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Abstract—Deploying unmanned aerial vehicles (UAVs) as flying
base stations (BSs) is a promising solution to alleviate the burden
of communication infrastructure. However, few works have been
done to theoretically analyze the system performance, especially
for the vehicle-to-vehicle (V2V) assisted vehicular network, where
vehicle users (VUs) can request contents from either the UAV
or other VUs that the UAV has successfully served. We first
consider the single hot-spot scenario and analyze the system
performance in terms of the VU’s successful service probability
(SSP). Then we extend our analysis to the multi-hot-spot scenario
where the hot-spots merge and split due to VU mobility. For
this scenario, the SSP and the average number of successfully
served VUs (SSVs) are theoretically derived, based on which a
UAV’s 3D position deployment problem is formulated. Due to the
complicated formulation of SSP and the dynamic environment
including hot-spot distribution and UAV’s battery state, the
closed-formed solutions to the UAV’s deployment are intractable.
To obtain the sub-optimal positions of the UAV, the proposed
problem is reformulated into a deep reinforcement learning
(DRL) framework, and a pre-trained deep Q-network (DQN)
based scheme is proposed. Simulation results demonstrate that
compared to existing schemes, our proposed scheme achieves a
high number of successfully served users with moderate energy
consumption.

Index Terms—UAV 3D position deployment, successful service
probability, deep reinforcement learning, V2V-assisted UAV com-
munication, vehicular network.

I. INTRODUCTION

VEHICULAR networks have advanced significantly in
parallel with the advent of intelligent transportation

systems. As a typical application of the Internet of Things
(IoT) technology, they are expected to enable reliable and
efficient large-scale connectivity for vehicle users (VUs) with
diversified services [1]. To address the problem of surging
traffic in the vehicular networks, unmanned aerial vehicles
(UAVs), which have high mobility and a significant likelihood
of establishing line-of-sight (LoS) communication links, are
frequently utilized as flying base stations (BSs) for data
delivery, traffic monitoring, and improving connectivity [2].

Existing works related to UAV-aided vehicular networks
have mainly investigated issues such as communication and
resource allocation [3]- [5], edge computing [6] [7], and UAV
position deployment or trajectory design [8] [9]. To optimize
the system performance, the UAV’s position or trajectory in
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most of these works was deployed to reduce the flight time of
each task so that the UAV could carry out the tasks as much as
possible. However, without modeling and analyzing how the
UAV position or trajectory is affected by energy consumption,
the deployment schemes are not optimal when the UAV’s
onboard battery capacity is concerned.

In some works, the UAV’s position deployment is based
on the energy consumption modeling [10]- [12]. For instance,
considering the UAV energy constraint, the authors in [10]
studied how to adjust the UAV 3D position and maximize en-
ergy harvesting in wireless power transfer. Taking the transmit
power and motion power into consideration, the authors in [11]
maximized the users’ quality of experience by optimizing the
UAV’s 3D positions in emergency information collection and
transmission. However, when deploy the UAVs, these schemes
assumed that the users’ distribution is deterministic and static,
which is not true in reality.

Recently, some UAV position deployment schemes have
been proposed for the scenarios where users are moving. For
example, taking into account their communication coverage,
flying range, and energy limitations, the authors in [13]
introduced an approach based on deep reinforcement learning
(DRL) to optimize the UAVs’ positions. While in [14], the
authors deployed the optimum 3D Cartesian coordinate of
the UAV over each time slot, in which the VU’s mobility
was considered. In these works, the UAVs were assumed to
serve the VUs within only one hot-spot. In reality, however, as
the VUs move, the hot-spot will split or merge dynamically
[15] [16]. In such a case, one UAV has to serve the VUs
in multiple hot-spots when no more UAVs join to provide
services. Nevertheless, few work has pay attention to such a
scenario where the users’ distribution is dynamic and uneven
and the UAV has to adjust its positions accordingly for better
service. What’s more, in these works, only the gains offered
by the UAV in the UAV-to-vehicle (U2V) transmission mode
are exploited, while the gains offered by the vehicle-to-vehicle
(V2V) communication are neglected.

There are a few works that studied the V2V communications
in the UAV-aided vehicular networks [17] [18]. In [17], the
authors studied the V2V information diffusion in the disaster
scenarios with assistance of UAVs. In [18], the UAV was
adopted as a shared relay node to extend the cooperative V2V
transmission from inter-cell to multiple cells. Although these
works have achieved the gains of both the U2V and V2V
communications, the performance of the systems is not theo-
retically analyzed, and several critical aspects in the vehicular
networks, such as vehicle mobility and social proximity, have
not been utilized to fully explore the network capacity.

Note that many works focusing on the UAV position de-



ployment schemes based on traditional optimization methods
which require complete and accurate information of the net-
works [19]. Due to the high network dynamic caused by the
mobility of VUs, however, such a requirement is difficult to
meet. Furthermore, the UAV position deployment problems for
the vehicular networks are often modeled as optimization prob-
lems with nonlinear constraints that are difficult to solve by
traditional optimization methods. Fortunately, nowadays most
of the UAVs have intelligence which enable them the ability
of learning and reasoning to extract valuable knowledge and
make adaptive decisions [20]. Noticing DRL is an emerging
artificial intelligence technique suitable for dynamic scenarios
and is appropriate for long-term optimization problems, and
deep Q-network (DQN) is one of the most basic DRL method,
it is adopted here to learn the UAV’s 3D position during the
peak traffic hours.

Therefore, in this paper, we theoretically analyze the per-
formance of V2V-assisted UAV communications in vehicular
networks, based on which the UAV’s near optimal positions are
obtained by DQN. Part of the work, i.e., the UAV development
and the performance analysis for the scenario of a single hot-
spot, has been published in [21]. Here, the analysis is extended
to the scenario of multi-hot-spot where the dynamics of the
VUs and the energy consumption of the UAV are taken into
account. The main contributions are summarized as follows:

• Although quite a few existing works have exploited the
gains of U2V and V2V communications in vehicular
networks, its theoretical performance analysis has not
been given out in literature. Considering the key factors
such as vehicle mobility and social proximity, in this
paper, the performance of V2V-assisted UAV communi-
cations in terms of successful service probability (SSP)
is theoretically derived for the single hot-spot scenario.

