARK, and let 𝑥1, . . . , 𝑥𝑛 be the list of all the evaluation points in

the simulation queries. For each (single-eval) simulation statement

((c, 𝑥,𝑦), 𝜋) ∈ Qsim let 𝒄 (resp. 𝒐) be the coefficients associated with

the commitments coms := (c𝑗 ) 𝑗 (resp. simulated proofs proofs :=

(𝜋 𝑗 ) 𝑗 ) in the algebraic representation of c. Let 𝑏𝑘 be equal to 1 if

𝑥 = 𝑥𝑘 and 0 otherwise. Let 𝑏 𝑗,𝑘 be equal to 1 if 𝑥 = 𝑥𝑘 and c𝑗 ≠ 0,

and 0 otherwise.

For all 𝑗 ∈ [|coms|], 𝑘 ∈ [𝑛], the nesting level 𝜈𝜋 ( 𝑗, 𝑘) of the
simulated proof 𝜋 on the simulated commitment c𝑗 and the point

𝑥𝑘 is equal to:

𝜈𝜋 ( 𝑗, 𝑘) := max

𝑖:𝑜𝑖≠0∧𝜈𝜋𝑖 ( 𝑗,𝑘 )≠0

{
𝜈𝜋𝑖 ( 𝑗, 𝑘) + 𝑏𝑘

}
∪ {𝑏 𝑗,𝑘 }

We define themaximum nesting level 𝜈 := max𝑗
∑
𝑘 max𝜋𝑖 𝜈𝜋𝑖 ( 𝑗, 𝑘).

[17] 𝚽
s-adpt
m-evl 𝚽

adpt
m-evl

Hash check w/ L.C. ✓ ✓
Hash check ✓
Point check ✓ ✓

Commitment check ✓
Assumption (AGM) (𝑄+𝑑+1)-DL (𝑄+𝑑+1)-DL (𝑄,𝑑 )-OMSDH

Table 1: Comparison of extraction policies in terms of con-

straints and security assumptions with related work.

Informally, the idea behind the maximum nesting level 𝜈 is that

each proof of a proof involving at some point one of the simulated

commitments can (possibly but not always) increase the degree of

the denominator of the rational function associated with such a

simulated proof. The value 𝜈 is the minimal upper bound on the

degree of (the denominators of) the rational functions associated

with the simulated proofs (see [18]). We consider the following

constraints, parametrized by a set I ⊆ [𝑛].
Point check: given a set of pointsQ𝑥 ∈ ppΦ, return 1 if∀x queried

to S1, we have that x.𝑥 ∈ Q𝑥
Hash check with Linearized Commitment (and parameter I):

Parsing the forgery instance x
∗

:= (𝑥∗, (c∗
𝑖
, 𝑦∗
𝑖
)𝑖∈[𝑛] ), return 1

if and only if there exist group elements (b𝑖,𝑟 )𝑟 , polynomials

𝐴𝑖,𝑟 (𝑋 ), a non-constant polynomial ℎ such that:

• ∀𝑖 ∈ [𝑛] : c∗
𝑖
=
∑
𝑟 𝐴𝑖,𝑟 (𝑥∗)b𝑖,𝑟

• ∀𝑖 ∈ I : ((b𝑖,𝑟 )𝑟 ; (𝐴𝑖,𝑟 )𝑟 , ℎ) →RO 𝑎.

• ℎ(𝑎) = 𝑥∗
• ∀𝑖 ∈ I :

{
𝐴𝑖,𝑟

}
𝑟
are 𝜈-independent polynomials, where 𝜈 is

the maximum nesting level (cf. Definition 4.1)

Definition 4.2. Let 𝚽adpt
m-evl,I (resp. 𝚽

s-adpt
m-evl,I ) be the set of policies

ΦD = (ΦD
0
,Φ1) for a distributionD where: (1) ΦD

0
on input group

parameters ppG outputs ppΦ := coms, where coms is a vector

of commitments sampled from D (resp. additionally it outputs a

set Q𝑥 ⊆ F). (2) Φ1 is the hash check with parameter I defined

above. (Resp. Φ1 is the logical conjunction of the hash check, with

parameter I, and the point check.) (3)D is witness sampleable and

the D-Aff-MDH assumption holds.

In Table 1 we compare our new extraction policies with the ex-

traction policy of [17]. We stress that our hash check with linearized

commitment is more permissive than their hash check constraint,

therefore, our theorem is stronger. In the table, 𝑄 is the number of

simulation queries and 𝑑 is the maximum degree supported by the

scheme.

For any set I ⊆ [𝑛], let us denote with 𝜎I the I-projection
function, namely the function that takes as input a list (𝑎1, . . . , 𝑎𝑛)
and returns the list (𝑎𝑖 )𝑖∈I .

Theorem 4.3. ∀I ⊆ [𝑛], Πm-evl is (𝚽adpt
m-evl,I , 𝜎I )-SE under the

OMSDH assumption and is (𝚽s-adpt
m-evl,I , 𝜎I )-SE under the (𝑄sim + 𝑑)-

dlog assumption in the AGM.

