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Abstract—We propose a group information geometry ap-
proach (GIGA) for ultra-massive multiple-input multiple-output
(MIMO) signal detection. The signal detection task is framed
as computing the approximate marginals of the a posteriori
distribution of the transmitted data symbols of all users. With
the approximate marginals, we perform the maximization of the
a posteriori marginals (MPM) detection to recover the symbol
of each user. Based on the information geometry theory and the
grouping of the components of the received signal, three types
of manifolds are constructed and the approximate a posteriori
marginals are obtained through m-projections. The Berry-Esseen
theorem is introduced to offer an approximate calculation of
the m-projection, while its direct calculation is exponentially
complex. In most cases, increasing the number of groups tends to
reduce the computational complexity of GIGA. However, when
the number of groups exceeds a certain threshold, the complexity
of GIGA starts to increase. Simulation results confirm that the
proposed GIGA achieves better bit error rate (BER) performance
within a small number of iterations, which demonstrates that it
can serve as an efficient detection method in ultra-massive MIMO
systems.

Index Terms—Bayesian inference, information geometry,
general belief propagation, ultra-massive MIMO, signal
detection.

Received 17 September 2024; revised 11 February 2025 and 3 April 2025;
accepted 7 April 2025. Date of publication 30 April 2025; date of current
version 19 June 2025. This work was supported in part by Jiangsu Province
Major Science and Technology Project under Grant BG2024005, in part
by Jiangsu Province Basic Research Project under Grant BK20192002, in
part by the Fundamental Research Funds for the Central Universities under
Grant 2242022k60007, in part by the Key R&D Plan of Jiangsu Province
under Grant BE2022067, and in part by Huawei Cooperation Project. The
associate editor coordinating the review of this article and approving it for
publication was Cihan Tepedelenlioglu. (Jiyuan Yang and Mingrui Fan are
co-first authors.) (Corresponding author: Xiqi Gao.)

Jiyuan Yang, Mingrui Fan, Yan Chen, and Xiqi Gao are with the
National Mobile Communications Research Laboratory, Southeast Univer-
sity, Nanjing 210096, China, and also with Purple Mountain Laboratories,
Nanjing 211111 China (e-mail: jyyang@seu.edu.cn; 220220758@seu.edu.cn;
213160372@seu.edu.cn; xqgao@seu.edu.cn).

Xiang-Gen Xia is with the Department of Electrical and Computer
Engineering, University of Delaware, Newark, DE 19716 USA (e-mail:
xxia@ee.udel.edu).

Dirk Slock is with the Department of Communication Systems, EURE-
COM, 06410 Biot, France (e-mail: Dirk.Slock@eurecom.fr).

I. INTRODUCTION

EMERGING as a promising solution to address the ca-
pacity demands of future communication systems, ultra-

massive multiple-input multiple-output (MIMO) (also known as
extremely large-scale MIMO, extra-large scale massive MIMO,
etc.) has attracted a significant attention. Ultra-massive MIMO
leverages a substantial number of antennas at the base station
(BS), often hundreds to thousands, to serve a large number of
user terminals on the same time-frequency resource, which can
dramatically improve spectrum efficiency, energy efficiency,
and spatial resolution [1], [2], [3], [4], [5], [6]. This technology
also offers substantial beamforming gains, crucial for mitigat-
ing path losses at high-frequency bands like millimeter-wave
(mmWave) and terahertz (THz) [5], [7].

To fulfill the various advantages of ultra-massive MIMO,
signal detection plays an important role. Typically, signal de-
tection is used to recover the transmitted symbols of the user
terminals based on the received signal and the channel state
information (CSI). In MIMO transmission, inter-symbol inter-
ference and noise pose a great challenge for signal detection.
In general, the maximum a posteriori (MAP) or maximum-
likelihood (ML) detection could provide a statistically optimal
solution by means of an exhaustive search over all possible
transmitted symbols. Nevertheless, the combinatorial nature
of the MAP or ML detection makes conventional numerical
algorithms for convex optimization unsuitable. The MAP or
ML detection can be prohibitively complex in practice. On the
other hand, classical linear detectors such as zero-forcing (ZF)
and linear minimum mean-squared error (LMMSE) detectors,
suffer from limited performance despite their polynomial-time
complexity [8], [9], [10].

The massive MIMO signal detection has been a topic of
great interest during the past few years. Numerous algorithms
have been proposed to address this problem [11], [12], [13],
[14], [15], [16], [17]. Readers interested in the development
of massive MIMO signal detection techniques can refer to
[18]. Among all the signal detection algorithms, those based
on Bayesian inference, such as belief propagation (BP), ex-
pectation propagation (EP), and approximate message prop-
agation (AMP), have gained a lot of interest due to their
satisfactory performance-complexity profile. While possessing
reduced complexity compared to MAP or ML detection, these
algorithms can still achieve sub-optimal detection performance.
Based on the Markov random field and message passing, a
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low-complexity detection algorithm is proposed for large di-
mensional MIMO-ISI channels in [19]. The paper [8] pioneers
the integration of EP into massive MIMO signal detection with
high-order modulation schemes. In [20], an iterative detector
based on AMP is proposed for large-scale multiuser MIMO-
OFDM systems.

Recently, an interdisciplinary field, information geometry,
has attracted great interest. It merges concepts from informa-
tion theory and differential geometry to explore the geometric
structures and properties of statistical models [21], [22], [23].
From the perspective of information geometry, the set of dis-
tributions can be represented as a manifold, offering a natural
approach to describe the relationship between different sets of
probability distributions. One common metric used to measure
the distance between different probability distributions is the
well-known Kullback-Leibler (K-L) divergence. Information
geometry provides a mathematical foundation for analyzing
and understanding the intrinsic geometric structures of various
statistical models. As an active and powerful subject, it has been
widely used in research related to statistics, such as radar target
detection [24], [25], channel estimation [26], and quantitative
fault diagnosability analysis [27].

Recently, we have proposed an information geometry ap-
proach (IGA) for ultra-massive MIMO signal detection in [28].
In [28], the signal detection problem is framed as computing the
approximate marginals of the a posteriori probability distribu-
tion of the transmitted symbols. Based on the a posteriori prob-
ability distribution, we define the objective manifold (OBM)
and the auxiliary manifolds (AMs), where the OBM contains
the approximate marginal probability distributions and each
AM is related to the received signal on a single antenna at the
receiver. The calculation of the approximation is then converted
to m-projections from the distributions of AMs onto the OBM.
A important property of m-projection is that the solution of
m-projection exists and is unique. Although it can provide high
detection performance, IGA has a slow convergence rate when
modulation order and signal-to-noise ratio are high.

In this work, we propose a group information geometry ap-
proach (GIGA) for signal detection of ultra-massive MIMO
systems. Our goal is still to acquire the approximation of the a
posteriori marginals, and the maximization of the a posteriori
marginals (MPM) detection is performed to recover the trans-
mitted data symbols from the perspective of information geom-
etry. Different from the IGA in [28], we express the a posteriori
distribution in a factorized manner by grouping the components
of the received signal. On this basis, we define new AMs, where
each AM is related to the received signal on a group of antennas
at the receiver. The approximate marginals are then obtained
through m-projections from the distributions of AMs onto the
OBM. A direct calculation of the m-projection is first presented,
whose complexity is exponential and unaffordable. To solve
this problem, we propose an approximate calculation of the
m-projection based on the Berry-Esseen theorem, which can
reduce the complexity significantly. Simulation results show
that GIGA has significant advantages over existing algorithms
in both convergence rate and detection performance. In general,
the complexity of GIGA decreases as the number of groups

increases. When the number of groups exceeds a certain thresh-
old, its complexity starts to increase. Given a proper number of
groups, GIGA can obtain better BER performance with lower
computational complexity compared to IGA.

The remaining sections are arranged as follows. Section II
introduces the system configuration and problem formulation.
GIGA is developed in Section III. The calculation of the
m-projection is discussed in Section IV. Simulation results
are discussed in Section V. Finally, conclusions are drawn in
Section VI.

