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Abstract

We derive a low-complexity receiver scheme for joint multiuser decoding and parameter estimation of
CDMA signals. The resulting receiver processes the users serially and iteratively, and makes use of soft-
in soft-out single-user decoders, of soft interference cancellation and of ezpectation-mazimization parameter
estimation as the main building blocks. Computer simulations show that the proposed receiver achieves near
single-user performance at very high channel load (number of users per chip) and outperforms conventional
schemes with similar complexity.

1 Introduction

Among the several multiuser detection schemes proposed for CDMA [1], Serial and Parallel Interference Cancel-
lation (SIC and PIC) are particularly attractive because they process directly the output of a bank of single-user
matched filters (SUMF). The receiver front-end is identical to that of conventional detection. Therefore, these
methods can be seen as an ”add-on” post-processing to enhance the performance of a conventionale base-
station receive when particularly high channel load is needed, and can be applied easily to either short and long
spreading sequence formats [2].

The main preformance limitation of SIC/PIC schemes are: 1) error propagation caused by feeding back
erroneous symbol decisions; 2) imperfect interference cancellation due to non-ideal knowledge of channel pa-
rameters (e.g., the complex amplitudes and delays of the users’ multipath channels). In this work, we propose
a receiver scheme which handles successfully both problems.

SIC is both simpler and more robust than PIC with respect to error propagation, since users can be ranked
according to their signal-to-interference plus noise ratio (SINR) and decoded in sequence [3, 4]. Hence, we focus
on SIC schemes. In early works, SIC is applied to uncoded transmission and hard decisions are used at each
stage to remove the already detected users from the received signals. In order to prevent error propagation, the
use of soft (or partial) interference cancellation and iterative SIC schemes has been proposed in different forms
and by different authors (see for example [4, 5, 6]). More recently, the SIC approach has been combined with
channel coding and Soft-In Soft-Out (SISO) decoding. The number of works in this direction is overwhelming.
Without the ambition of being exhaustive, we refer to [7, 8, 9, 10, 11, 12]. A common feature of these algorithms
is that single-user SISO decoders provide at each iteration an estimate of the a posteriori probabilities (APP)
for the user code symbols, which are used to form a soft estimate of interference to be subtracted from the
received signal. In this way, the contribution of a user is effectively subtracted from the signal only if its symbol
decisions are sufficiently reliable.

A unified framework to iterative multiuser joint decoding based on factor-graphs and sum-product algo-
rithm [13] is provided in [14]. In this framework, almost all algorithms previously proposed (notably, those
of [7] and of [11, 12]) can be re-derived in a simple direct way. Moreover, as a consequence of the sum-product
approach, it is found that extrinsic (EXT) probabilities [15] rather than APPs should be fed back to form



the soft interference estimate. As confirmed experimentally by [16], APP-based soft interference cancellation
yields a biased residual interference term which tends to cancel the useful signal, and the APP-based algorithms
of [7, 11, 12] attain a worse overall spectral efficiency than their EXT-based counterparts derived and analyzed
in [14].

In order to reduce parameter estimation errors, iterative SIC schemes can be naturally coupled with iterative
parameter estimation in order to (hopefully) improve the estimates with the iterations, as long as the signal is
”cleaned-up” from interference. We propose a low-complexity iterative soft-SIC algorithm for joint data detec-
tion and channel parameter estimation. The main building blocks of our receiver are SISO single-user decoders,
soft, interference cancellation stages and a channel parameter estimation updating step which is formally equiv-
alent to one step of the Expectation-Maximization (EM) algorithm (see [17] and references therein). The key
idea to achieve polynomial complexity in the number of users is to apply EM ”locally”, i.e., instead of using the
true a posteriori distribution of the missing data given the observation and the current parameter estimate, we
use the product distribution induced by the a posteriori marginal (symbol-by-symbol) probabilities output by
the SISO decoders at each iteration. A longer version of this work can be found in [18].

The paper is organized as follows. In Section 2 the synchronous CDMA signal model is presented. In Section
3 we derive the proposed receiver structure. In Section 4 we present some numerical results and in Section 5
we summarize our conclusions.