• Different from most previous works that assumed there
is only one stationary hot-spot within the service area of
the UAV, we consider the VUs’ mobility and study the
multi-hot-spot scenario where the hot-spots may merge
and split as time passes by. The system performance of
the multi-hot-spot scenario is also theoretically analyzed
here, based on which the UAV’s 3D position is optimized
to maximize the average number of successfully served
VUs (SSVs).

• While most previous works only consider the UAV’s
transmission energy consumption when deploying its po-
sition, we also take into account its energy consumption
for moving, such that the UAV’s limited energy can be
fully utilized when it adjusts its position in each time slot
to serve more VUs.

• Due to the complicated expression of SSP and the dynam-
ic environment such as UAV battery state and hot-spot
distribution, the closed-formed solutions to the proposed
problem are intractable, and a pre-trained DQN based
DRL scheme is proposed to find the sub-optimal positions
of the UAV.

• Simulation results are shown to validate the effectiveness
and efficiency of our proposed scheme. Compared to
existing schemes in the literature, our proposed scheme

achieves the highest number of SSVs with moderate
energy consumption.

The remainder of this paper is organized as follows. Section
II introduces the system model. In Section III, we analyze
the system performance for the single static hot-spot scenario.
In Section IV, we analyze the system performance for the
dynamic multi-hot-spot scenario, based on which the UAV 3D
position deployment problem is formulated. Section V propos-
es a pre-trained DQN based scheme to find the sub-optimal
solutions, and Section VI provides the numerical results to
demonstrate the performance of the proposed scheme. Finally,
the paper is concluded in Section VII.

II. SYSTEM MODEL

As depicted in Fig. 1, we focus on a vehicular network in an
urban area during the peak traffic hours, where the hot-spots
split or merge as the VUs move. To alleviate the load on the
micro base station (MBS) and roadside units (RSUs), one UAV
equipped with a wireless transmission module and cache units
is deployed to serve the VUs in the considered area. Popular
contents, such as safety information and infotainment, have
been cached in the UAV in advance.

Suppose the duration of the peak traffic hours is Te, and
it is partitioned evenly into I time slots with duration τ . In
each time slot i ∈ I = {1, ..., I}, there are Ni hot-spots in the
considered area. The distribution of the VUs in each hot-spot
is assumed to follow the homogeneous Poisson point process
(HPPP) with identical density λ.

In the considered scenario, once a VU has been successfully
served in a U2V mode, it will announce its role of assisting
VU (AVU). Then the neighbors, who have failed to receive
the content from the UAV and become help needed VUs
(HVUs), can communicate with this AVU in a V2V mode
if they happen to be located within the V2V-proximity area
of this AVU. In the following, we will first discuss the
U2V transmission model and the V2V transmission model
in Section II-A and Section II-B, respectively. Then we will
discuss the UAV’s energy consumption model in Section II-C.
The detailed procedure for how the AVUs and the HVUs are
pairing is not discussed here because it is beyond the scope
of this paper, and the interested readers may refer to [22] and
[23] for more information.

A. U2V Transmission Model

Assume that at time slot i, the UAV is deployed at a height
of hi meters from the ground with a horizontal position wi =
[uxi, uyi]. The communication links between the VUs and the
UAV can be either LoS or non-LoS (NLoS). For a VU whose
distance from the UAV’s project position on the ground is r,
the gain of the LoS and the NLoS link can, respectively, be
given as

gLoS,i (r) =
(
r2 + h2i

)−αu/2
, (1)

and
gNLoS,i (r) = η

(
r2 + h2i

)−αu/2
, (2)

where αu is the path loss exponent over the U2V transmission,
and η is the additional attenuation factor about the NLoS. Due
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Fig. 1. An illustration of V2V-assisted UAV communications with multiple
hot-spots.

to the obstruction of buildings, the different locations of VUs,
and the altitude of UAV, the probability that a user connects
to UAV through the LoS link is [24]

pLoS,i (r) =
1

1 + a exp (−b [θi − a])
, (3)

while the probability that a user connects with UAV through
the NLoS link is pNLoS,i(r) = 1 − pLoS,i(r). Here, a and b
are constants which are determined by the environment, and
θi = tan−1

(
hi

r

)
is the elevation angle. Then the average U2V

channel power gain can be derived as

gU2V,i (r) = pLoS,i (r) gLoS,i (r) + pNLoS,i (r) gNLoS,i (r) . (4)

Suppose the UAV is allocated a dedicated spectrum to
broadcast popular content to the VUs, and the spectrum is
equally and orthogonally allocated to each VUs. Hence, the
signal-to-noise ratio (SNR) of the considered user is given by

γU2V,i (r) =
PugU2V,i (r)

σ2
, (5)

where Pu is the UAV’s transmit power and σ2 is the noise
power.

B. V2V Transmission Model

For V2V transmissions, we assume that all VUs utilize
a separate dedicated spectrum. Hence, a VU receiving data
through a V2V link will receive interference from other
V2V pairs. We further assume that the V2V channels are
characterized by Rayleigh fading, and the distribution of the
V2V pairs also follows HPPP, then according to [21], the
signal-to-interference-plus-noise ratio (SINR) of a VU served
via V2V transmission will be

γv,i (D) =
PvgvD

−αv

Iv,i + σ2
. (6)

Here, Pv is the transmission power, gv is the channel power
gain, D is the distance between the VU and its V2V transmit-
ter, αv is the path loss exponent, and Iv,i is the total received
interference from other V2V transmitters at time slot i.