Proof intuition. We consider an algebraic adversary A whose

forgery satisfies the extraction policy. In particular, the view is

algebraic consistent, thus there exists a solution for the polyno-

mial system of linear equations defined by the view. As the first

important step of the proof, we simplify this system of equations
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and find alternative representations where each simulated proof

depends either from one single simulated commitment or from

one single simulated proof. This simplification allows rewriting

the forged linearized commitment in the more manageable form

c∗ = [𝑚0 (𝑠)]1 +
∑ [log(c𝑖 ) ·𝑚𝑖 (𝑠)]1 where c𝑖 are the simulated

commitments. Here, we can prove that 𝑚𝑖 (𝑋 ) ≡ 0 for 𝑖 > 0. In

fact, assume otherwise and assume the commitments are uniformly

random
12
, then we can break the representation problem finding

log(∑𝑚𝑖 (𝑥∗)c𝑖 ) = 𝑦∗ −𝑚0 (𝑥∗) where the forgery of the adversary
is (c∗, 𝑥∗, 𝑦∗).

We are still not done because𝑚0 (𝑋 ) is a rational function of the

form 𝑓 (𝑋 ) −∑𝐴𝑖 (𝑋 ) (
∑
𝑗 𝑜 𝑗𝑞𝑖, 𝑗 (𝑋 )) where 𝑓 is the polynomial we

would like to extract, the 𝑞𝑖, 𝑗 are rational functions whose degree

is bounded by the maximum nesting level 𝜈 and the 𝑜 𝑗 are the

coefficients in the algebraic representation of c∗ that depend on the

simulated proofs material. If we assume that the forgery is valid

then we would obtain𝑚0 (𝑥∗) = 𝑦∗, otherwise we could break the

OMSDH assumption, moreover, we can show this case happens

when

∑
𝐴𝑖 (𝑥∗) (

∑
𝑗 𝑜 𝑗𝑞𝑖 (𝑥∗)) = 0 but, the extractor would still

fail if there exists at least one 𝑜 𝑗 ≠ 0. Here we crucially use our

hypothesis on 𝜈-independence of the 𝐴𝑖 to show that this cannot

happen and thus all 𝑜 𝑗 = 0.

One might wonder if this last step is an artifact of our proof

technique, and whether the independence is necessary. We show

the latter is the case with an attack similar to the one presented in

Section 2.3. The attack asks for a simulated proof on (c, 0, 1) for a
simulated commitment c and sets the forged linearized commitment

to c∗ = c − 𝑥∗𝜋 for an arbitrary evaluation point 𝑥∗ and 𝑦∗ = 1,

the attack works because c∗ − [1]
1
= c − 𝑥∗c/𝑠 − 𝑥∗/𝑠 + 1 = 𝜋 (𝑠 −

𝑥∗). The formal polynomial associated to c∗ would be of the form

0 − (1 − 𝑋 · 1

𝑋
) + 𝑍 (1 − 𝑋 · 1

𝑋
) where 𝑍 is the formal variable

associated to the simulated commitment, 𝑜1 = 1 and 𝐴1 (𝑋 ) = 1

and 𝐴2 (𝑋 ) = −𝑋 and where the latter polynomials are 1-linearly

dependent. We defer the proof to [18].

4.2 SE of the Linearization Trick

In this section we formalize the linearization trick for KZG com-

mitments [19, 33] as a CP-SNARK for the relation Rlin that upon

instance:

x := ((c𝑗 ) 𝑗∈[𝑚] , (b𝑖 )𝑖∈[𝑛] , (𝐺𝑖 )𝑖∈[𝑛] , 𝑥,𝑦),

whose witnessw = (𝐶 𝑗 ) 𝑗∈[𝑚] , (𝐵𝑖 )𝑖∈[𝑛] are polynomials commit-

ted in the instance, and that outputs 1 if and only if

𝑛∑︁
𝑖=1

𝐴𝑖 (𝑥)𝐵𝑖 (𝑥) = 𝑦,

and where 𝐴𝑖 (𝑋 ) := 𝐺𝑖 ((𝐶 𝑗 (𝑋 )) 𝑗 , 𝑋 ) with 𝐺𝑖 ∈ F[𝑋1, . . . , 𝑋𝑚, 𝑋 ].
We call the polynomials𝐶 𝑗 (resp. commitments c𝑗 ) the core poly-

nomials (resp. commitments); moreover, we call the polynomials

𝐴𝑖 and 𝐵𝑖 (resp. the commitments b𝑖 ) the left and right polynomials
(resp. commitments).

We define Πlin that uses Πm-evl as inner scheme:

12
In our proof we consider the more general case where the simulated commitments

are sampled from an Aff-MDH-secure distribution.

Provelin (ek,x,w): compute𝜋m-evl ← Provem-evl (xm-evl, ((𝐶 𝑗 ) 𝑗 , 𝑅)),
where 𝑅(𝑋 ) :=

∑
𝑖 𝐴𝑖 (𝑥)𝐵𝑖 (𝑋 ), r :=

∑
𝑖 𝐴𝑖 (𝑥)b𝑖 , and xm-evl :=

(𝑥, (c𝑗 ,𝐶 𝑗 (𝑥)) 𝑗 , (r, 𝑦)). Output 𝜋 := (𝜋m-evl, (𝐶 𝑗 (𝑥)) 𝑗 )
Verifylin (vk,x, 𝜋): parse𝜋 as (𝜋m-evl, (𝑦 𝑗 ) 𝑗 ), compute r as

∑
𝑖 𝐺𝑖 ((𝑦 𝑗 ) 𝑗 , 𝑥)b𝑖 .