Notation conventions: 1) Let A be a matrix, then a,, a* and ay,, (or [A]t,,) denote the n-th column, the
k-th row and the (k,n)-th element, respectively; 2) z ~ N (u, X) indicates that the random vector z is complex
circularly-symmetric jointly Gaussian with mean E[z] = p and covariance E[(z — p)(z — u)¥] = %; 3) Ax B
means that A and B differ by a multiplicative term; 4) A = B means that A and B differ by an additive term;
5) Probability density functions (pdf) are denoted by p(-) and probability mass functions (pmf) are denoted by
Pr(+).

2 System model

We consider the uplink of a coded direct-sequence CDMA system with synchronous transmission over frequency-
non-selective channels and Nyquist chip-shaping pulses. The system is frame-oriented, i.e., encoding and decod-
ing is performed frame-by-frame and users are synchronous also at the frame level. In each frame, the complex
baseband equivalent discrete-time signal originated by sampling at the chip rate the output of a chip-matched
filter is given by [1]
Y =SWX+N Data transmission phase
{ Y® = SWX® 4+ N®  Training phase (1)

where: 1) Y € CHN and Y® e C**T are the arrays of received signal samples in the data and training
phases, respectively; 2) N € CH*N and N® e C**7 are the arrays of noise samples in the data and training
phases, with i.i.d. components ~ N(C(O, Np); 3) S € CLE contains the user spreading sequences by columns;

4) W = diag(ws, ..., wy) contans the user complex amplitudes wg; 5) X € CE*N i5 the array of transmitted
code symbols; 6) X® e C**T is the array of transmitted training symbols; 7) N, T, L and K denote the code
block length and the training length (in symbols), the spreading factor (chips per symbol) and the number of
users, respectively.

The total frame length in symbols is equal to N + T'. Since the channel amplitudes remain constant over
the whole frame and the system is synchronous, the position of training symbols in the frame is irrelevant and
arbitrary. The user spreading sequences are normalized such that sg|? = 1. Hence, the signal-to-noise ratio
(SNR) of user k is given by SNRy, = |wy|*/No.

At each frame, each user encodes a sequence of information bits into a code word x* € €, where €, is the
code book of user k, defined over a given complex signal set (e.g., a PSK or QAM constellation). In this paper
we consider non-systematic non-recursive convolutional codes with trellis termination, mapped onto BPSK, so
that zj , € {—1,+1}. Each code word is independently interleaved before transmission.



3 Iterative joint data detection and parameter estimation

Without loss of generality, we assume that the user decoding order at each iteration is k = 1,..., K. Decoding
of user k at iteration m in the soft-SIC receiver is based on the observed signal sequence

(m) _ ST 0" =)
m ~(m i m—
Zk n Z Sk Sj (m) ] n Z sk Sj (m (2)
wk Jj=1 J k+1 wj
—————— N -~
SUMF output  current iteration previous iteration
forn=1,..., N, where {ﬁgm) :j=1,..., K} are estimates of the user amplitudes at iteration m, {:’Egrz) 1j =
1,..., K} are estimates of the user symbols provided by the decoders at iteration m.

Decoding is performed by a SISO decoder, which in the case of convolutional codes can be implemented

efficiently by the forward-backward BCJR algorithm [19]. Let p(z,(;,z) |z, n = a) be the conditional pdf of z,(g";t)
The SISO decoder for user k£ produces a marginal EXT pmf for zy ., given by

EXT/SZLL) @o > ]I p(zm)h?k,z =) (3)

c€SGricn=al#n

where the normalization EXTE::L) (+1) + EXTE:ZL)(—I) =1 is enforced. The corresponding APP is given by
APPY () o p(#4) o = @) EXTY) (@) )

with again the normalization APP(m)(—H) + APP;6 n)(— 1)=1.

Assuming that z,E"ZL) is conditionally (marginally) circularly-symmetric complex Gaussian given xy p, its

conditional pdf can be approximated as

|Z(m) al?
p(zli’,?flzrk,n = a) o exp ( o (5)
Vi

where V,gm) = E[|z,(€"7? — p,n|?] is the residual interference plus noise variance, which is independent of n under

mild uniformity conditions on the user codes [14].