Throughout this paper, upper (lower) case boldface letters de-
note matrices (column vectors). Ep {·} denotes the expectation
operation w.r.t. the distribution p (h). R (·) and I (·) denote the
real and imaginary parts of a complex matrix, respectively. We
use yn or [y]n, ai,j or [A]i,j to denote the n-th component of
the vector y and the (i, j)-th component of the matrix A, where
the element indices start with 1. Given a vector y ∈ C

P , where
P ≥ 1 is an integer. Define a set B � {b1, b2, · · · , bQ}, where
1≤ b1 < b2 < · · ·< bQ ≤ P and Q≤ P . We denote [y]B as

[y]B �
[
[y]b1 , [y]b2 , · · · , [y]bQ

]T
∈ C

Q.

Given a matrix A ∈ C
P×P ′

, we use [A]m,: to denote the m-th
row of the matrix A. We denote [A]B,: as

[A]B,: �
[
[A]

T
b1,:

, [A]
T
b2,:

, · · · , [A]
T
bQ,:

]T
∈ C

Q×P ′
.

� and ⊗ denote the Hadamard product and Kronecker prod-
uct, respectively. We define ZN � {0, 1, . . . , N} and Z+

N �
{1, 2, . . . , N}. ||·|| denotes the �2 norm. We use p (·) to rep-
resent the probability distribution of discrete random vari-
ables and f (·) to represent the probability density function
(PDF) of continuous random variables, respectively. We de-
note the PDF of a complex Gaussian random vector x∼
CN (μ,Σ) as fCG (x;μ,Σ). We denote the PDF of a
real Gaussian vector x∼N (μ,Σ) as fG (x;μ,Σ). Given
a positive-definite matrix A ∈ C

m×m, then A can be de-
composed as A=UΛUH , where U ∈ C

m×m is unitary,
Λ�Diag {λ1, λ2, . . . , λm}, and {λi}mi=1 are all the eigen-
values of A. We denote A− 1

2 as A− 1
2 �UHΛ− 1

2U, where
Λ− 1

2 �Diag
{√

λ1,
√
λ2, . . . ,

√
λm

}
. Define the delta func-

tion δ (x− c) as

δ (x− c) =

{
1, when x= c,

0, otherwise,
(1)

where c is a constant.

II. SYSTEM CONFIGURATION AND PROBLEM FORMULATION

In this section, we give the configuration of the considered
ultra-massive MIMO system. Then, we present the problem
formulation of the ultra-massive MIMO signal detection.

A. System Configuration

Consider an uplink ultra-massive MIMO transmission where
K single-antenna users are served by a base station (BS) with



an ultra-massive antenna array of Nr antennas. Denote the
transmitted data symbol of user k as s̃k ∈ S̃, where

S̃�
{
s̃(0), s̃(1), . . . , s̃(L̃−1)

}

is the signal constellation,
{
s̃(�)

}L̃−1

�=0
are the constellation

points, and L̃ is the modulation order (or constellation size).
Throughout this work, our focus is on uncoded systems em-
ploying symmetric L̃-QAM modulation. We assume that each
user selects symbols uniformly from S̃, and all users share the
same signal constellation1. In this paper, we also assume that the
average power of each transmitted symbol is normalized to unit,
i.e., E

{
|s̃k|2

}
= 1, k ∈ Z+

K . Denote the transmitted symbol of

all users as s̃� [s̃1, s̃2, . . . , s̃K ]
T ∈ S̃

K . We assume that s̃ is
transmitted through a flat-fading channel. Then, the received
signal ỹ ∈ C

Nr at the BS is given by

ỹ = G̃s̃+ z̃, (2)

where G̃ ∈ C
Nr×K is the channel matrix, z̃ is the circular-

symmetric complex Gaussian noise, z̃∼ CN
(
0, σ̃2

zI
)

and σ̃2
z

is the noise variance2. In this work, we assume perfect CSI at
the BS.

B. Problem Formulation

Assuming that the noise vector z̃ and the transmitted symbol
vector s̃ are independent, as are the symbols transmitted by
different users. Given the received signal model (2), the a pos-
teriori probability distribution of the transmitted symbol vector
s̃ can be expressed as [28]

p (s̃|ỹ)∝
K∏

k=1

ppr,k (s̃k) fCG

(
ỹ; G̃s̃, σ̃2

zI
)
, (3)

where ppr,k (s̃k) is the a priori probability of s̃k, and

ppr,k (s̃k)
∣∣
s̃k=s̃(�)

=
1

L̃
, k ∈ Z+

K , � ∈ ZL̃−1.

Given p (s̃|ỹ), the MAP detector (or, equivalently, the ML de-
tector under this case) is given by

s̃MAP = argmax
s̃∈S̃K

p (s̃|ỹ) . (4)

The optimization problem above is NP-hard due to the finite-
alphabet constraint s̃ ∈ S̃

K . When the number K of users and
the modulation order L̃ are large, the computation of (4) will
become unaffordable for practical applications.

In this paper, we process the real-valued counterpart of the
received signal model in (2), which is essential for the devel-
opment of GIGA. To do so, let us first define the real-valued
counterpart of (2). Define real counterparts of ỹ, z̃, s̃ and G̃ as

y �
[
R{ỹ}
I {ỹ}

]
, z�

[
R{z̃}
I {z̃}

]
∈ R

2Nr (5a)

1The proposed GIGA can be easily extended to any modulation with
varying selecting probability, provided that the symbols of different users
are statistically independent, and the real and imaginary parts of each user’s
symbol are statistically independent as well.

2In the above notations, tildes are placed atop the mathematical symbols.
This is to simplify the notation when formulating and analyzing their real
counterparts later on, where the tildes are removed.

s�
[
R{s̃}
I {s̃}

]
∈ R

2K , (5b)

G�

⎡
⎣R

{
G̃
}
, −I

{
G̃
}

I
{
G̃
}
, R

{
G̃
}
⎤
⎦ ∈ R

2Nr×2K , (5c)

respectively. Then, the real-valued counterpart of (2) is given
by

y =Gs+ z. (6)

In (6), s is the real-valued transmitted symbol. Denote s�
[s1, s2, . . . , s2K ]

T ∈ S
2K , where sk ∈ S,

S�
{
s(0), s(1), . . . , s(L−1)

}

is the alphabet for the real and imaginary components of
the symmetric L̃-QAM modulation, and L=

√
L̃. Since z̃ is

circular-symmetric complex Gaussian, it can be readily ob-
tained that z∼N

(
0, σ2

zI
)
, and σ2

z = σ̃2
z/2. Given (6), the a

posteriori distribution of s can be expressed as [28]

p (s|y)∝ ppr (s) f (y|s)

=
2K∏
k=1

ppr,k (sk) fG
(
y;Gs, σ2

zI
)

(7)

where ppr (s) =
∏

k ppr,k (sk) is the a priori probability of s,
f (y|s) = fG

(
y;Gs, σ2

zI
)

is the PDF of y given s,

ppr,k (sk)
∣∣
sk=s(�)

=
1

L
, � ∈ ZL−1,

is the a priori probability of sk. Denote the marginals of p (s|y)
as {pk (sk|y)}2Kk=1. The goal in this work is to obtain their ap-
proximations. Given the approximate pk (sk|y) , k ∈ Z+

2K , we
perform the maximization of the a posteriori marginals (MPM)
detection as

sk,MPM = argmax
sk∈S

pk (sk|y) , k ∈ Z+
2K . (8)

Consequently, the detection of the transmitted data symbol s̃ is
given by

s̃de = [s1,MPM, s2,MPM, · · · , sK,MPM]
T

+ j̄ [sK+1,MPM, sK+2,MPM, · · · , s2K,MPM]
T
. (9)

III. GIGA

In this section, we start by stating the signal detection prob-
lem in perspective of information geometry. We then express
the a posteriori distribution in a factorization way based on
the grouping of the components of the received signal. On this
basis, we propose the GIGA.