OutputVerifym-evl (vk,xm-evl, 𝜋m-evl), wherexm-evl := (𝑥, ((c𝑗 , 𝑦 𝑗 ) 𝑗 , (r, 𝑦)))
This scheme is not zero-knowledge as the proofs leak informa-

tion on the witness, however it achieves a weaker form of zero-

knowledge called leaky zero-knowledge [10], we give more details

in [18].

The extraction policy. Let ΦJ,𝜈lin be the policy parametrized by

𝜈 ∈ N and J ⊆ [𝑛], for 𝑛 ∈ N, described below:

Hash Check (for the linearization trick): parse the forged in-

stance x
∗

:= ((c∗
𝑗
) 𝑗 , (b∗𝑖 )𝑖 , (𝐺

∗
𝑖
)𝑖 , 𝑥∗, 𝑦∗), return 1 if and only if

there exists a polynomial ℎ such that:

• ((c∗
𝑗
) 𝑗 , (b∗𝑖 )𝑖 ; (𝐺

∗
𝑖
)𝑖 , ℎ) →RO 𝑎 and ℎ(𝑎) = 𝑥∗;

• ∀𝑗 : 𝜈 >
∑
𝑘 max𝜋∈proofs 𝜈𝜋 ( 𝑗, 𝑘) where proofs is the list of

simulated proofs.

Partial-Extraction Check: parse auxE , find polynomials (𝐵∗
𝑖
)𝑖∈J

and return 1 iff b∗
𝑖
commits to 𝐵∗

𝑖
, ∀𝑖 ∈ J .

Definition 4.4. Let 𝚽J,𝜈lin be the set of policies ΦD = (ΦD
0
,ΦJ,𝜈lin )

for a distribution D where:

• ΦD
0

on input group parameters ppG outputs ppΦ := coms, where
coms is a vector of commitments sampled from D.

• D is witness sampleable and theD-Aff-MDH assumption holds.

The Partial-Extraction Check allows to define the concept of par-
tial extractability (see [5, 11]) within the framework of Φ-simulation

extractability. The definition of partial extractability allows the ad-

versary to provide to the extractability experiment one part of the

witness, while the extractor must find the remaining part. Look-

ing ahead, this check allows to define more flexible notions of

extractability, for example, PLONK’s verifier needs to check two

linearization trick instances on a non-disjunct set of polynomials,

thus we can partition the polynomials to extract between the two

instances and, in doing so, we can loosen the independence require-

ments from the two instances. We give more details in Section 5.3.

To formalize the extractability of the linearization trick we cru-

cially rely on the framework of F -extractability. In particular,

we consider the function FJ,𝜈 (w), for parameters J ⊆ [𝑛] and
𝜈 ∈ N, that parses w as (𝐶 𝑗 ) 𝑗 , (𝐵𝑖 )𝑖 , computes for all 𝑖 the poly-

nomial 𝐴𝑖 (𝑋 ) := 𝐺𝑖 ((𝐶 𝑗 (𝑋 )) 𝑗 , 𝑋 ), and outputs w if (𝐴𝑖 )𝑖∉J are

𝜈-independent, otherwise outputs only (𝐶∗
𝑗
) 𝑗 .

The FJ,𝜈 -extractability and the Hash Check go hand in hand,

the former specifies the condition under which extraction of the

right polynomials can happen while the latter sets the rules, for the

adversary, so that such condition holds.

Theorem 4.5. For any 𝑛, 𝜈 ∈ N,J ⊆ [𝑛], Πlin is (𝚽J,𝜈lin , FJ,𝜈 )-
simulation-extractable in the AGM under the OMSDH assumption.

Proof Intuition. Thanks to the heavy lifting of Theorem 4.3 the

proof of Theorem 4.5 is not much different than a proof of (stan-

dard) extractability in the AGMOS [30] would be. In fact, the proof

can be summarized as two direct reductions to the SE of Πm-evl.

In the first reduction, which is almost straight-forward, we show

how to extract the core polynomials. On the other hand, the second

reduction needs a careful analysis as, in fact, the extractor of Πm-evl
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extracts 𝑅(𝑋 ) = ∑
𝐴𝑖 (𝑥∗)𝐵𝑖 (𝑋 ) while we need to show how to

extract the polynomials (𝐵𝑖 (𝑋 ))𝑖 . For simplicity, assume that the

adversary obtains an obliviously sampled element c, thus we can
write b𝑖 = [𝐵𝑖 (𝑠)]1 +𝐵𝑖 (𝑠) · c. We need to show that 𝐵𝑖 ≡ 0, and we

can assume, thanks to the SE of Πm-evl, that
∑
𝐴𝑖 (𝑥∗)𝐵𝑖 (𝑋 ) ≡ 0. In

proving knowledge extractability, we can just rely on the linear in-

dependence of the polynomials 𝐴𝑖 and the Schwartz-Zippel lemma,

for simulation extractabilitywe additionally use the𝜈-independence

and the second item of the Hash Check property. We defer the proof

to [18].

5 GENERALIZING POLYNOMIAL

INTERACTIVE ORACLE PROOFS

We generalize PIOPs by allowing the verifier’s queries to be (arbi-

trary) predicates over the prover’s oracles. To this end, we use the

formalism of oracle relations introduced in [13]. Roughly speaking,

an oracle relation could be seen as the oracle-world counterpart

of commit-and-prove relation. In particular, as we use them in the

next definition, oracle relations are a useful abstraction which al-

lows to define predicates over the oracles sent by the prover in the

execution of a PIOP.