The SISO decoders output also APPs for the information bits, which will be used for final symbol-by-symbol
decisions in the last iteration. For simplicity, we assume that the total number of iterations M is fixed for all
users. In practice, M should be optimized according to the SNR and channel load K/L. Also, some dynamic
stopping criterion might be used in order to minimize the number of iterations. We leave this interesting topic
for future work.

Next, we address the estimation of the residual interference plus noise variance V](cm), the estimation of the
code symbols zy , and the estimation of the user amplitudes wy used in the soft-SIC (equation (2)). We also
address the initialization of the receiver with training-based parameter estimation and some methods to combine
training-based and EM-based estimation.

(m)

Estimation of the residual interference plus noise variance. The variance v, is unknown, and must

be estimated on-line before each SISO decoding step. Let C,E"T? = z,E"TLL) — zf,, denote the residual interference

(m) i given by

B =5 Z| i = (6)

(m)

plus noise term in (2). A simple estimator for v,

Beside its simplicity, in [18] we provide a number of motivations justifying the use (6) to estimate v, . In

particular: 1) if C,gnr? and zy,, are uncorrelated, then A,gm) is an unbiased estimator; 2) if zy, ,, is i.i.d., uniformly



distributed on {—1,+1} (as in our case), ,g";t) isiid. ~ N(C(O, V,gm)), and zy, p, C,gfz) are uncorrelated, then the

error variance of 7™, given b
L 8 Yy

E UV,@ = a,gmﬂ = % (4™ + w™)?) (7)

is surprisingly close to the error variance of the Maximum-Likelihood (ML) estimator with known zy, ,,, is given
by
2

1 (m
E = —(™)? (8)

1 N
VT S
n=1

)

3) if the complex amplitude is estimated reliably, i.e., ﬁ,(ﬁm ~ wy, and if 2y 5, is uncorrelated with z;,, for j # k,

then C,gnfl) and zy,, are practically uncorrelated. Moreover, under mild conditions on the user amplitudes, for
large K the residual interference term CIE"ZL) is asymptotically Gaussian in the large system limit. We conclude

that for large N and K the estimator ﬁ,(cm) performs very close to the ML estimator for known coded symbols.
In the actual receiver implementation, the EXT and APP pmfs (3) and (4) are calculated by using (5) where

V,gm) is replaced by its estimate ﬁ,(gm) given by (6).

Soft estimation of the code symbols. The (non-linear) MMSE estimate of symbol zj, given the obser-
vation Y is given by the conditional mean

x}g’;se = Elzpn|Y] =2Pr(zg,, = +1]Y) — 1 (9)

where Pr(zy, = a|Y) is the a posteriori pmf of symbol zj, ,, given the whole observation Y. We are tempted
to replace Pr(z,, = a|Y) by APPy ,(a) given by the SISO output at iteration m, and claim that this choice
minimizes the residual interference variance and it is therefore optimal. Unfortunately, this reasoning is incorrect
(see [18, 14] for a proof by contradicion).

By using a rigorous derivation based on factor-graphs and on the application of the sum-product algorithm

, it can shown that [14]: 1) even for perfectly know amplitudes and SISO input variances (i.e., 13,(;”) = wy and

ﬁ,(cm)), the residual interference term C,ETZ) is conditionally biased and the bias tends to cancel the useful signal,
ie.,

Elcm — ] = _,m)
[Ck,n |$k,n a’] I’Lk,n a

where ugc";) is a non-negative quantity that may depend on k,n and on the iteration index m; 2) by using EXT-

based instead of APP-based symbol estimates, the resulting residual interference term is conditionally unbiased,
ie., E| ,E”:l) |z ] = 0, and the overall soft-SIC algorithm attains better performance than its APP-based version
for very high channel load. Remarkably, this effect is not visible for small channel load but, as K/L increases,
the difference between APP-based and EXT-based soft-SIC schemes is more and more evident [16].