C. UAV Energy Consumption Model

Note that when the UAV adjusts its 3D position or stays still
to transmit content, it will consume energy. Since the energy of
the UAV is limited, it should be allocated carefully. Therefore,
two parts of the rotary-wing UAV energy consumption [11]
[25], i.e., serving energy consumption and moving energy
consumption, are considered in this paper.

1) Energy consumption in Moving : When the UAV adjusts
its position, it cannot serve the VUs and the energy is
consumed for its propulsion. Here, we leverage the rotary-
wing UAV propulsion energy consumption model which is
given by

Emv,i = (Pw,i + Ph,i) τ. (7)

In (7), Pw,i denotes the horizontal motion power at time
slot i as

Pw,i = c1 + c2

(
||ẇi||
τ

)2

, (8)

where ||ẇi|| is the UAV’s velocity, and c1 and c2 are constants
related to the air density, blade drag and angular coefficient,
rotor radius, and UAV mass. While Ph,i denotes the vertical
motion power at time slot i as

Ph,i = c3
hi − hi−1

τ
+

hi − hi−1
‖hi − hi−1‖

√(
hi − hi−1

τ

)2

+ c4,

(9)
where c3 and c4 are also constants related to the UAV mass,
the UAV blade radius, and the air density.

2) Energy Consumption in Service: When the UAV stays
still and serves the VUs at slot i, the energy it consumes will
be

Esv,i = Puτ + c1τ. (10)

In (10), the first part is the energy for transmission, and the
second part is the energy for hovering which is obtained from
the horizontal motion energy consumption model (8) when the
velocity is set to zero.

III. ANALYSIS FOR THE SINGLE HOTSPOT STATIC
SCENARIO

In this section, we study the single static hot-spot scenario,
for which the SSP of U2V transmission and V2V transmission
are analyzed in Section III-A and Section III-B, respectively,
and then the average SSP of users in V2V-assisted UAV
communication is derived in Section III-C. Since the hot-
spot is stationary, the subscript i indicating time slot i in the
equations in Section II is removed when the equations are used
in this case.

A. SSP of U2V Transmission

Assume that the UAV is hovering at the center of the hot-
spot with a height of h meters from the ground, with the
maximum transmission coverage radius being Rmax which is
determined by its height and antenna azimuth. For the VU
whose distance from the projection of the UAV is r, the
SNR of U2V transmission will be γU2V (r). According to the
definition, if a user’s SNR is larger than the threshold, say



γ0, it is said to be successfully served. Therefore, let RLoS =√(
Pu

γ0σ2

)2/αu

− h2 and RNLoS =

√(
Puη
γ0σ2

)2/αu

− h2, the
SSP of the considered user in the U2V transmission can be
calculated as

psucc,U2V (r) = Pr [γU2V (r) ≥ γ0]

=pLoS(r) · Pr [r ≤ RLoS] + pNLoS(r) · Pr [r ≤ RNLoS] .
(11)

Supposing the VUs in the hot-spot are uniformly distributed,
the probability density function (PDF) of their locations is
f(r) = 2r

R2
max

, (r < Rmax). Then for any VU in the hot-spot,
the average SSP of the U2V transmission will be

psucc,U2V =Er [psucc,U2V (r)]

=

∫ min[RLoS,Rmax]

0

pLoS(r)
2r

R2
max

dr

+

∫ min[RNLoS,Rmax]

0

pNLoS(r)
2r

R2
max

dr.

(12)

B. SSP of V2V Transmission

In this subsection, we calculate the SSP of a VU in V2V
transmission, taking into account the vehicle’s mobility and
social proximity.

1) Vehicle Mobility and Connection Probability: The V2V
links are often unstable and unreliable due to the mobility of
vehicles. For instance, a transmission may be disrupted if the
vehicles move beyond their maximum communication range.
To assess the quality of links in V2V transmission, we adopt
a similar approach proposed in [21] and [27] and calculate the
connection probability as follows.

Suppose that the initial headway distance of a V2V pair is
D. Noticing that this distance varies over time, we denote it
as D(t), with D(t) ≤ 0 meaning the VU is ahead of its V2V
transmitter and D(t) > 0 meaning it is behind. Additionally,
the maximum communication range is denoted by Dmax. The
duration of the V2V transmission, known as the connection
time, is approximated by the mean first passage time T which
starts at t = 0 and ends when the users move out of their
maximum communication range, i.e.,

T = {min t|D (0) = D,−Dmax < D (x) < Dmax, 0 ≤ x ≤ t}.
(13)

In (13), T is a random value and depends on D and the relative
velocities of the V2V pair. Hence, D(t) can be modeled as
a Wiener process [27] with drift β = vR − vT and variance
σ2
v = σ2

R − σ2
T . Here, vT (vR) and σ2

T (σ2
R) are the mean and

variance of V2V transmitter (receiver) velocity, respectively.
Within the infinitesimal interval ∆t, the increment of D(t),
i.e., ∆D (t), can be calculated as

∆D (t) = D (t+ ∆t)−D (t) = β∆t+G
√
σ2
v∆t, (14)

where G is a random variable that follows the unit normal
distribution.

Next, let p(x|D, t) represent the PDF of the user’s time-
varying velocity. Given that (14) is a Wiener process, p(x|D, t)

satisfies the Kolmogorov equation [27] as

1

2
σ2
v

∂2

∂x2
p(x|D, t) + β

∂

∂x
p(x|D, t) =

∂

∂t
p(x|D, t),

−Dmax < x < Dmax.
(15)

Let δ(.) be a Dirac delta function, the initial and boundary
conditions on the headway distance for (15) will be given as

p(x|D, 0) = δ (D) , and

p(Dmax|D, t) = p(−Dmax|D, t) = 0, t > 0.
(16)

Combining (15) and (16), we have

p(x|D, t) =
1√

2πσ2t

∞∑
y=−∞

[ exp

{
4yβDmax

σ2
v

− [(x−D)− 4yDmax − βt]2

2σ2
vt

}
− exp

{
2βDmax(1− 2y)

σ2
v

− [(x−D)− 2Dmax(1− 2y)− βt]2

2σ2
vt

}] .
(17)

Finally, the cumulative distribution function (CDF) of the
connection time T can be derived as

Frt(t,D) = Pr [T ≤ t] = 1−
∫ Dmax

−Dmax

p(x|D, t)dx. (18)

2) Social Proximity: To assess the probability that a po-
tential V2V transmitter possesses the requested content, we
investigate it from the social perspective and evaluate it based
on social proximity.