A. Signal Detection in Information Geometry Perspective

In this subsection, we state the signal detection problem
from the information geometry perspective. We begin with the
definitions of the original manifold and the objective manifold.



Define a manifold S as a set of probability distributions, which
contains all possible probability distributions of s, i.e.,

S =

{
p (s)

∣∣∣p (s)> 0, s ∈ S
2K ,

∑
s∈S2K

p (s) = 1

}
. (10)

It can be readily checked that the a prior distribution ppr (s) and
the a posteriori distribution p (s|y) belong to S. We refer to S
as the original manifold (OM). Then, we define a sub-manifold
of S. It is the set M0 of probability distributions of s, where
the components of s are independent of each other. Define a
random vector t as

t�
[
tT1 , t

T
2 , . . . , t

T
2K

]T ∈ R
2K(L−1), (11a)

tk � [tk,1, tk,2, . . . , tk,L−1]
T ∈ R

(L−1), (11b)

tk,� � δ
(
sk − s(�)

)
, � ∈ Z+

L−1. (11c)

We can find that the components of t are determined by the
value of sk, k ∈ Z+

2K . Define a vector d as

d�
[
dT
1 ,d

T
2 , . . . ,d

T
2K

]T ∈ R
2K(L−1), (12a)

dk � [dk,1, dk,2, . . . , dk,L−1]
T ∈ R

(L−1), (12b)

dk,� = ln
ppr,k (sk)

∣∣
sk=s(�)

ppr,k (sk)
∣∣
sk=s(0)

, � ∈ Z+
L−1. (12c)

We can find that d is determined by the a priori probability of
s. In fact, the marginal distribution of the a priori distribution
ppr (s) can be expressed as [28]

ppr,k (sk) = exp
{
dT
k tk − ψ (dk)

}
,

where ψ (dk) =− ln
(
ppr,k (sk)

∣∣
sk=s(0)

)
is the normalization

factor. Consequently, we can also obtain

ppr (s) = exp
{
dT t− ψ (d)

}
, (13)

where ψ (d) =
∑2K

k=1 ψ (dk) is the normalization factor. Based
on the definitions above, the sub-manifold M0 of S is defined
as follows

M0 =
{
p0 (s;θ0)

∣∣∣θ0 ∈ R
2K(L−1)

}
, (14a)

p0 (s;θ0) = exp
{
dT t+ θT

0 t− ψ0 (θ0)
}

=

2K∏
k=1

p0,k (sk;θ0,k) , (14b)

p0,k (sk;θ0,k)

= exp
{
dT
k tk + θT

0,ktk − ψ0 (θ0,k)
}

= exp

{
L−1∑
�=1

(dk,� + θ0,k,�) δ
(
sk − s(�)

)
− ψ0 (θ0,k)

}
,

(15)

where

θ0 =
[
θT
0,1,θ

T
0,2, . . . ,θ

T
0,2K

]T
∈ R

2K(L−1), (16a)

θ0,k = [θ0,k,1, θ0,k,2, . . . , θ0,k,L−1]
T ∈ R

(L−1), (16b)

p0,k (sk;θ0,k) is the marginal distribution of sk given the
joint distribution p0 (s;θ0), ψ0 (θ0) is the free energy (nor-
malization factor) of p0 (s;θ0), ψ0 (θ0,k) is the free energy of
p0,k (sk;θ0,k), and

ψ0 (θ0) =

K∑
k=1

ψ0 (θ0,k)

= ln

( ∑
s∈S2K

exp
{
dT t+ θT

0 t
})

, (17a)

ψ0 (θ0,k) = ln

(
1 +

L−1∑
�=1

exp {dk,� + θ0,k,�}
)
. (17b)

θ0 and θ0,k are referred to as the e-affine coordinate system
(EACS) of p0 (s;θ0) and p0,k (sk;θ0,k), respectively. From the
definition, it can be checked that ppr,k (sk) = p0,k (sk;0), and
ppr (s) = p0 (s;0). M0 is referred to as the objective manifold
(OBM) since it contains all the distributions of s whose compo-
nents are independent of each other, and our goal in this paper
is to find a distribution in it to approximate p (s|y). In informa-
tion geometry theory, this process is stated as calculating the
m-projection of p (s|y) onto M0, i.e.,

p0 (s;θ
�
0) = argmin

p0(s;θ0)∈M0

DKL {p (s|y) : p0 (s;θ0)} , (18)

where DKL {:} is the Kullback-Leibler (K-L) divergence, and

DKL {p (s|y) : p0 (s;θ0)}=
∑

s∈S2K

p (s|y) ln
(

p (s|y)
p0 (s;θ0)

)
.

p0 (s;θ
�
0) can be interpreted as the distribution in M0 that is

closest to p (s|y), where the distance between the two distri-
butions is defined as the K-L divergence. Given p0 (s;θ

�
0), its

marginals can be directly obtained since the components of s
are independent. On the other hand, the calculation of the direct
m-projection may be unacceptable since it can be too compli-
cated. To solve this problem, we find another distribution in the
OBM M0 to approximate p (s|y) by grouping the components
of the received signal y and defining an extra type of manifolds.

B. Factorization of p (s|y) by Grouping the Components of
the Received Signal

In this subsection, we factorize the a posteriori distribution
p (s|y) by the grouping the components of the received signal y.
We first present the way of grouping.3 Define the set of indexes
of all components of y as No � {1, 2, . . . , 2Nr}. We uniformly
divide No into U subsets, where U is a factor of 2Nr. Then, the
number of the elements in each subset is

Nu =
2Nr

U
,

Denote each subset as Nu, u ∈ Z+
U and we have

Nu = {(u− 1)Nu + 1, (u− 1)Nu + 2, · · · , uNu} . (19)

3The GIGA groups the received signal components uniformly. Utilizing
correlations between the elements of channel matrix G̃ for the grouping
strategy design might be beneficial, which is worth of further research.



According to the subsets {Nu}Uu=1, we define U sub-vectors
of y, where the u-th of them only contains the components of
y indexed in Nu, i.e.,

yu = [y]Nu
∈ R

Nu . (20)

Given s, the PDF of yu is Gaussian, and we have

f (yu|s) = fG
(
yu;Gus, σ

2
zI
)

(21)

where

Gu = [G]Nu,:
∈ R

Nu×2K (22)

is a sub-matrix of G in (6). Since given s, all components
of y in (6) are independent with each other, thus {yu}Uu=1

are also independent, and we can readily obtain that f (y|s) =∏U
u=1 f (yu|s). On this basis, the a posteriori distribution

p (s|y) can be factorized as

p (s|y)∝
2K∏
k=1

ppr,k (sk)
U∏

u=1

f (yu|s) . (23)

C. GIGA

According to (23), the a posteriori probability distribution
p (s|y) can be further expressed as

p (s|y) = exp

{
dT t+

U∑
u=1

cu (s,yu)− ψq

}
, (24)

where

cu (s,yu) =− 1
2σ2

z
||yu −Gus||2, (25)

ψq is the normalization factor, and

ψq = ln

( ∑
s∈S2K

exp

{
dT t+

U∑
u=1

cu (s,yu)

})
. (26)

In (24), dT t only contains a linear combination of single in-
dependent random variables sk, and {cu (s,yu)}Uu=1 contain
all the interactions (cross-terms) between the random vari-
ables, i.e., sksk′ , k 
= k′. If we can approximate the sum∑U

u=1 cu (s,yu) as θT
0 t, then we have

p (s|y)≈ p0 (s;θ0) = exp
{
(d+ θ0)

T
t− ψ0

}
, (27)

where ψ0 is the free energy, which is simple to use. Since
computing the m-projection of p (s|y) onto the OBM di-
rectly is exponentially complex, which is unacceptable for the
ultra-massive MIMO syste, we divide the cross-terms into U
groups and define U auxiliary manifold. In this work, we ob-
tain the approximations of {cu (s,yu)}Uu=1 through iterative
m-projections. Let us first define a class of sub-manifolds of
S. Given the number U of subsets, we define U sub-manifolds
of S, where the u-th of them is given by

Mu =
{
pu (s;θu)

∣∣∣θu ∈ R
2K(L−1)

}
, (28a)

pu (s;θu) = exp
{
dT t+ θT

u t+ cu (s,yu)− ψu (θu)
}
,

(28b)

Fig. 1. Illustration of the m-Projection of pu (s; θu) onto the OBM.

where

θu =
[
θT
u,1,θ

T
u,2, . . . ,θ

T
u,2K

]T
∈ R

2K(L−1), (29a)

θu,k = [θu,k,1, θu,k,2, . . . , θu,k,L−1]
T ∈ R

(L−1), (29b)

cu (s,yu) is given by (25), and the free energy ψu is given by

ψu (θu) = ln

( ∑
s∈S2K

exp
{
dT t+ θT

u t+ cu (s,yu)
})

.