In passing, we notice also that a biased residual interference implies that z, , and C/E?:L) are correlated (even
for perfect amplitude estimation). Hence, the variance estimator (6) is asymptotically optimal for large N, K
only when the symbol soft estimates are obtained from EXT pmfs.

Driven by the above considerations, we shall use the following soft symbol estimates

& = 2EXT{") (+1) — 1 (10)

k.n

Which can be regarded as a ”local 7 MMSE estimate of zj , assuming that the a posteriori pmf of zj , is
EXT{") (a).

Estimation of the user complex amplitudes. Let w = (wy,...,w;)”, denote the vector of complex

amplitudes to be estimated. The ML estimate of w given the observation Y is given by

wMl = arg maxlogp(Y|w) (11)



where p(Y|w) is the conditional pdf of the observed signal given w, given by

N
p(Y|W) X Z Z €xp <_Ni0 Z |Yn - anX|2> (12)

x1eCy xKeCk

where we have defined the diagonal matrix X = diag(zi n,.-.,%k,,) and where we have used the fact that
the channel input X is independent of the channel amplitudes, so that Pr(X|w) = Pr(X) = uniform on the
Cartesian product of the code books €; x --- x Cx and zero outside. From (12) it is clear that direct ML
estimation of w is infeasible in any practical case, as it has complexity proportional to the total number of user
code words.

Now, assume that the estimate w("™) and the a posteriori probability Pr(X|Y, w("™)) are available at iteration
m. Then, we can produce an updated estimate w(™*1 for next iteration by following the EM approach. In the
language of the EM algorithm [17], Y, X and {Y,X} play the role of incomplete, missing and complete data.
The EM update consists of computing the expected log-likelihood function of the complete data conditionally
on the incomplete data and on the current parameter estimate (E-step), and maximizing the result with respect
to the parameter (M-step) [31]. In our case, the complete data log-likelihood function is given by

1

2
log p(Y, X|w) = FORe{r“fw} - FOWHRW (13)

where we define the vector r = Y~ X,S"y, and the K x K matrix R = Y._, X,$¥SX,,. By using (13) we
obtain the E-step in the form

2 1 _
(m)y — =H _ H
Q(w,w'™) ORe{r w} 0w Rw (14)

where we let ¥ = E[r[Y,w(™] and E[R|Y,%(™)]. These are given by ¥ = > X,$"y, and by

R, = N for i =17
" sHs; Z;V:l TinTj, for i#j

where X,, = diag(T1 n,- .., TKn) and where Ty ,, and Ty ,;¢ denote the first and second moments of the joint
a posteriori pmf Pr(X|Y,w("™)). By noticing that (14) is a quadratic form in w and that R is non-negative
definite, the M-step is readily obtained as

w(mt) = arg max Q(w, w(™) = R™'f (15)

The above procedure has still complexity exponential in K , since the computation of the first and second order
moments of Pr(X|Y,vAv(m)) is equivalent to the marginalization of the joint a posteriori pmf. Then, we shall
apply the above EM step ”locally”, i.e., by replacing Pr(X|Y,w(™) by the product of the marginal APPs
produced by the SISO decoders at the end of iteration m. Namely, we use the approximation Pr(X|Y,w(™)) ~

Hszl Hgil APPX’ZL) (x,n Thanks to the product form, the exponential complexity of the moment computation

is reduced to linear. In fact, the moments of the product pmf are given by

Ftm 2APP{™)(+1) — 1

_ 1 for (k,n) = (4,¢)
TenTjl = {5,97”5;’].7[ otherwise

(16)

Finally, the proposed approximated EM updating step consists of computing (15) where R and ¥ are approxi-
mated by replacing the true moments by their approximations (16).

Initialization and combining with the training phase. The overall iterative soft-SIC algorithm needs
a sufficiently reliable initial estimate W(®) of the complex user amplitudes. For the sake of initialization, a
joint ML estimate of the complex amplitudes is obtained from the training phase. This is readily given by

~

wt) = (R(t))_1 r® where r® and R® have the same expression of r and R, respectively, when replacing
N by T and the sum is exptedned over the (known) training symbols. If the training sequences are mutually



orthogonal, i.e., such that X" (X®)# = TT, we obtain R(Y) = TT and no matrix inverse is needed. It can be
shown that this choice also minimizes the estimation error variance.