Assuming the UAV has pre-cached K popular contents of
equal normalized size, and the content popularity is represent-
ed by F = {f1, ..., fk, ..., fK}, which follows the Zipf law
as

fk =
(1/k)

z∑K
j=1 (1/j)

z
. (19)

Here, fk represents the popularity of the kth content, and z is
the skewness of the content popularity.

From (19), we can see that if a VU desires content k,
the probability of obtaining it from other VUs is determined
by its popularity fk. In other words, the popularity of a
content reflects the social proximity between two VUs who
are interested in the same popular content. The higher the
desired content’s popularity, the greater the social proximity
between these VUs.

Since we lack exact information about the content a partic-
ular VU is interested in, all content must be considered when
estimating the probability. Given that the VUs’ requests are
independent, the average probability of a VU obtaining its
desired content, i.e., the social proximity, will be

psp = 1−
∏
k∈K

(1− fk) . (20)



3) SSP of V2V: Similar to the U2V transmission, a VU
is considered to be successfully served via V2V transmission
if the SINR surpasses a predetermined threshold γ0. Hence,
inspired by [24], the SSP of V2V can be derived as

Pr [γv (D) ≥ γ0] = Pr

[
Pv · gv ·D−αv

Iv + σ2
≥ γ0

]
= exp

(
−2π2λvγ

2/αv

0 D2

αv sin 2π
αv

− γ0D
αvσ2

Pv

)
.

(21)

We assume that the potential V2V transmitters are distribut-
ed uniformly around a VU, and the PDF of the distance is
given by f(D) = 2D

D2
max

, D < Dmax. By considering the
user’s mobility, social proximity, and physical transmission,
the average SSP for V2V transmission can be derived as

psucc,V2V = ED
[
Pr [γv (D) ≥ γ0] · Frt(t,D) · psp

]
=

∫ Dmax

0

exp

(
−2π2λvγ

2/αv

0 D2

αv sin 2π
αv

− γ0D
αvσ2

Pv

)
·pspFrt(t,D)

2D

D2
max

dD.

(22)

C. Average SSP

With (12) and (22), we calculate the average SSP for VUs
who are served by V2V-assisted UAV communication as

psucc = psucc,U2V +
(
1− psucc,U2V

)
· psucc,V2V · psucc,U2V.

(23)
In (23), the first component represents the probability that a
user can be served successfully by the UAV through U2V
transmission, and the second component indicates the prob-
ability that a user can be served successfully through V2V
transmission when the U2V transmission fails.

IV. ANALYSIS FOR THE DYNAMIC MULTI-HOT-SPOT
SCENARIO

Noticing that the hot-spots split or merge as the VUs move,
the UAV adjusts its position to serve the VUs better. Therefore,
in this section, we will extend our analysis to the dynamic
multi-hot-spot scenario. In the following, we first derive the
average SSP at a single time slot in Section IV-A to Section
IV-C. Then we derive the average number of SSVs during the
peak traffic hours in Section IV-D, based on which the UAV’s
positions is optimized.

A. SSP of U2V at Single Time Slot

Recall that at time slot i, the UAV is deployed at a height
of hi with horizontal position wi = [uxi, uyi]. Suppose there
are Ni hot-spots observed at time slot i, the set of which is
Hi = {Hi,1, ...,Hi,n, ...,Hi,Ni

}. For any hot-spot Hi,n ∈Hi,
it can be described by the center Ci,n = (xi,n, yi,n) and the
radius Ri,n, where xi,n and yi,n are the horizontal and vertical
coordinate of center Ci,n, respectively. In this subsection, since
we discuss the SSP for U2V at a single time slot, we omit
subscript i for simplicity.
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Fig. 2. An illustration of 2D hot-spots distribution and UAV transmission
coverage.

We first calculate the coverage area of the UAV when
multiple hot-spots appear. As illustrated in Fig. 2, angles
φn,LoS and φ

′

n,LoS can be calculated as

φn,LoS = arccos
R2

LoS + ||w − Cn||2 −R2
n

2 ||w − Cn||RLoS
, (24)

and

φ
′

n,LoS = arccos
R2
n + ||w − Cn||2 −R2

LoS

2 ||w − Cn||Rn
. (25)

Similarly, we can calculate angle φn,NLoS and φ
′

n,NLoS. Then,
the area covered by the UAV through LoS link and NLoS link,
i.e., sn,LoS and sn,NLoS, can be respectively obtained as

sn,LoS =


0, ||w − Cn|| > RLoS

arccosφn,LoS ·R2
LoS + arccosφ

′

n,LoS ·R2
n,

− ||w − Cn||RLoS · sinφn,LoS, else,
(26)

and

sn,NLoS =


0, ||w − Cn|| > RNLoS

arccosφn,NLoS ·R2
NLoS + arccosφ

′

n,NLoS ·R2
n,

− ||w − Cn||RNLoS,i · sinφn,NLoS, else.
(27)

Combining (3), (26) and (27), the average SSP in U2V
transmission at this time slot will be

psucc,U2V = Er [psucc,U2V (r)] ,

=

N∑
n=1

sn,LoS

πR2
max

∫ min[RLoS,Rmax]

0

pLoS(r)
2r

R2
max

dr

+

N∑
n=1

sn,NLoS

πR2
max

∫ min[RNLoS,Rmax]

0

pNLoS(r)
2r

R2
max

dr.