(30)

{Mu}Uu=1 are referred to as the auxiliary manifolds (AMs), and
θu is referred to as the EACS of pu (s;θn). Note that AMs
will vary with the number U of subsets since the definitions
of yu and Gu will vary with U . Compared to p (s|y) in (24),
pu (s;θu) reserves only one interaction term cu (s,yu), while
all others, i.e.,

∑
u′ �=u cu (s,yu), are replaced with θT

u s.
pu (s;θu) of Mu is the key to obtain the approximation

of single interaction term cu (s,yu). Given pu (s;θu), we
can obtain an approximation of cu (s,yu) through its m-
projection on the OBM, which is illustrated in Fig. 1. Denote
this m-projection as p0 (s;θ0u), we have

p0 (s;θ0u) = argmin
p0(s;θ0)∈M0

DKL {pu (s;θu) : p0 (s;θ0)} ,

which can be expressed in a more explicit way as

θ0u = argmin
θ0∈R2K(L−1)

DKL {pu (s;θu) : p0 (s;θ0)} . (31)

In Sec. IV, we will present a detailed calculating procedure.
Here, we focus on the next steps. Suppose that θ0u is obtained,
we re-express the m-projection p0 (s;θ0u) in the following
way:

p0 (s;θ0u) = exp
{
(d+ θ0u)

T
t− ψ0 (θ0u)

}

= exp
{
(d+ θu + ξu)

T
t− ψ0 (θ0u)

}
, (32)

which implies that θ0u = θu + ξu. In (32), we consider the
EACS θ0u of p0 (s;θ0u) as a sum of the EACS θu of pn (s;θu)
and an extra item ξu. Comparing pu (s;θu) defined in (28b) and
(32), we can find that cu (s,yu) in pu (s;θu) is replaced by ξTu t



in p0 (s;θ0u). Consequently, we consider the approximation of
cu (s,yu) as ξTu t, where

ξu = θ0u − θu, u ∈ Z+
U . (33)

Then, p0 (s;θ0) with θ0 =
∑U

u=1 ξu is considered as the ap-
proximation of the a posteriori distribution p (s|y) since each
cu (s,yu) is approximated as ξTu t and θT

0 t is regarded as an
approximation of

∑
u cu (s,yu).

Now, let us discuss the iteration, which is similar to that for
IGA in [28]. At the beginning, the EACSs are initialized as
{θu (0)}Uu=0. Then, given the EACSs {θu (t)}Uu=0 at the t-th
iteration, calculate {θ0u (t)}Uu=1 and {ξu (t)}

U
u=1 as (31) and

(33), respectively. Next, the EACS of pu (s;θu (t)) , u ∈ Z+
U is

updated as

θu (t+ 1) =

U∑
u′=1,u′ �=u

ξu′ (t) ,

since θT
u (t+ 1) t replaces the sum

∑U
u′ �=u cu′ (s,yu′) in

pu (s;θu (t+ 1)) and each cu (s,yu) is approximated as
ξTu (t) t at the t-th iteration. We update the EACS of
p0 (s;θ0 (t)) as θ0 (t+ 1) =

∑U
u=1 ξu (t). In practice, the fol-

lowing damped updating way is typically employed to ensure
the convergence: given a damping factor 0 < α≤ 1, update the
EACSs as

θu (t+ 1) = α

U∑
u′=1,u′ �=u

ξu′ (t) + (1− α)θu (t) , u ∈ Z+
U ,

(34a)

θ0 (t+ 1) = α

U∑
u=1

ξu (t) + (1− α)θ0 (t) . (34b)

Then, repeat the above process until convergence. We re-
fer to the above process as GIGA, and we summarize it
in Algorithm 1. Note that the procedure for calculating the
m-projection in Step 1 will be discussed in the next section.

IV. CALCULATION OF THE m-PROJECTION FROM

pu (s;θu) ONTO THE OBM

In this section, we present the calculation of the m-projection
from pu (s;θu) onto the OBM. We first give its direct calcula-
tion. Then, based on the Berry-Esseen theorem, we propose an
approximate calculation of the m-projection. The efficient im-
plementation of the approximate calculation is also discussed.
At last, we analyze the complexities of two types of calculations
of m-projections.

A. Direct Calculation

The direct calculation of the m-projection in (31) is re-
lated to the marginal distributions of pu (s;θu). To express the
marginals of pu (s;θu), let us first define 2K discrete random
vectors with the same dimension, where the k-th vector is
denoted as s\k and s\k is of 2K − 1 dimension. s\k is obtained
by removing the k-th component, i.e., sk, in s. Based on the def-
inition, we have s\k ∈ S

2K−1, k ∈ Z+
2K . Given pu (s;θu) , u ∈

Algorithm 1: GIGA

Z+
U , we denote its marginal probability distribution of sk as

pu,k (sk;θu), and we have

pu,k (sk;θu)

=
∑
s1∈S

· · ·
∑

sk−1∈S

∑
sk+1∈S

· · ·
∑

s2K∈S

pu (s;θu)

=
∑

s\k∈S2K−1

pu (s;θu) . (35)

Further, denote the EACS of the m-projection p0 (s;θ0u) as

θ0u =
[
θT
0u,1,θ

T
0u,2, . . . ,θ

T
0u,2K

]T
∈ R

2K(L−1), (36a)

θ0u,k = [θ0u,k,1, θ0u,k,2, . . . , θ0u,k,L−1]
T ∈ R

(L−1). (36b)

Based on (14), denote the marginals of p0 (s;θ0u) as
p0 (sk;θ0u,k), k ∈ Z+

2K . Then, the EACS θ0u of p0 (s;θ0u)
exists and is unique since KL {p (s;θu) : p0 (s;θ0u)} is a
strictly convex function of θ0u. More detailed proof can be
seen in [28, Theorem 1], and we have

p0 (sk;θ0u,k) = pu (sk;θu) , sk ∈ S, k ∈ Z+
2K . (37)

We can find that the marginals of pu (s;θu) and itsm-projection
are the same.

We next discuss how to obtain the value of the EACS θ0u

from (37). This is related to the property of p0 of OBM. Given
any p0 (s;θ0) in the OBM and its marginals p0,k (sk;θ0,k),



we have [28]

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

=
1

1 +
∑L−1

�=1 exp {dk,� + θ0,k,�}
,

(38a)

p0,k (sk;θ0,k)
∣∣∣
sk=s(�)

=
exp {dk,� + θ0,k,�}

1 +
∑L−1

�=1 exp {dk,� + θ0,k,�}
,

(38b)

where � ∈ Z+
L−1 in (38b). On the contrary, given the probability

in (38), the EACS of p0,k (sk;θ0,k) , k ∈ Z+
2K can be expressed

as

θ0,k,� = ln
p0,k (sk;θ0,k)

∣∣∣
sk=s(�)

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

− dk,�, � ∈ Z+
L−1. (39)

Since the m-projection p0 (s;θ0u) belongs to the OBM, θ0u,k,�
in (37) can be expressed as

θ0u,k,� = ln
pu,k (sk;θu)

∣∣
sk=s(�)

pu,k (sk;θu)
∣∣
sk=s(0)

− dk,�, (40)

which shows that the EACS of the m-projection p0 (s;θ0u)
is determined by the marginal probability of pu (s;θu). On
the other hand, the closed-form solution of pu,k (sk;θu) can
be hard to obtain. From (35) we can find that its calculation
is of exponential-complexity. When the number of users and
the modulation order are large, the computational complexity
of (35) is unaffordable. Inspired by the Berry-Esseen theorem,
we solve this problem by computing an approximation of the
marginal pu,k (sk;θu), u ∈ Z+

U , k ∈ Z+
2K , which will be dis-

cussed in the next subsection.