Definition 5.1 (Oracle Relations, [13]). An oracle (indexed) rela-

tion R is an (indexed) relation when the instances x of R contain

pointers to oracle polynomials over some field F. The actual polyno-
mials corresponding to the oracles are contained in the witness. We

denote the pointer to the oracle polynomial 𝑓 by J𝑓 K, let (x,w) ∈ R
we denote with oracles(x) = {J𝑓1K, J𝑓2K, . . . , J𝑓𝑘K} for some 𝑘 the

pointers to the polynomial oracles in x andw = (𝑓1, 𝑓2, . . . , 𝑓𝑘 ).

Definition 5.2 ((Holographic) ˆR-PIOP). Let F be a family of finite

fields, letR be an oracle indexed relation and
ˆR be an oracle relation.

A (public-coin non-adaptive) Holographic
ˆR-PIOP over F for R

is a tuple IP := (𝑟, 𝑛,𝑚, 𝐷, I, P,V) where 𝑟, 𝑛,𝑚, 𝐷 : {0, 1}∗ → N
are polynomial-time computable functions, and I, P,V are three

algorithms for the indexer, prover and verifier respectively, that

work as follows.

Offline phase: The indexer I(F, i) is executed on input a field F ∈
F and a relation description i, and it returns 𝑛(0) polynomials

{𝑝0, 𝑗 } 𝑗∈[𝑛 (0) ] encoding the relation i.

Online phase: The prover P(F, i,x,w) and the verifierVI(F,i) (F,x)
are executed for 𝑟 ( |i|) rounds; the prover has a tuple (F, i,x,w) ∈
R and the verifier has an instance x and oracle access to the

polynomials encoding i.

In the 𝑖-th round, P sends𝑚(𝑖) messages

{
𝜋𝑖, 𝑗 ∈ F

}
𝑗∈[𝑚 (𝑖 ) ] , and

𝑛(𝑖) oracle polynomials {J𝑝𝑖, 𝑗 K : 𝑝𝑖, 𝑗 ∈ F[𝑋 ]} 𝑗∈[𝑛 (𝑖 ) ] of degree
at most 𝐷 := 𝐷 ( |i|), while V replies (except for the last round)

with a uniformly random message 𝜌𝑖 ∈ F.
Decision phase: Let 𝑟 := 𝑟 ( |i|), 𝑛 :=

∑𝑟
𝑘=0

𝑛(𝑘),𝑚 :=
∑𝑟
𝑘=1

𝑚(𝑘).
After the 𝑟 -th round, let the verifier VI(F,i) (F,x, 𝝅 , 𝝆), on in-

put the description of the field F, the verifier messages 𝝆 :=

(𝜌1, . . . , 𝜌𝑟−1), the messages of the prover 𝝅 := (𝜋1, . . . , 𝜋𝑚)
outputs the instance x̂ whith oracles(x̂) ⊆ {J𝑝1K, . . . , J𝑝𝑛K}.
The verifier accepts if x̂ ∈ L

ˆR .

We simply say that IP is an 𝑟 -rounds PIOP if the number of

rounds is constant and independent of the size of the index. We

give some additional notation. In the following, we will use two

different ways to index (the pointers to) the oracle polynomials

in a PIOP protocol’s execution. We will refer to the oracle poly-

nomials sent by the prover and by the indexer either as J𝑝𝑖, 𝑗 K,
with double indexes, or as the J𝑝𝑘K, with a single index, where

𝑘 =
∑
𝑖′=1,...,𝑖−1

𝑛(𝑖′) + 𝑗 . We define the oracle index index(J𝑓 K)
as the index in the transcript associated with (the pointer to) the

polynomial oracle J𝑓 K. Similarly to the set oracles(x̂), we define
the set indexes(x̂) :=

{
index(J𝑓 K) : J𝑓 K ∈ oracles(x̂)

}
the indexes

in the transcript associated with (the pointers to) the polynomial

oracles involved in x̂.

Security Properties for PIOPs. In terms of security, we require

R-PIOPs to satisfy the usual properties in line with previous work.

In particular, we require 𝑏-bounded zero-knowledge for the PIOP, a
notion that assures zero-knowledge even in the presence of evalua-

tions on random points for some of the polynomial oracles. This

notion was originally defined in [14] and generalized in [10]. Addi-

tionally, we require simulation-friendly polynomial oracles, which
essentially means that the commitments to the oracles can be simu-

lated by sampling random group elements. This property is trivial to

verify when the commitments are hiding and it can be proved, with

some extra work, for non-hiding commitments relying, for exam-

ple, on Decisional Uber Assumption [7]
13

and the zero-knowledge

of the PIOP. Finally, as in [17], we require that the PIOP is state-
restoration straight-line knowledge sound. The notion is defined by a

security game where the malicious prover engages with the honest

verifier and has the additional ability to roll back the interaction

with the verifier to a previous state. At some point, the interaction

may reach a final state. The prover is considered successful if it pro-

duces an accepting transcript, while the extractor, given the oracles

in the accepting transcript, fails to produce a valid witness. State-

restoration knowledge soundness is implied by standard knowledge

soundness [4], although with a loose reduction, and it is, arguably,

the correct notion of soundness for multi-round public-coin PIOP

compiled through the Fiat-Shamir transform as it avoids grinding
attacks [37]. We defer the formal definitions of these properties for

R-PIOPs to [18].