(28)

B. SSP of V2V at Single Time Slot

In this subsection, we derive the VU’s SSP of V2V trans-
mission at a single time slot for the multi-hot-spot scenario.



1) Vehicle Mobility and Social Proximity: Recall that the
duration of a time slot is τ . Substituting τ into (18), we have
the probability that a V2V pair can keep in connection at a
single time slot as

Frt(τ,D) = Pr [T ≤ τ ] = 1−
∫ Dmax

−Dmax

p(x|D, τ)dx. (29)

As to the social proximity, i.e., the average probability
derivation of a VU having its interested content, it can still
be expressed as (20).

2) Physical Transmission Model: From Fig. 2 we can see
that in hot-spot HSn, the VUs who need V2V transmission
can be divided into two groups: One group is located in
the overlapping zone of HSn and the area within UAV’s
maximum transmission coverage, the other group is located in
the “annular sector” zone, i.e., the green shadow in Fig. 2, with
the maximum V2V transmission range Dmax as width. Both
groups can be served by the VUs who have been successfully
served through U2V transmission in the overlapping zone. In
the following, we will analyze these two groups respectively.

First, similar to the single hot-spot scenario, we have the
area covered and uncovered by the UAV through the LoS link
as

sn,LoS,in =


0, ||w − Cn|| > Rn +RLoS

arccosφn,LoS,in ·R2
LoS + arccosφ

′

n,LoS,in ·R2
n,

− ||w − Cn||RLoS · sinφn,LoS,in, else,
(30)

and

sn,LoS,out =


0, ||w − Cn|| > Rn +RLoS +Dmax

arccosφn,LoS,out ·R2
LoS + arccosφ

′

n,LoS,out ·R2
n,

− ||w − Cn||RLoS · sinφn,LoS,out, else,
(31)

where

φn,LoS,in = arccos
R2

LoS + ||w − Cn||2 −R2
n

2 ||w − Cn||RLoS
, (32)

φ
′

n,LoS,in = arccos
R2
n + ||w − Cn||2 −R2

LoS

2 ||w − Cn||Rn
, (33)

φn,LoS,out = arccos
R2

LoS + ||w − Cn||2 −R2
n

2 (||w − Cn||+Dmax)RLoS
, (34)

φ
′

n,LoS,out = arccos
R2
n + ||w − Cn||2 −R2

LoS

2 (||w − Cn||+Dmax)Rn
. (35)

Note that the area covered and uncovered by the UAV through
the NLoS link, i.e., sn,NLoS and s

′

n,NLoS, can be obtained
similarly but is omitted here due to page limitation.

Then we have the average area of “annular sector” as{
ssn,LoS = ssn,LoS,out − ssn,LoS,in,

ssn,NLoS = ssn,NLoS,out − ssn,NLoS,in.
(36)

For the VUs in the overlapping zone and the “annular
sector”, their average SSP of V2V transmission can be re-

spectively calculated as

Pn(V2V succ|overlapping U2V fail)

= [1− sn,LoS

πR2
max

∫ min[RLoS,Rmax]

0

pLoS(r)
2r

R2
max

dr

− sn,NLoS

πR2
max

∫ min[RNLoS,Rmax]

0

pNLoS(r)
2r

R2
max

dr]

·
∫ Dmax

0

Frt(τ,D)pspPr [γv (D) ≥ γ0]
2D

D2
max

dD,

(37)

and

Pn (V2V succ|annular sector)

=
ssn
πR2

n

∫ Dmax

0

Frt(τ,D)pspPr [γv (D) ≥ γ0]
2D

D2
max

dD.

(38)
Finally, for the VUs in hot-spot HSn, we can derive their

average SSP of V2V transmission as

pn,succ,V2V = Pn (V2V succ|annular sector)

+Pn (V2V succ|overlapping U2V fail) psucc,U2V.
(39)

Taking all the hot-spots in this area into consideration, we
have the average SSP at the ith time slot as

psucc,V2V =

∑N
n=1 λπR

2
npn,succ,V2V∑N

n=1 λπR
2
n

. (40)

C. Average SSP at Single Time Slot

With (28) and (40), we derive the average SSP of VUs at
a specific time slot in the multi-hot-spot scenario as

psucc = psucc,U2V +
(
1− psucc,U2V

)
psucc,V2V. (41)

D. Average Number of SSVs During Peak Traffic Hours

According to (41), we have the VUs’ average SSP at time
slot i, i.e., pi,succ, when the UAV’s 3D position (wi, hi) is
given. Then let W = {w1, ...,wI} and H = {h1, ..., hI}, the
average number of SSVs during the peak traffic hour Te will
be

AV (W,H) =
I∑
i=1

pi,succ

(
λ

Ni∑
n=1

πR2
n

)
. (42)

Since the hot-spot distribution and the UAV’s battery state
change as time passes, to maximize the total number of
successful service users, the UAV is required to optimize its
3D position overall time slots under the battery constraint.
Thus, the UAV’s 3D position deployment problem can be
formulated as

P : max
W,H

AV (W,H), (43)

s.t.
I∑
i=1

ψiEsv,i +
I∑
i=1

(1− ψi)Emv,i ≤ Emax,∀i ∈ I,

(44)
||wi −wi−1||≤ ||ẇi||τ,∀i ∈ I, (45)

hi − hi−1 ≤ ḣiτ,∀i ∈ I. (46)



In (44), the UAV’s energy is constrained with the maximum
battery capacity Emax, and an auxiliary binary variable ψi is
introduced to indicate whether the UAV stays still to serve the
VUs (ψi = 0) or moves to adjust its 3D position (ψi = 1).
Moreover, since we assume that the UAV’s position adjustment
should be completed within a time slot τ , the UAV’s 3D
position between two consecutive time slots, i.e., (wi, hi) and
(wi−1, hi−1), should be constrained by its horizontal velocity
ẇi and vertical velocity ḣi as in (45) and (46), respectively.