B. Approximate Calculation

As mentioned above, our focus now is to calculate the ap-
proximate marginals of pu (s;θu). To do so, we first express
pu,k (sk;θu) as follows:

pu,k (sk;θu) =
∑

s\k∈S2K−1

exp
{
(d+ θu)

T
t

+ cu (s,yu)− ψu

}

(a)∝ λu,k (sk)κu,k (sk,yu) , (41)

where u ∈ Z+
U , k ∈ Z+

2K , sk ∈ S, (a) is obtained by removing
the constant independent with sk, and

λu,k (sk)� exp
{
(dk + θu,k)

T
tk

}

= exp

{
L−1∑
�=1

(dk,� + θu,k,�) δ
(
sk − s(�)

)}
, (42a)

κu,k (sk,yu)

�
∑

s\k∈S2K−1

exp
{ 2K∑

k′=1,k′ �=k

(dk′ + θu,k′)
T
tk′

+ cu (s,yu)
}
. (42b)

The reason why we explicitly parameterize κu,k (sk,yu) by
both sk and yu is that yu will play an important role when
computing an approximation of κu,k (sk,yu). In (41), the value
of λu,k (sk) can be calculated directly, since we have

λu,k (sk) =

{
1, sk = s(0),

exp {dk,� + θu,k,�} , sk = s(�), � ∈ Z+
L−1.

(43)

Under these circumstances, calculating the approximation of
κu,k (sk,yu), sk ∈ S, becomes the critical issue. Once it is
obtained, the approximate value of pu,k (sk;θu), sk ∈ S, can
be acquired. Also, as a note, the proportion in (41) does not
influence the computation of pu,k (sk;θu) because the constant
corresponding to the proportion is independent with sk. There-
fore, the value of pu,k (sk;θu) can be always obtained through∑

sk∈S
pu,k (sk;θu) = 1. We will not repeat this issue when

similar situations arise in the next.
For now, our attention shifts to the value of κu,k (yu, sk) ,

sk ∈ S. According to its definition, κu,k (sk,yu) can be further
expressed as

κu,k (sk,yu)

=
∑

s\k∈S2K−1

( 2K∏
k′=1,k′ �=k

exp
{
(dk′ + θu,k′)

T
tk′

}

× exp

{
−1

2
(yu −Gus)

T (
σ2
zI
)−1

(yu −Gus)

})

(a)∝
∑

s\k∈S2K−1

( 2K∏
k′=1,k′ �=k

p0,k′ (sk′ ;θu,k′) fG
(
yu;Gus, σ

2
zI
))

,

(44)

where u ∈ Z+
U , k ∈ Z+

2K , and (a) comes from adding a constant
independent with sk and yu. Next we construct 2KU random
vectors whose PDFs are in the same form as the last line of (44).
The introduction of these random vectors is the key to compute
the approximations of κu,k (sk,yu), u ∈ Z+

U , k ∈ Z+
2K . Define

U × 2K random vectors
{
yu,k|u ∈ Z+

U , k ∈ Z+
2K

}
.

The (u, k)-th vector is given by

yu,k = gu,ksk +

2K∑
k′=1,k′ �=k

gu,k′sk′ +w

=
2K∑

k′=1,k′ �=k

gu,k′sk′ +w′
u,k, (45)

where u ∈ Z+
U , k ∈ Z+

2K , gu,k ∈ R
Nu is the k-th column of Gu

in (22), i.e.,

Gu = [gu,1,gu,2, · · · ,gu,2K ] ,

gu,k is considered as a determinate and known vector, sk is
considered as a determinate and known constant,

{sk′}2Kk′=1,k′ �=k



are considered as 2K − 1 independent discrete
random variables, their probability distributions are
{p0,k′ (sk′ ;θu,k′)}k′ �=k, w ∼N

(
0, σ2

zI
)

is a Gaussian
random vector of Nu dimension independent with {sk′}k′ �=k,
and w′

u,k =w + gu,ksk ∼N
(
gu,ksk, σ

2
zI
)

is also a Gaussian
random vector independent with {sk′}k′ �=k. The joint
probability distribution of {sk′}k′ �=k in (45) is given by

p
(
s\k
)
=

2K∏
k′=1,k′ �=k

p0,k′ (sk′ ;θu,k′) .

Then, the PDF of yu,k can be expressed as [29, Sec. 6.1.2]

f
(
yu,k

)

=
∑

s\k∈S2K−1

⎛
⎝p

(
s\k
)
fG

⎛
⎝yu,k

−
∑
k′ �=k

gu,k′sk′ ;gu,ksk, σ
2
zI

⎞
⎠
⎞
⎠

=
∑

s\k∈S2K−1

(
p
(
s\k
)
fG
(
yu,k;Gus, σ

2
zI
))

. (46)

It is a direct result that the PDF of yu,k will be equivalent
to the final line of (44) when we substitute yu,k with yu.
Consequently, we can obtain

κu,k (sk,yu)∝ f
(
yu,k

) ∣∣∣
yu,k=yu

, sk ∈ S. (47)

yu,k in (45) is a hybrid random vector, which is the sum
of 2K − 1 discrete random vectors and one Gaussian random
vector. The closed-form solution of its PDF is difficult to obtain,
and as can be seen from (46), its computational complexity is
exponential. We note that yu,k is obtained by summing multiple
mutually independent random vectors. This is somewhat similar
to the situation described by the central limit theorem, with the
difference that we are dealing with the summation of multiple
random vectors. In this case, the classic central limit theorem
can not be applied to obtain an approximation of the probability
distribution of yu,k. Fortunately, Berry-Esseen theorem [30]
can help us to obtain such an approximation. We first present
the Berry-Esseen theorem.

Lemma 1 (Berry-Esseen theorem): Given N independent
random vectors {xn}Nn=1, where xn ∈ R

d, and d≥ 1 is fi-
nite. Each xn has finite mean μn ∈ R

d and finite positive-
definite covariance matrix Σn ∈ R

d×d. Denote the summation
of {xn}Nn=1 as xs �

∑N
n=1 xn. Its mean and covariance matrix

are denoted as μs �
∑N

n=1 μn and Σs �
∑N

n=1 Σn, respec-
tively. If the following condition

lim
N→∞

N∑
n=1

E

{
||Σ− 1

2
s (xn − μn) ||3

}
= 0

holds. Then, xs converges in distribution to a real Gaussian
random vector x̃s, as N tends to infinity, i.e.,

xs → x̃s ∼N (μs,Σs) .