Verifier Checks. It is often the case that the relation
ˆR, for an

ˆR-PIOP, is the logical conjunction of a (sub)relation. In this case, we

consider x̂ := (x̂𝑘 )𝑘 and the verifier returns 1 when all the checks

x̂𝑖 are satisfied. When looking at concrete examples of PIOPs, in

the rest of this section, we will assume that this natural approach is

used by the verifier: for sake of simplicity, we extend Definition 5.2

of an
ˆR-PIOP and allow the verifier to output 𝑛𝑒 checks (x̂𝑘 )𝑘 , and

the verifier accepts iff x̂𝑘 ∈ L ˆR for all 𝑘 ∈ [𝑛𝑒 ].

PIOPs with Delegation. There are cases in which the PIOP can

be thought of as a two-phase protocol, sharing the same indexer

I where: (i) in the first phase of the protocol, the prover P1 takes

as input the field F, the index i, the instance x and the witness

w, and interacts for a certain number of rounds with the verifier,

while (ii) in the second phase, the prover P2 that, crucially, does

not take as input the witness w, interacts with the verifier for

13
Which reduces to discrete log for algebraic adversaries [35].
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only two rounds.
14

Since we require the output of P2 to be uniquely

determined by its input (which is also computable by an “inefficient”

verifier), we call this last (witness-independent) phase a delegation
phase.

The reason to add this new definition is to enlarge the class of

PIOPs for which the technical condition in [17] (sufficient to prove

Simulation Extractability of the compiled SNARK) holds.

Definition 5.3 (Delegation Phase for a PIOP). Let IP be an 𝑟 + 1-

rounds
ˆR-PIOP over F for R. We say that IP is

ˆR-PIOP with

delegation phase if we can parse P (resp. V) as P1 and P2 (resp.

as V1 and V2) such that there exists a verifier Ṽ taking as addi-

tional input the index i where (1) IP1 = (P1, Ṽ) is a (𝑟 − 1)-rounds
ˆR-PIOP over F for R and the queries of Ṽ and V1 are identical

for any inputs, (2) IP2 = (P2,V2) is a 2-rounds
ˆR-PIOP over F

for the (P-)language of strings (F, i, (x, (𝝅 𝑗 ) 𝑗∈[𝑟 ] , (𝜌 𝑗 ) 𝑗∈[𝑟−1] ))
where Ṽ(F, i,x, (𝝅 𝑗 ) 𝑗∈[𝑟 ] , (𝜌 𝑗 ) 𝑗∈[𝑟−1] )) = 1 assuming that the Ṽ’s
queries to

ˆR are answered positively.

Uniqueness of delegation phase. Moreover, we have that for all

F, i,x, (𝝅 𝑗 ) 𝑗∈[𝑟 ] , (𝜌 𝑗 ) 𝑗∈[𝑟−1] the probability, taken over the V2’s

message 𝜌𝑟
$← F, that V2 on input (F,x, (𝝅 𝑗 ) 𝑗∈[𝑟 ] , (𝜌 𝑗 ) 𝑗∈[𝑟−1] )

accepts on two transcripts, that are different in the first tuple of

messages and polynomials, is negligible in log |F|.

In the following, we simply refer to an 𝑟 -rounds ˆR-PIOP with
a Delegation Phase, denoting it as IP1∥IP2, as the (𝑟 + 1)-rounds
ˆR-PIOP in which the prover P first runs P1 and interacts with the

verifier V1 for 𝑟 rounds, then runs P2 in the last phase, while the

verifier outputs the checks ofV1 andV2, and accepts if and only if all

the checks are satisfied.
15

Note, we say that a PIOP with delegation

has simulation-friendly polynomial oracles if so does IP1.

5.1
ˆRlin-PIOP

Similarly to Section 4.2, let
ˆRlin be the oracle indexed relation that

upon an instance

x̂ := ((J𝑐 𝑗 K) 𝑗∈[𝑚] , (J𝑏𝑖K)𝑖∈[𝑛] , (𝐺𝑖 )𝑖∈[𝑛] , 𝑥,𝑦),

outputs 1 if and only if

∑
𝑖 𝑎𝑖 (𝑥)𝑏𝑖 (𝑥) = 𝑦, where for all 𝑖 , we have

that 𝑎𝑖 (𝑋 ) := 𝐺𝑖 (𝑐1 (𝑋 ), . . . , 𝑐𝑚 (𝑋 ), 𝑋 ). We refer to the polynomial

oracles (J𝑐 𝑗 K) 𝑗 as the core polynomial oracles, while the polynomial

oracles (J𝑎𝑖K)𝑖 and (J𝑏𝑖K)𝑖 as the left and right polynomial oracles
respectively. We use the shorthand x̂.𝑎𝑖 to refer to the 𝑎𝑖 defined

above.

Below we formalize a class of
ˆRlin-PIOPs in which each evalu-

ation point 𝑥 chosen by the verifier for a
ˆRlin query is a function

𝑥 = 𝑣 (𝝆) of its random coins, where 𝑣 is a polynomial that can

be defined by the verifier depending only on the index i and the

instance x. The ˆRlin checks relying on a 𝑣 which is non-constant

in the 𝑟 − 1-th random coin are called “focal”, as they have a focal

role to ensure extractability.