However, the UAV’s optimal strategy is not easy to obtain
due to the following two reasons: Firstly, the SSP for each
transmission is not a continuous function with regard to the
UAV’s 3D position, which makes it difficult to obtain the
UAV’s optimal position deployment even at a single time
slot; Secondly, the hot-spot distribution and the UAV battery
state are dynamic and coupled between time slots, which
makes the closed-form solution intractable. Noticing that DRL
provides a framework in which an agent can interact with the
environment and learn the best behavioral decisions for each
step through trial and error, in the following, we adopt DRL
to address the aforementioned issues and find the sub-optimal
UAV deployment solution to the proposed problem.

V. DRL BASED SOLUTIONS TO UAV 3D POSITION
DEPLOYMENT

To obtain the solutions to the UAV position deployment
problem, in the following, we first reformulate the proposed
problem to a DRL framework in Section V-A, within which the
UAV deployment scheme is then elaborated in Section V-B.

A. DRL Framework

In the framework of DRL, the UAV in the considered
scenario acts as an agent, while the hot-spot distribution and
the UAV’s energy state are regarded as the environment. As
depicted in Fig. 3, at each time slot, say time slot i, the
UAV observes an environment state si from the state space
S , and then takes an action ai from its action space A based
on the policy π accordingly. The policy π is determined
by a state-action value function, i.e., the Q-function of the
reinforcement learning, to obtain a Q-value Q(si, ai). After the
action, the UAV receives a reward Ri from the environment,
and the system transitions to a new state si+1 at the next
time slot. In the following, we will explain in detail how to
reformulate the proposed optimization problem to such a DRL-
based framework.

1) State: The environment state si the UAV observes
from the system at time slot i is comprised of the hot-spot
distribution and its remaining energy, i.e.,

si = {HSi, Ei} ∈ S. (47)

Here, Ei is the UAV’s remaining energy which can be obtained
by rewriting (44) as

Ei = Emax −
i∑

j=1

ψjEsv,j +
i∑

j=1

(1− ψj)Emv,j . (48)

UAV as agent

Environment

Take action

Hotspots distribution

Observe state
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Fig. 3. An Illustration of Reinforcement Learning Framework.

2) Action: Given the observation si, the UAV takes an
action ai of adjusting its 3D position based on policy π, which
is denoted as

ai = {Wi, Hi} ∈ A. (49)

Here, Wi is the 2D position adjustment option out of a total
of 9 options: East, West, South, North, Southeast, Northeast,
Southwest, Northwest, and Stay, with the increment in each
direction of ||∆W ||. Hi is the altitude adjustment option out
of a total of 3 options: Up, down and stay, with the increment
in each direction of ||∆H||. Hence, there are in total 27
combinations of UAV’s 3D position adjustment in the action
space A.

3) Reward Function: Recalling that the goal of the formu-
lated problem P is to maximize the total number of successful
service users in the peak time Te under the UAV’s energy
constraint, the reward function here can be designed as

Ri = ωp

(
pi,succλ

Ni∑
n=1

πR2
n

)
− ωe (Emax − Ei) . (50)

In (50), the first part denotes the number of successful service
users, the second part is the UAV’s remaining energy which
is represented as a penalty, and ωp and ωe are the weights of
these two parts, respectively. Since the goal of reinforcement
learning is to maximize a long-term reward, the expected
cumulative discounted reward can be measured as

Ri = E

[ ∞∑
n=0

γnRi+n

]
, (51)

where γ ∈ [0, 1] is the discount factor, and the larger the value
of γ is, the more the reinforcement learning model focuses on
the future rewards.

B. Pre-trained DQN based Deployment Scheme

In the DRL framework established in the previous subsec-
tion where the action space is modeled as a finite discrete
data set, the hot-spot distribution and the power state of the
UAV are high-dimensional and complex. Using a traditional
Q-table to store such state-action Q-value will cause dimension
disaster. What’s more, even if such a large-scale Q-table can
be created, searching for a specific state-action pair’s Q-value
will also be time-consuming.



Under such circumstances, DQN which combines Q-
learning with deep neural network (DNN) to evaluate the Q-
function, is leveraged. The DQN adopts two neural networks
with the same architectures: one is the evaluate Q network
which is used to approximate the Q-value of the current state-
action pair, and the other is the target Q network which is
used to update the target Q-value. In the DQN, the state and
the actions with parameter θNN are input into and analyzed
through the DNN, creating a mapping from the environment
to the action.

Then, for a state-action pair (si, ai), the DQN model can
evaluate the Q-value Q(si, ai) to reflect the quality of a
decision. Once the Q-value of the actions are approximated,
the UAV can take the appropriate action based on

ai = arg max
a∈A

Q(si, a). (52)

Without knowing the environment information in advance, the
optimal Q-value i.e., Q∗, under the optimal policy can be
obtained through iteration as

Q(si, ai) = Q(si, ai)+α[Ri+1+γmax
a∈A

Q(si+1, a)−Q(si, ai)],

(53)
where α is the learning rate of the UAV.

With the determined architectures, the neural network can
be trained to minimize the loss

LDQN (θNN ) = E[(Y −Q(s, a; θNN ))2], (54)

where Y = Ri + amaxa∈AQ(si, a; θNN ) is the target Q
network, and parameter θNN is updated with the gradient
descent as

θNN = θNN +∇Q(s, a; θNN )[Ri
+γmax

a∈A
Q(si+1, a; θNN )−Q(si, ai; θNN )].

(55)
Noticing that there are many parameters in the DNN,

and randomly initializing the parameters takes a relatively
long time for learning to converge, in this paper, we add a
pre-trained process to the aforementioned DQN framework,
helping it converge quickly and improve the performance. To
this target, a cache memory Ddemo is set up to store the
training data in form of (si, ai, ri, si+1) which can be obtained
by algorithms such as ant colony optimization algorithm. Then
a random mini-batch is sampled from Ddemo to train the DNN.