Inspired by the Berry-Esseen theorem, we approximate the
PDF of yu,k as a Gaussian PDF

fG
(
yu,k;E

{
yu,k

}
,V
{
yu,k

})
, (48)

where E
{
yu,k

}
and V

{
yu,k

}
are the mean and covariance of

yu,k, respectively. In comparison to the original PDF f
(
yu,k

)
,

(48) has an explicit expression and it contains only linear
operations. We next calculate the mean and covariance of
yu,k. To do so, we first calculate the mean and variance of
sk′ , k′ 
= k, in (45). The probability distribution of sk′ , k′ 
= k,
is p0,k′ (sk′ ;θu,k′). According to (38), the mean and the vari-
ance of sk′ , k′ 
= k, are given by

μu,k′ =
∑
sk′∈S

sk′p0,k′ (sk′ ;θu,k′)

=
s(0) +

∑L−1
�=1 s(�) exp {dk′,� + θu,k′,�}

1 +
∑L−1

�=1 exp {dk′,� + θu,k′,�}
, (49a)

vu,k′ =
∑
sk′∈S

s2k′p0,k′ (sk′ ;θu,k′)− μ2
u,k′

=

(
s(0)
)2

+
∑L−1

�=1

(
s(�)

)2
exp {dk′,� + θu,k′,�}

1 +
∑L−1

�=1 exp {dk′,� + θu,k′,�}
− μ2

u,k′ ,

(49b)

respectively. Consequently, the mean and covariance of the
discrete random vector gu,k′sk′ , k′ 
= k, in (45) are

E {gu,k′sk′}= gu,k′μu,k′ , (50a)

V {gu,k′sk′}= vu,k′gu,k′gT
u,k′ , (50b)

respectively. Then, we can readily obtain that the mean and
covariance of yu,k, u ∈ Z+

U , k ∈ Z+
2K , are

E
{
yu,k

}
=

⎛
⎝

2K∑
k′=1,k′ �=k

gu,k′μu,k′ + gu,ksk

⎞
⎠ ∈ R

Nu ,

(51a)

V
{
yu,k

}
=

⎛
⎝

2K∑
k′=1,k′ �=k

vu,k′gu,k′gT
u,k′ + σ2

zI

⎞
⎠ ∈ R

Nu×Nu ,

(51b)

respectively. And we have the following theorem.
Theorem 1: If the condition (53) holds for yu,k in (45), then

yu,k converges in distribution to a real Gaussian random vector
ỹu,k, as 2K goes to infinity, i.e.,

yu,k
d→ ỹu,k ∼N

(
E
{
yu,k

}
,V
{
yu,k

})
. (52)

From Theorem 1, we can obtain that when 2K is large
and the condition (53) approximately holds, the PDFs of yu,k

and ỹu,k are approximately equivalent. In one of the simplest
cases, assuming that V

{
yu,k

}
is a diagonal covariance matrix,

condition (53) holds as long as the variance of each compo-
nent of gu,k′sk′ , k′ 
= k, in (45) does not tend to zero as K
tends to infinity. This ensures that gu,k′sk′ , k′ 
= k, is random



rather than deterministic, which is necessary for the applica-
tion of the Berry-Esseen theorem. By replacing f

(
yu,k

)
with

fG
(
yu,k;E

{
yu,k

}
,V
{
yu,k

})
in (47), we can obtain

κu,k (sk,yu)∝ fG
(
yu,k;E

{
yu,k

}
,V
{
yu,k

}) ∣∣∣
yu,k=yu

.

(54)

Combining (41) and (54), we can obtain (55), where

au,k � yu −
2K∑

k′=1,k′ �=k

gu,k′μu,k′

= yu −Guμu + gu,kμu,k ∈ R
Nu ,

μu � [μu,1, μu,2, · · · , μu,2K ]
T ∈ R

2K , (56)

sk ∈ S, k ∈ Z+
2K , u ∈ Z+

U , and the derivation is given in
Appendix A. Substituting sk = s(�) into (55), we can obtain

pu,k (sk;θu)
∣∣
sk=s(0)

= Cu,k exp

{
−
(
s(0) − μ̃u,k

)2
2ṽu,k

}
, (57a)

pu,k (sk;θu)
∣∣
sk=s(�)

= Cu,k exp

{
dk,� + θu,k,� −

(
s(�) − μ̃u,k

)2
2ṽu,k

}
, (57b)

where

ṽu,k � 1

gT
u,k

(
V
{
yu,k

})−1
gu,k

, (58a)

μ̃u,k � ṽu,kg
T
u,k

(
V
{
yu,k

})−1
au,k, (58b)

Cu,k is the normalization factor, and � ∈ Z+
L−1 in (57b). Con-

sequently, according to the definition in (36), the relationship
in (40) and (57), the EACS of the m-projection p0 (s;θ0u) can
be calculated as

θ0u =
[
θT
0u,1,θ

T
0u,2, . . . ,θ

T
0u,2K

]T
, (59a)

θ0u,k = [θ0u,k,1, θ0u,k,2, . . . , θ0u,k,L−1]
T
, (59b)

θ0u,k,� =

(
s(0) − s(�)

) [(
s(0) + s(�)

)
− 2μ̃u,k

]
2ṽu,k

+ θu,k,�,

(59c)

where u ∈ Z+
U , k ∈ Z+

2K , and � ∈ Z+
L−1.

We next discuss the efficient implementation of the approxi-
mate calculation. In the approximate calculation, the calculation
of the inversions of

{
V
{
yu,k

}
|u ∈ Z+

U , k ∈ Z+
2K

}
in (58) is

the most complex. Direct calculations of these inversions will
traverse both the subscripts u and k, and thus introduce a total of
2UK matrix inversions of Nu ×Nu dimension. Given U and
K, we next reduce the total number of inversions to U by the
means of Sherman-Morrison formula. Recalling the definition
of V

{
yu,k

}
in (51b), we have

V
{
yu,k

}
=GuDiag {vu}GT

u + σ2
zI− vu,kgu,kg

T
u,k,

(60)

where Gu ∈ R
Nu×2K is defined in (22), vu is defined as

vu � [vu,1, vu,2, · · · , vu,2K ]
T ∈ R

2K , (61)

and vu,k is given in (49b). According to Sherman-Morrison
formula, we can obtain
(
V
{
yu,k

})−1

=Au +
vu,k

1− vu,kgT
u,kAugu,k

Augu,k (Augu,k)
T
, (62)

where

Au �
(
GuDiag {vu}GT

u + σ2
zI
)−1 ∈ R

Nu×Nu (63)

is symmetric. In (62), we can find that Au only varies with
u, and hence we only need to compute U inverse matrices of
Nu ×Nu dimension to obtain

{(
V
{
yu,k

})−1 |u ∈ Z+
U , k ∈ Z+

2K

}
.

Now, we discuss the calculation of Au. To obtain the inver-
sion in (63), we can either follow (63) directly, or, based on the
Woodbury identity, in the following way:

Au =
1

σ2
z

I− 1

σ4
z

Gu

(
Diag−1 {vu}+

1

σ2
z

GT
uGu

)−1

GT
u .

(64)

The computational complexities (the number of real-valued
multiplications) of (63) and (64) are O (P ) and O (Q), respec-
tively, where

P =N3
u + 2KN2

u , (65a)

Q= 8K3 + 8K2Nu + 2KN2
u . (65b)

lim
K→∞

⎛
⎝

2K∑
k′ �=k,k′=1

E

{
||
(
V
{
yu,k

})− 1
2 gu,k′ (sk′ − μu,k′) ||3

}
+ E

{
||
(
V
{
yu,k

})− 1
2
(
w′

u,k − gu,ksk
)
||3
}
⎞
⎠= 0 (53)

pu,k (sk;θu)∝ exp

⎧
⎨
⎩

L−1∑
�=1

(dk,� + θu,k,�) δ
(
sk − s(�)

)
−

gT
u,k

(
V
{
yu,k

})−1
gu,k

2

(
sk −

gT
u,k

(
V
{
yu,k

})−1
au,k

gT
u,k

(
V
{
yu,k

})−1
gu,k

)2
⎫
⎬
⎭

(55)



Algorithm 2: Approximate Calculation of the m-Projection
from pu (s;θu) onto the OBM

In practice, we use the one with a lower complexity to get Au.
We summarize the approximate calculation of the m-projection
as Algorithm 2. It is not difficult to check that the IGA for signal
detection in [28] is a special case of GIGA with U = 2Nr. From
the following simulation results, we can find that GIGA can
obtain a compromise between BER performance, convergence
speed and computational complexity by adjusting the number
U of groups.