14
We could consider a more general setting with multiple delegation rounds; however,

all the optimized constructions we are aware of only require two.

15
The prover can sends all the messages of the first round of IP2 on the 𝑟 -th round of

IP1 , thus yelding an 𝑟 + 1 (rather than 𝑟 + 2) rounds protocol.

Definition 5.4 (Structured ˆRlin-PIOP and focal checks). An 𝑟 -rounds
ˆRlin-PIOP IP is structured if there exists a deterministic PT algo-

rithm Ṽ such that for all i, x, 𝝅 , 𝝆, 𝑘 ∈ [𝑛𝑒 ] we have that:

𝑣𝑘 (𝝆) = x̂𝑘 .𝑥

where (𝑣𝑘 )𝑘 ← Ṽ(F, i,x) and (x̂𝑘 )𝑘 ← VI(F,i) (F,x, 𝝅 , 𝝆).
If deg𝑟−1

(𝑣𝑘 ) ≥ 1 we say that the check x̂𝑘 is focal. We denote

by K𝑓 the set of all indexes 𝑘 such that x̂𝑘 is focal.

Finally, we introduce the notion of compilation-safeness for
ˆRlin-

PIOPs. The idea of the definition below is that focal checks can be

ordered in such a way that we can incrementally extract all the

polynomials, starting from the trivially extractable polynomials,

namely the index polynomials, and using the partial extractability

property derived from Definition 4.4.

Definition 5.5 (Compiler-safe ˆRlin-PIOP). An 𝑟 -rounds ˆRlin-PIOP
IP is compiler-safe if for any i and x, for any 𝝅 and any 𝝆 there are

no polynomial oracles in the last message of the prover and there

is an ordering of the focal checks (x̂𝑘 )𝑘∈K𝑓 such that (1) for any

𝑘 ∈ K𝑓 we have {x̂𝑘 .𝑎𝑖 : x̂𝑘 .𝑏𝑖 ∉ J𝑘−1
} are 𝜈-independent and

(2) we have J𝑛𝑒 is the set of all the polynomials including index

polynomials sent by the prover, where:

• J0 is the set of 𝑛(0) index polynomials

• for all 𝑘 ∉ K𝑓 , J𝑘 := J𝑘−1

• for all𝑘 ∈ K𝑓 ,J𝑘 := J𝑘−1
∪
{
x̂𝑘 .𝑐 𝑗 : 𝑗 ∈ [𝑚]

}
∪{x̂𝑘 .𝑏𝑖 : 𝑖 ∈ [𝑛]}

• 𝜈 is themaximumnumber of distinct points for which the verifier

evaluates a non-index polynomial, i.e.,

𝜈 := max

𝑖>𝑛 (0)
|
{
x̂𝑘 : J𝑝𝑖K ∈ oracles(x𝑘 ), 𝑘 ∈ [𝑛𝑒 ]

}
|

Moreover, an
ˆRlin-PIOP with a delegation phase IP1∥IP2 is struc-

tured (resp. compiler-safe) if IP1 and IP2 are both structured (resp.

compiler-safe).

5.2
ˆRpoly-PIOP

When designing a new scheme, it is easier to describe the PIOP by

specifying a list of polynomial equations between the polynomial

oracles as, for example, in [10, 17, 19, 34]. In Section 5.2, we formal-

ize this class of PIOPs using the oracle relation
ˆRpoly that upon the

instance xpoly := ((J𝑝 𝑗 K) 𝑗∈[𝑛] , 𝐹 , (𝑣 𝑗 ) 𝑗∈[𝑛] ), outputs 1 if and only

if:

𝐹 (𝑝1 (𝑣1 (𝑋 )), . . . , 𝑝𝑛 (𝑣𝑛 (𝑋 )), 𝑋 ) ≡ 0

where 𝑣 𝑗 ∈ F[𝑋 ],∀𝑗 and 𝐹 ∈ F[𝑋1, . . . , 𝑋𝑛, 𝑋 ].
We then show a notion of compiler-safe

ˆRpoly which very in-

formally asks that each oracle 𝑝𝑖 is queried on a non-constant 𝑣𝑖 at

least in one of the polynomial equations, and which is, arguably,

much easier to verify and enforce than Definition 5.5. In particular

our notion of compiler-safe is more inclusive than in [17], as it

holds for PIOPs such like Marlin [14] and Lunar [10] without any

changes.

In [18] we show that we can transform a compiler-safe
ˆRpoly-

PIOP into a compiler-safe
ˆRlin-PIOP. We believe this can give an

easy-to-follow recipewhen designing newKZG-based SE-zkSNARKs

from PIOPs because the cryptographer needs only to focus on de-

signing compiler-safe
ˆRpoly-PIOP.
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P J𝑞MK, J𝑞LK, J𝑞RK, J𝑞OK, J𝑆𝜎1K, J𝑆𝜎2K, J𝑆𝜎3K, J𝑃𝐼K V

J𝑎K, J𝑏K, J𝑐K

𝛽,𝛾

J𝑧K

𝛼

J𝑡𝑙𝑜K, J𝑡𝑚𝑖𝑑 K, J𝑡ℎ𝑖K

𝔷

𝑧𝜔 := 𝑧 (𝔷𝜔 )

x̂1 checks: 𝑧 (𝔷𝜔 ) = 𝑧𝜔
x̂2 checks:

// Below, the right polynomials are index polynomials:

𝑎 (𝔷)𝑏 (𝔷)𝑞M (𝔷) + 𝑎 (𝔷)𝑞L (𝔷) + 𝑏 (𝔷)𝑞R (𝔷)
+ 𝑐 (𝔷)𝑞O (𝔷) + 𝑞C (𝔷) − 𝛼2𝐿1 (𝔷) + 𝑃𝐼 (𝔷)
− 𝛼𝛽𝑧𝜔 (𝑎 (𝔷) + 𝛽𝑆𝜎1 (𝔷) + 𝛾 ) (𝑏 (𝔷) + 𝛽𝑆𝜎2 (𝔷) + 𝛾 )𝑆𝜎3 (𝔷)
− 𝛼𝑧𝜔 (𝑎 (𝔷) + 𝛽𝑆𝜎1 (𝔷) + 𝛾 ) (𝑏 (𝔷) + 𝛽𝑆𝜎2 (𝔷) + 𝛾 ) (𝑐 (𝔷) + 𝛾 )

// Below, the right polynomial 𝑧 is extracted from x̂1 :

+𝛼
(
(𝑎 (𝔷) +𝛽𝔷+𝛾 ) (𝑏 (𝔷) +𝛽𝑘1𝔷+𝛾 ) (𝑐 (𝔷) +𝛽𝑘2𝔷+𝛾 ) +𝛼𝐿1 (𝔷)

)
𝑧 (𝔷)

// Below, right polynomials extracted thanks to independence of left polynomials:

+ 𝑍𝐻 (𝔷)𝑡𝑙𝑜 (𝔷) + 𝑍𝐻 (𝔷)𝔷𝑛𝑡𝑚𝑖𝑑 (𝔷) + 𝑍𝐻 (𝔷)𝔷2𝑛𝑡ℎ𝑖 (𝔷) = 0

Figure 3: The
ˆRlin-PIOP PLONK. For x̂2, we highlight the core

polynomials, the left polynomials that are linearly indepen-

dent, and the right polynomials.

5.3 Notable PIOPs

In what follows, we show how to express in
ˆRlin form the PIOPs

underlying PLONK and Marlin (with all optimizations); it is easy

to extend this analysis to Lunar and Basilisk that are very similar

to Marlin and PLONK, respectively.

PLONK. We show in Fig. 3 how PLONK [19] can be written as

a 4-rounds
ˆRlin-PIOP in which the verifier outputs two checks.

The maximum number of distinct points for which the verifier

evaluates a non-index polynomial is 2 since the oracle polynomial

J𝑧K is evaluated on 𝔷 and 𝔷𝜔 . In x̂1 the verifier tests that 𝑧 (𝔷𝜔)
equals the field element 𝑧𝜔 sent in the last round by the prover.

Moreover, all but J𝑡𝑙𝑜K, J𝑡𝑚𝑖𝑑K, J𝑡ℎ𝑖K of the right oracle polynomials

of x̂2 are part of the index or are extracted from x̂1. However, the

corresponding left oracle polynomials, that we highlight in the

figure, are linearly independent w.r.t. F≤2 [𝑋 ], which results in a

compiler-safe PIOP according to Definition 5.5.

Marlin. We show in Fig. 4 how Marlin [1, 14] can be written as

a 3-rounds
ˆRlin-PIOP with a Delegation Phase.

P J ˆrowK, J ˆ
colK, J ˆ

rowcolK, J ˆ
val𝐴K, J ˆ

val𝐵K, J ˆ
val𝐶K V

J𝑤̂K, J𝑧𝐴K, J𝑧𝐵K, J𝑠K

𝜂𝐴, 𝜂𝐵, 𝜂𝐶 , 𝛼

J𝑡K, J𝑔1K, Jℎ1K

𝛽

𝑣𝑡 := 𝑡 (𝛽 ), J𝑔2K, Jℎ2K

𝛾

x̂1 checks: 𝑢𝐻 (𝛼, 𝛽 ) (𝜂𝐴 + 𝜂𝐶𝑧𝐵 (𝛽 ) )𝑧𝐴 (𝛽 ) + 𝑠 (𝛽 )
− 𝑣𝐻 (𝛽 )ℎ1 (𝛽 ) +𝑢𝐻 (𝛼, 𝛽 )𝜂𝐵𝑧𝐵 (𝛽 ) − 𝑣𝑡𝑥 (𝛽 ) − 𝛽𝑔1 (𝛽 )
− 𝑣𝑋 (𝛽 )𝑡 (𝛽 )𝑤̂ (𝛽 ) = 0

x̂2 checks: (𝑎 (𝛾 ) − 𝑏 (𝛾 ) (𝛾𝑔2 (𝛾 ) + 𝑣𝑡
|𝐾 | ) − 𝑣𝐾 (𝛾 ) )ℎ2 (𝛾 ) = 0

Figure 4: The
ˆRlin-PIOP Marlin, where: 𝑣𝐻 (resp. 𝑣𝐾 , 𝑣𝑋 ) de-

notes the vanishing polynomial of the subgroup𝐻 (resp.𝐾,𝑋 )

of F; 𝑢𝐻 is the formal derivative of 𝑣𝐻 ; the polynomials 𝑎 and

𝑏 are computed using the index polynomials and the coins 𝛼

and 𝛽 . We highlight the delegation phase, the core and right
polynomials of x̂1.