Different from traditional DQN, the loss function Lpre of
pre-trained based DQN is a combination of LDQN , supervised
loss Ls, and regular loss Lr as

Lpre = LDQN + λsLs + λrLr. (56)

Here, λs and λr are the weight, LDQN has the same ex-
pression as in (54), Lr is used to prevent overfitting during
pre-trained, while Ls gives the DNN a direction to update its
parameters by fine-tuning the original DQN loss as

Ls = max
a∈A

[Q(s, a) + l(s, aE , a)]−Q(s, aE). (57)

In (57), aE is the action taken under state s during pre-trained,
and l(·) is a margin function to make sure some state-action
pairs that are not available in Ddemo still have a reasonable

Algorithm 1 Pre-trained DQN based Deployment Scheme
input: A, R1, α,γ, I and episode number K, M , pre-

trained data sample portion ppre
output: Q-value of each action
1: Initialize pre-trained data cache Ddemo, replay memory

unite D, and the evaluate and the target Q Networks with
random weights.
Pre-training:

2: for episode = 1 : K do
3: Sample a mini-batch (sj , aj , rj , sj+1) from Ddemo
4: Perform a gradient descent step on Lpre based on (56)-

(57) for the evaluate Q networks
5: Every N steps update the target Q network with the

evaluate Q networks
6: end for

Training:
7: for episode = 1 : M do
8: Initialize state sequence s1
9: for i = 1 : I do

10: Select a random action ai with probability ε
11: Otherwise select ai based on (52)
12: Execute the selected action ai in the emulator
13: Observe reward ri and update to new state si+1

14: Store data (si, ai, ri, si+1) into D
15: Sample a mini-batch (sj , aj , rj , sj+1) from D
16: Set

Yj =

Rj , terminal sj+1

Rj + max
a′∈A

Q
(
sj+1, a

′
; θNN

)
, otherwise

17: Perform a gradient descent step on
(Yj −Q(sj , aj ; θNN ))2 based on (54)-(55)

18: Every N steps update the target Q network with the
evaluate Q networks

19: end for
20: end for
21: return the target Deep Q Network

value and converge in the same direction as the pre-trained
data. Specifically, when a = aE , there is l(·) = 0 and then
Ls = 0. While in other cases, there is l(·) > 0 and then
Ls > 0, forcing the value of the action in the pre-trained data
to be higher than the value of the other action in the current
state.

The whole training process of the pre-trained based DQN
scheme for UAV 3D position deployment, including pre-
training and training, is summarized in Algorithm 1. In Al-
gorithm 1, the neural network is pre-trained (line 2-6), and
a greedy strategy is used to select the actions (line 10 and
11). Then the existing state, action, reward, and next state
are obtained and deposited into the replay memory unite
(line 12-14). Finally, a mini batch of data is sampled from
the replay memory unite to update the Q-network (line 15-
18). With Algorithm 1, the UAV is able to interact with the
environment without any prior knowledge continuously and
learn near-optimal current deployment strategies efficiently
and intelligently to improve the average number of SSVs.

Remark: The time complexity of Algorithm 1 is determined



TABLE I
SIMULATION PARAMETERS

Parameter Value
UAV transmit power Pu [26] 0.5 W
V2V transmit power Pv [26] 0.5 W

Additional attenuation factors about NLoS η 20 dB
Parameters for dense urban environment a, b [27] 11.95, 0.136
Path loss exponent for U2V transmission αu [21] 3
Path loss exponent for V2V transmission αv [21] 3.5

Noise power σ2 [21] -120 dB/Hz
V2V maximum communication range Dmax [27] 100 m

Content popularity (Zipf law) skewness z 2
UAV horizontal motion power parameters c1, c2 [27] 272.6, 0.02175

UAV vertical motion power parameters c3, c4 [27] 19.6, 127.32
UAV maximum battery capacity Emax [27] 100,000J

DQN learning rate α 0.01
DQN discount factor γ 0.9

DQN weight of reward function ωp, ωe 0.9, 0.1
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Fig. 4. Successful service probability.

by the process of pre-training and training. Since the time
complexity of pre-training is O(K) where K is the number
of episodes, while the time complexity of training is O(MI)
where M is the number of episodes and I is the number of
steps in each episode, the time complexity of Algorithm 1
should be O(K) +O(MI).

VI. NUMERICAL SIMULATION

In this section, simulations are performed to validate our
theoretical analysis and assess the performance of the proposed
framework. In the simulations, the vehicular network is located
within an area of 1, 200m × 1, 200m in a dense city, where
the mobility of the users follows the homogeneous Poisson
point process with parameter λ = 48. The peak traffic period
Te is assumed to sustain 30 minutes, and the number of time
slots I is set to 10. Within the area, a UAV is dispatched
to provide auxiliary communication. The parameters of UAV
communication and energy consumption are shown in Table I.
What’s more, the parameters of the proposed DQN scheme as
well as other default parameter settings are shown in Table I.

A. Features of Proposed Scheme

We first verify our theoretical analysis for the single hot-
spot scenario. From the results shown in Fig. 4, we can see
that for all the SSP of U2V transmission, V2V transmission,
and V2V-assisted UAV communications, which decrease as the
thresholds of SNR or SINR increase, the lines of theoretical
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results and the lines of simulation results are very close or even
overlapping. This means that our theoretical analysis matches
the simulation perfectly, and thus is soundness. From Fig. 4,
we can also see that the thresholds of SINR and SNR are small,
psucc,U2V and psucc,V2V are relatively high, making psucc high.
As the thresholds of SINR and SNR increase, psucc,U2V and
psucc,V2V decrease, making psucc drop rapidly. When psucc
drops and is smaller than psucc,V2V, the intersection of lines
appears. What’s more, when the thresholds of SINR and SNR
are very large, the number of AVUs will become very small.
In such a case, the V2V mode is almost unavailable and psucc
is approaching to psucc,U2V.