C. Computational Complexity

We now give the computational complexity of the two ways
of calculating the m-projection p0 (s;θ0u). In this work, we use
the number of real-valued multiplications as the measure for
computational complexity. The complexity of direct calculation
is O

(
L2K

)
since we can only obtain the marginal probabilities

of pu (s;θu) by means of an exhaustive search. When the modu-
lation order and the number of users are large, direct calculation
will be unaffordable for practical. According to the steps of
Algorithm 2, we can obtain that the computational complexity
of approximately calculating the m-projection from pu (s;θu)
onto the OBM is

O
(
min (P,Q) + 6KN2

u + 4KL
)
,

where P and Q are given by (65), K is the number of users,
Nu = 2Nr

U ,Nr is the number of antennas at BS, L=
√

L̃, and L̃
is the modulation order. Consequently, the computational com-
plexity of GIGA with approximate calculation of m-projection
is O (CU ) per iteration, where

CU = U min (P,Q) + 24K
N2

r

U
+ 4KUL, (66)

U is the number of subsets. As U increases from 1, CU de-
creases. However, when U is greater than a certain threshold,

TABLE I
PARAMETER SETTINGS OF THE SIMULATION

Parameter Value
Number of BS antennas Nr,v ×Nr,h 16× 64

UT number K 240
Center frequency fc 4.8GHz
Simulation scenario 3GPP_38.901_UMa
Modulation Mode QAM

Modulation Order L̃ 4, 16, 64
Number of subsets U 16, 128, 512, 2048

CU will start to increase. We will see this observation in the
simulation results below. This also shows that the computational
complexity of GIGA with U = 2Nr (which is equivalent to IGA
in [28]) is not necessarily the lowest compared to the cases when
U takes other values.

V. SIMULATION RESULTS

This section provides simulation results to illustrate the per-
formance of GIGA in ultra-massive MIMO system. The un-
coded BER is used to measure the detection performance in the
simulations. For generating the channel matrix, we employ the
widely-used QuaDRiGa [31]. In QuaDRiGa, the BS consists of
a uniform planar array (UPA) with Nr =Nr,v ×Nr,h antennas,
where Nr,v and Nr,h are the numbers of the antennas at each
vertical column and horizontal row, respectively. The BS is
positioned at coordinates (0, 0, 25). Users are randomly dis-
tributed within a 120◦ sector with a radius of r = 200m around
(0, 0, 1.5). Our results are averaged for 1000 channel matrix
realizations. We summarize the main simulation parameters
in Table I. Each user’s average transmitted symbol power is
normalized to 1. The SNR is defined as SNR =K/σ̃2

z . Based on
the received signal model (6), we compare the proposed GIGA
with the following detectors.
LMMSE: The classic LMMSE detector with hard-decision,

sMMSE =
(
GTG+ σ2

zI
)−1

GTy, (67)

where the hard-decision is performed as

sk,MMSE = argmin
sk∈S

|sk − [sMMSE]k|
2
, k ∈ Z+

2K . (68)

The computational complexity of the LMMSE detector is
O
(
8
(
2NrK

2 +K3
))

[8].
EP: The EP detector proposed in [8], where the hard-
decision is also performed. Its computational complexity is
O
(
8
(
NrK

2 +K3
))

per iteration [8].
AMP: The classic Bayesian inference algorithm AMP [32].
AMP could approximately calculate the a posteriori marginals.
Then, the MPM detection (8) is performed. The computational
complexity of AMP is O (8 (NrK)) per iteration [32].

A. BER Performance

We begin with 4-QAM modulation. The BER performances
of different algorithms are shown in Fig. 2. The iteration num-
bers of GIGA with U = 16, U = 128, U = 512 and U = 2048
are set to be 7, 10, 15 and 15, respectively. The iteration num-
bers of AMP and EP are set to be 30 and 40, respectively.



Fig. 2. BER performance of GIGA compared with AMP, EP and LMMSE
under 4-QAM.

Fig. 3. Convergence performance of GIGA compared with EP and AMP at
SNR = 4 dB under 4-QAM.

In Fig. 2, the BER performance of all the iterative algorithms
outperform that of LMMSE detector. For GIGA, the difference
in BER performance between different numbers of subsets is
small. At a BER of 10−3, the SNR gains of GIGA over AMP
and EP are approximately 0.5dB and 0.7dB, respectively. Fig. 3
shows the convergence performance of all the iterative algo-
rithms where the SNR is set as 4dB. In this case, with the
increase of U , the number of iterations for GIGA to converge
increases, while the BER performance decreases. On the other
hand, overall, the performance gap and the difference in the
number of iterations between different U is limited. AMP and
EP converge in around 30 and 40 iterations, respectively. Ad-
ditionally, it’s worth noting that the BER performance of EP
with a single iteration is equivalent to that of LMMSE, as the
EP detector with one iteration is tantamount to the LMMSE
detector [8].

Fig. 4. BER performance of GIGA compared with AMP, EP and LMMSE
under 16-QAM.

Figs. 4 and 5 show the BER performances for 16-QAM
and 64-QAM, respectively. In Fig. 4, the iteration numbers
for GIGA with U = 16, U = 128, U = 512, and U = 2048 are
set as 15, 20, 25, and 30, respectively. The iteration numbers
of AMP and EP are set as 50 and 40, respectively. It can
be found that GIGA still achieves the best BER performance.
The performance gap between GIGA with different U becomes
obvious when SNR is high. The BER performance of GIGA
with U = 16 at SNR = 12dB is close to that of GIGA with
U = 2048 at 13dB. At a BER of 10−3, the SNR gains of GIGA
over AMP and EP are about 0.7dB and 0.9dB, respectively.
For 64-QAM, the iteration numbers of GIGA with U = 16,
U = 128, U = 512, and U = 2048 are set as 15, 25, 30, and 35,
respectively. The iteration numbers of AMP and EP are set as
70 and 40, respectively. Similar observations to those in Fig. 4
can be obtained. The BER performance of GIGA with U = 16
at SNR = 18dB is close to that of GIGA with U = 2048 at
18.5dB. At a BER of 10−3, the SNR gains of GIGA over AMP
and EP are around 0.7dB and 1dB, respectively. The LMMSE
detector provides limited performance in ultra-massive MIMO
system since the multi-dimensional Gaussian approximation in
(67) is not a feasible model for massive MIMO systems with
high-order constellations [8].

Figs. 6 and 7 show the convergence performances of all the
iterative algorithms under 16-QAM and 64-QAM, respectively.
From Fig. 6, we can find that in the scenario with 16-QAM
and SNR = 12dB, the smaller the number of subsets in GIGA,
the higher its convergence rate and the lower BER that can
be obtained. The disparity between different U is much more
pronounced than that with 4-QAM. GIGA with U = 16, U =
128, U = 512, and U = 2048 require about 10, 15, 20, and
30 iterations to converge, respectively. AMP and EP converge
in around 50 amd 35 iterations, respectively. From Fig. 7, we
observe that in the scenario with 64-QAM and SNR of 18dB,
disparity between GIGA with different U is still observable.
GIGA with U = 16 converges within 15 iterations while GIGA
with U = 128, 512, and 2048 converge in around 25, 35, and



Fig. 5. BER performance of GIGA compared with AMP, EP and LMMSE
under 64-QAM.

Fig. 6. Convergence performance of GIGA compared with EP and AMP at
SNR = 12 dB under 16-QAM.

50 iterations, respectively. AMP and EP require about 60 and
30 iterations to converge, respectively.

The simulation above is primarily conducted with Nr = 1024
and K = 240. With higher K/Nr ratios, similar convergence
and BER performance can be observed for GIGA, and com-
pared to LMMSE, AMP and EP, GIGA still provides improved
performance.