Π.Derive(srs, i) :

𝒑0 ← I(F, i) ;

for 𝑗 ∈ [𝑛 (0) ] do : c𝑗 ←
[
𝑝0, 𝑗 (𝑠 )

]
1

eki ← 𝒑0, vki ← (c𝑗 )𝑖∈ [𝑛 (0) ]
return (eki, vki )

Π.Verify(vk
i
,x, 𝜋) :

derive (𝜋1, . . . , 𝜋𝑟 ) from 𝜋

for 𝑖 ∈ [𝑟 ( |i | ) − 1] do :

𝜌𝑖 ← RO(vk
i
,x, 𝜋1, . . . , 𝜋𝑖 )

{x̂𝑘 }𝑘 ← VI(F,i) (F,x,𝝅 , 𝝆 )

return
∧

𝑘∈ [𝑛𝑒 ]
Verifylin (srs,x𝑘 , 𝜋𝑘 )

Π.Prove(srs, eki,x,w) :

for 𝑖 ∈ [𝑟 ( |i | ) ] do :

// Get messages from PIOP prover(
𝒑𝑖 ,𝝅𝑖

)
← P(F, i,x,w, 𝜌1, . . . , 𝜌𝑖−1 )

𝑡 ← ∑
𝑗 ∈ [𝑖−1] 𝑛 ( 𝑗 )

for 𝑗 ∈ [𝑛 (𝑖 ) ] do : c𝑡+𝑗 ←
[
𝑝𝑖,𝑗 (𝑠 )

]
1

// Fiat-Shamir commitments and messages

𝜋𝑖 := (c𝑡+1, . . . , c𝑡+𝑛 (𝑖 ) ,𝝅𝑖 )
if 𝑖 < 𝑟 : 𝜌𝑖 ← RO(vk

i
,x, 𝜋1, . . . , 𝜋𝑖 )

for 𝑘 ∈ [𝑛𝑒 ] :

𝜋𝑘←Provelin (srs,x𝑘 , (𝑝𝑖 :𝑖 ∈ indexes(x̂𝑘 ) ) )
return (c,𝝅 , (𝜋𝑘 )𝑘 )

Figure 5: The compiler based from
ˆRlin-PIOPs and KZG com-

mitment scheme to Universal zkSNARKs. We associate to

the instance x̂𝑘 for the oracle relation
ˆRlin the instance x𝑘

for the commit-and-prove relation Rlin, the latter instance

is identical to x̂𝑘 but where any oracle J𝑝K ∈ oracles(x̂𝑘 ) is
substituted with the commitment [𝑝 (𝑠)]

1
.

6 REVISITING THE PIOP-TO-ZKSNARK

COMPILER

We show how to turn compiler-safe
ˆRlin-PIOPs into simulation-

extractable zkSNARKs. We stress that, although the formalism we
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adopt differs from previous work, the resulting compiler’s construc-

tion is the usual one with the linearization trick optimization.

Definition 6.1. We say that Π is strong simulation-extractable in
the algebraic group model with oblivious sampling if and only if Π is

𝚽sse-simulation-extractable where for any (Φ0,Φ1) in the family of

policies 𝚽sse we have that Φ0 outputs group elements coms = (c𝑖 )𝑖
from an Aff-MDH secure and witness sampleable distribution and

Φ1 checks that the forgery (x∗, 𝜋∗) ∉ Qsim.

Theorem 6.2. Let Πlin be the CP-SNARK for Rlin defined in Sec-
tion 4.2. Let IP be a compiler-safe ˆRlin-PIOP for relation R that is
state-restoration straightline extractable, bounded zero-knowledge,
and with simulation-friendly polynomial oracles. Let Π be the zk-
SNARK compiled from IP using the compiler in Fig. 5. Then Π is
zero-knowledge and strong simulation-extractable in the AGM. Fur-
thermore, if R is an oracle relation, then Π is a CP-SNARK.

Proof intuition. The proof of zero-knowledge follows rather eas-
ily from the bounded zero-knowledge, the simulation-friendly poly-

nomial oracles and the (leaky) zero-knowledge of Πlin. Moreover,

the simulation strategy makes sure that the view of the adversary

is always algebraic consistent and that the maximum nesting level

is at most equal to the number of
ˆRlin instances queried by the

verifier in a single proof.

For the proof of simulation extractability, we need to show that

for any adversary A, there is an extractor E who outputs a valid

witness whenever A submits a valid forgery, i.e., a new and valid

pair of statement and proof. To do that, we reduce the simulation

extractability of Π to the state-restoration knowledge soundness

of the PIOP. Our extractor parses the algebraic representation of

the commitments sent by the adversary when querying the RO

(to compute the next coin of the verifier), and extracts from them

the underlying polynomials. The latter polynomials are used as

the prover oracles sent in the reduction to the state-restoration

knowledge soundness experiment to define a verifier state and

retrieve the next coins of the verifier. Notice that this reduction

would not work if the adversary used simulated elements in (the

transcript) of his forgery. We bound the probability of this bad

event by reducing to the simulation extractability of Πlin. More in

detail, for each focal check we perform one reduction to the Φlin-

SE of Πlin and in the 𝑘-th reduction we extract the polynomials

J𝑘 with the knowledge of the polynomials in J𝑘−1
(i.e., we use

partial extractability), where the sets (J𝑘 )𝑘 come from the compiler-

safeness (c.f. Definition 5.5).
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