Next, we verify the convergence of the proposed scheme for
the multi-hot-spot scenario. The DQN model is trained with
300 episodes, and in each episode, the UAV undergoes position
deployment adjustments during 10 time slots. From the results
shown in Fig. 5, we can see that as the training progresses,
the training error gradually decreases and eventually reaches
a converging trend by the end of the training, which verifies
the convergence of the proposed scheme.

Finally, we investigate how the SSP of V2V-assisted UAV
communications is affected by the setting parameters such as
ωp and ωe. It can be observed from Fig. 6 that when ωp
is given, increasing ωe leads to a gradual decrease in the
number of SSVs. This is because the scheme weighs more on
energy consumption and gains energy savings at the cost of
service degradation. Conversely, when ωe is given, increasing
ωp results in a gradual increase in the number of SSVs, since
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the service quality weighs more in this case.

B. Performance Evaluation

To verify the performance of our proposed V2V-assisted
3D Position Deployment (VDPD) scheme in the multi-spot
scenario, we compare it with three existent algorithms, i.e.,
the Trajectory Design for Throughput Maximization (TDTM)
scheme [28], the Fly-Hover Energy Minimization (FHEM)
scheme [30], and the UAV Deployment with Energy and
User Mobility awareness (DEUM) scheme [29]. In the TDTM
scheme, the hovering position of the UAV is optimized to
maximize the coverage of the UAV and the total throughput
of each mission. In the FHEM scheme, the hovering locations
and durations as well as the flying trajectory is optimized to
minimize the total UAV energy consumption. While in the
DEUM scheme, the 3D position and flying trajectory of the
UAV is optimized to maximize the coverage of the UAV while
minimizing the UAV energy consumption.

Trajectory Design for Throughput Maximization in UAV-
Assisted Communication System

We first verify the performance of the algorithms in terms of
the total number of SSVs. From Fig. 7, we can see that as the
density of VUs in the hot-spots increases, the total number of
SSVs of all the algorithms grows. Obviously, the performance
of the proposed VDPD scheme has superior advantages to
that of DEUM, TDTM, and FHEM, with an increase by 76%,
139%, and 350%, respectively. This is because both the TDTM
and FHEM schemes are planning the UAV’s trajectory in a
two-dimensional plane without considering the height of the
UAV. Although the DEUM scheme obtains the 3D position
of the UAV, it only considers the single hot-spot scenario.
When encountering a multi-spot scenario, it purely serves the
VUs in the spot with the highest density, leaving VUs in
other spots unserved. What’s more, these algorithms do not
exploit the V2V communication which can further improve
the performance.

Fig. 8 shows the number of SSVs vs. the SINR threshold.
We can see that as the SINR threshold increases, the number
of SSVs will decrease. Moreover, due to the same reasons as
having been stated, there are more VUs in the coverage of
the proposed VDPD scheme as the SINR threshold changes.
Thus the number of SSVs in VDPD gains an increase by
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105%, 221%, and 360% when compared to DEUM, TDTM,
and FHEM, respectively.

Fig. 9 shows the number of SSVs vs. the average distance
of centers of multiple hot-spots. We can see that as the average
distance of centers of multiple hot-spots increases, the number
of SSVs of all the algorithms decreases. However, the VDPD
scheme has the largest number of SSVs in each case when
compared to other algorithms. This is because the position of
the UAV in the VDPD scheme is regulated in time according
to the movement of VUs and the hot-spot distribution, while
the TDTM and FHEM schemes do not consider the mobility
of the VUs and the DEUM scheme purely considers the single
hot-spot scenario, thus the UAV in these schemes cannot be
located in the optimal positions.

Next, we verify the performance of the schemes in terms
of energy consumption, where the energy consumption is
observed to evolve according to the density of VUs in the hot-
spot, the SINR threshold, and the average distance of centers
of multiple hot-spots. It can be seen from Fig. 10 to Fig. 12
that the energy consumption of the DEUM scheme, which is
followed by the TDTM scheme, is the highest in three different
cases due to the uncertain position of the UAV and the hover
points between time slots having too large a distance, although
it takes the energy consumption into consideration. While the
VDPD scheme and FHEM scheme which take the energy
consumption into account when adjusting the position of UAV
and have similar performance, consume only about 32% and
18% of the energy of DEUM and TDTM, respectively.
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In general, the TDTM, FHEM, and DEUM schemes are
proposed for the UAV in a single hot-spot scenario where
the difference in VUs density is insignificant, and they do
not consider the communication between V2V. In our VDPD
scheme, the UAV moves according to the VU’s distribution,
taking energy consumption into consideration and exploiting
V2V communication. As a result, the VDPD scheme performs
well in terms of the number of SSVs and energy consumption.

VII. CONCLUSIONS

In this paper, we investigate a V2V-assisted UAV communi-
cations framework where the VUs can request contents from
either the UAV or the VUs that have been served successfully
by the UAV. For the single hot-spot scenario in which one UAV
is deployed in the center of hot-spot, we analyze the SSP of
U2V and V2V transmission when the vehicle mobility and
social proximity are involved. Furthermore, considering the
dynamic of the users and the hot-spots, we extend our analysis
to the multi-hot-spot scenario, where the UAV needs to adjust
its 3D position to serve more users with better services under
the constraint of energy. A pre-trained based DQN scheme
is proposed to find the sub-optimal solution. The simulation
results demonstrate that our theoretical findings align closely
with the simulation results. Moreover, our proposed approach
uses only 69% energy to achieve an increase in the number of
SSVs by 168% on average when compared to the existing
algorithms in the literature. Based on the achievements in
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ty=16/1000mˆ2, SINR threshold=6 dB).

this paper, it is more interesting to study the scenario where
more than one UAVs are evolved. Considering the costs and
rewards in providing service in a dynamic environment, the
3D position deployment of multiple UAVs can be formulated
as a decision making process of multiple agents. Such an
interesting direction will be pursued in our future work.
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