Next, we show the BER performance of GIGA compared
to LMMSE under high K/Nr ratios. It is known that when
the number of receive antennas is significantly larger than the
number of transmit antennas, even linear methods perform very
well. Although GIGA is targeted for ultra-massive MIMO sys-
tems, it can still achieve improved performance under high
K/Nr ratios. We consider the case K =Nr. In Fig. 8, it can
be found that in the scenario with 4-QAM and SNR of 37 dB,
the BER performance gap between GIGA with U = 16 and

Fig. 7. Convergence performance of GIGA compared with EP and AMP at
SNR = 18 dB under 64-QAM.

Fig. 8. Convergence performance of GIGA compared with LMMSE at SNR
= 37 dB under 4-QAM.

LMMSE increases typically, and the convergence rate of GIGA
becomes slower compared to the case of K/Nr < 1.

Fig. 9 presents the BER performance of GIGA with U = 16
and LMMSE under 4-QAM. We can find that although LMMSE
and GIGA both have worse BER performance in the case with
K =Nr, GIGA can still achieve improved BER performance
compared to LMMSE.

B. Mutual Information Performance

It is common to use mutual information (MI) to evaluate the
performance of a MIMO detector. The MI of the equivalent bit
channel is used to judge on the quality of LLR soft output for
a coded system. Since uncertainty quantification is important
for soft input channel decoders, evaluating the MI between the
transmitted bits per channel use and the detector’s soft outputs
can provide an understanding of the system’s performance.
We assume that each user selects symbols uniformly from the
symbol set and no encoding method is currently used. Under



Fig. 9. BER performance of GIGA compared with LMMSE under 4-QAM.

Fig. 10. Mutual information performance of GIGA compared with AMP.

finite-alphabet inputs, an approximated but efficient method for
evaluating the mutual information is given by [33]:

I(y; s) =
K∑
i=1

I(si; ŝi) + C, (69)

where C is a constant, ŝi is an estimate of si and I(si; ŝi) can
be calculated as

I(si|ŝi) =H(si)− lim
Nsa→∞

1

Nsa

Nsa∑
n=1

H(si|y). (70)

where Nsa is the number of samples. Fig. 10 presents the mutual
information obtained by AMP and GIGA with U = 16, U =
128, and U = 512 under 4-QAM. It can be observed that GIGA
has improved mutual information performance compared with
AMP. Furthermore, as the number U of groups decreases, the
mutual information performance of GIGA improves.

Fig. 11. Complexities of different algorithms versus the number of subsets.

C. Complexities

The computational complexities of different algorithms are
plotted in Fig. 11. The x-axis is the number of subsets in GIGA.
The numbers of iterations of GIGA, EP and AMP are all set to
be 1. Among all the iterative algorithms, AMP has the lowest
computational complexity. The complexity of GIGA decreases
gradually as the number U of subsets increases. Also, we can
find a special case when the modulation order is 64, its com-
putational complexity at U = 2048 is sightly higher than that
of U = 1024. When U > 8, the computational complexity of
GIGA becomes lower than that of EP. The gap between the two
increases rapidly with the number of subsets.

We now discuss the overall computational complexities of
different algorithms in our simulations. Among all algorithms,
the complexity of EP is the highest. Although its complexity at
each iteration is lower than that of the LMMSE detection, we
can see from Figs. 3, 6, and 7 that EP requires about tens of
iterations to converge, which leads to its highest overall com-
putation. In our simulations, the number of subsets for GIGA is
set to be 16, 128, 512 and 2048, respectively. From Figs. 3, 6,
and 7, we can find that GIGA with U = 16 converges within ten
iterations, while under other U , it converges in tens of iterations.
Under this condition, the overall computational complexity of
GIGA with U = 16 is comparable to that of the LMMSE detec-
tion, while under other U , its overall computational complexity
is lower than that of the LMMSE detection. Still, AMP has the
lowest overall computational complexity. However, it is worth
noting that for LMMSE detector the LMMSE matrix can be cal-
culated once for a set of channel uses where the channels keep
constant, which is computationally much less expensive. Fig. 11
also illustrates the complexity of LMMSE when the LMMSE
matrix is reused, where the channel is assumed constant over
14 symbols. When the LMMSE matrix is reused, the LMMSE
detector does offer an advantage in terms of computational
complexity. On the other hand, in some scenarios where there
are relaxed computational complexity requirements but high
demands for detection performance, GIGA method may offer



Fig. 12. Convergence performance of GIGA with multiple U at SNR = 18
dB under 64-QAM.

Fig. 13. Total complexities of GIGA versus the number of subsets under
64-QAM.

a more flexible choice since GIGA can adjust its grouping
strategy to optimize for different cases.

To further illustrate the overall computational complexity of
GIGA with different number U of subsets, we first plot the con-
vergence performance of GIGA with more U in Fig. 12, where
the modulation is 64-QAM and SNR = 18dB. Then, Fig. 13
illustrates the overall computational complexity of GIGA with
different U . For each U , the overall computational complexity
is defined as TUCU , where TU is the number of iterations
required for GIGA to converge when the number of subsets is
U , andCU is the complexity of its single iteration. From Fig. 13,
we can find that increasing the number of subsets does not
necessarily reduce the overall computational complexity. Larger
U brings smaller single iteration complexity, but it also brings
more iterations. In the case with 64-QAM and SNR = 18dB,
the overall computational complexity is lowest when U = 512,
and the gap between its BER performance and the best BER
performance brought by U = 8 is relatively small.

VI. CONCLUSION

In this paper, we have proposed GIGA for ultra-massive
MIMO systems. We frame the signal detection as an MPM
detection problem. Leveraging information geometry theory,
our objective is to compute approximations of the a posteri-
ori marginals of the transmitted symbols. Through grouping
the components of the received signal y, we factorize the a
posteriori probability distribution. On this basis, we define the
AMs, where each AM is related to one group of components
of y. Then, we calculate the approximations of the a posteri-
ori marginals through the m-projections from the distributions
of AMs onto the OBM. We give a direct calculation of the
m-projection as well as an approximate calculation based on
the Berry-Esseen theorem. Efficient implementation of approx-
imate calculation is also discussed. Simulation results demon-
strate that GIGA achieves the best BER performance within a
limited number of iterations compared to existing approaches.
And we can flexibly make the grouping choice to serve different
needs considering computational complexity and performance
when GIGA is applied in a specific system configuration. This
showcases the potential of GIGA as an efficient and potent
detector in ultra-massive MIMO systems. As a final remark,
although this paper only considers the case when all the groups
have the same size, it is straightforward to generalize to the case
when the groups have different sizes.

APPENDIX A
CALCULATION OF (55)

From (41) and (54), we can obtain

pu,k (sk;θu)
(a)∝ exp

{
(dk + θu,k)

T
tk − 1

2
Θu,k

}
, (72)

where (a) is obtained by adding the constant independent with
sk and yu, and

Θu,k =
(
yu − E

{
yu,k

})T (
V
{
yu,k

})−1 (
yu − E

{
yu,k

})
.

(73)

Combining (51a),
(
yu − E

{
yu,k

})
in (73) can be expressed

as

yu − E
{
yu,k

}
=−

⎡
⎣gu,ksk −

⎛
⎝yu −

2K∑
k′=1,k′ �=k

gu,k′μu,k′

⎞
⎠
⎤
⎦.

(74)

Denote au,k as

au,k � yu −
2K∑

k′=1,k′ �=k

gu,k′μu,k′ .

Substituting au,k into (73), we can obtain (71), where (a) comes
from removing a constant independent with sk and V

{
yu,k

}
is

symmetric and (b) comes from adding a constant independent
with sk. Substituting (71) into (72), we can obtain (55).



Θu,k = (gu,ksk − au,k)
T (

V
{
yu,k

})−1
(gu,ksk − au,k)

(a)∝ gT
u,k

(
V
{
yu,k

})−1
gu,ks

2
k − 2gT

u,k

(
V
{
yu,k

})−1
au,ksk

(b)∝ gT
u,k

(
V
{
yu,k

})−1
gu,k

(
sk −

gT
u,k

(
V
{
yu,k

})−1
au,k

gT
u,k

(
V
{
yu,k

})−1
gu,k

)2

(71)
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