The receiver is initialized by letting w(®) = w(®). Then, at iterations m = 1,2, ..., the receiver exploits the
updated estimate w(™) provided by the EM step (15) by combining it in some way with the training-based
estimate. We propose a method for combining the training-based and the EM-based parameter estimates which
is much more effective than simply including the training symbols as completely known symbols into the EM
computation (see [18] for details and comparison).

Assume for simplicity that the training sequences are mutually orthogonal (the optimal case). Then, w(*) =
w + n® with n® ~ Nc(0, ZoT). In particular, the training-based estimator w(*) is unbiased. From the
definition of T and (1) we obtain

N
F= Z X.S"(SX,w+n,) =R'w+7 (17)
n=1

where R’ = ZnN:1 X.SHSX, and n ~ N (0, NoR") with R” = 25:1 X.SHSX,. By using this into (15) we
have w(™) = R™'R'w 4+ R 7, and since R # R’ (unless the code symbols are perfectly known), the result of
EM is biased. For sufficiently large N the following approximations hold

R ~ NI
N N

R' =~ diag (Z T Ty Z iL“K,an,n>
n=1 n=1
N N

R" =~ diag (Z Tl ) |5K,n|2> (18)
n=1 n=1

With these approximations we can express the biased EM estimate of user & amplitude as @,(cm) = apwy, + 1,

N ~ N |~ . N |~
where o = & 3,1 ThnZhn ~ (1 — Qegcm))% > et [Tkmls M, ~ Ne(0, e p?) with 82 = £ 3 |Zk,nl?, and
where e,gm) is the symbol error probability at the SISO decoder output of user k& and iteration m. Our goal is

. . . . =~ (m) — ~ . .
to obtain a combined estimator in the form w, = akw,(cm) + bkw,(:) where the coefficients ay, by are chosen in

order to minimize the error variance subject to the unbiased constraint, i.e., they are the solution of

minimize  Ef|agn), + bkn,(ct)|2]
subject to apay +bp =1

whose solution is readily obtained as apay/(af + (T/N)B3) and by, = (T/N)B3/(ai + (T/N)33). This combining
method provides an approximately unbiased estimate at each iteration. At the first iterations, when e,(gl) r1/2,
only the result of training-based estimation is used. As the soft-SIC cleans-up the signal from interference and
eim) becomes small (converging the single-user performance), then oy, ~ 7 ~ 1 and ay ~ HLN, br =~ T+LN
These limiting values are precisely the maximal-ratio combining coefficient for estimating w from the unbiased
noisy observations w + nY) and w + n.

4 Results and conclusions

For simulation we considered a power controlled CDMA system with K = 32 users, L = 16, N = 2000 and
training length 7' =4 or T' = 32. The SIC is limited to M = 10 iterations. Spreading sequences are randomly
and independently generated with QPSK chips. All users make use of the 4-state rate 1/2 convolutional code
with generators (5,7)s. Figs. 1 show the BER (worst user) of the system with 7 = 32 and Figs. 2 show
analogous results for 7" = 4. Training-only estimation prevents the receiver to achieve the single-user BER,
since interference cannot be canceled completely because of the estimation errors which do not vanish with
iterations. Remarkably, the EM-based method converges to single user performance despite the large channel
load and the small training available.

Even though similar algorithms can be found (with minor variations) in several other works, here we inves-
tigated in the details several new important aspects, namely: a simple and efficient way to estimate the residual
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Figure 1: K =32, L = 16, T = 32. Left: training estimation only. Right: EM-based joint parameter estimation.

interference plus noise variance at the SISO inputs; the issue of soft interference estimation based on EXT pmfs
versus the conventional approach of using APPs; the correct formulation of EM estimation with channel coding,
and the key approximation to bring complexity from exponential down to polynomial in the number of users;
the use of training-based estimation together with EM updating. In particular, we provided a new method for
combining the unbiased channel estimates provided by ML training-based estimation with the biased estimates
provided by EM.

The full investigation of the optimal trade-off between training symbols fraction 7'/N and channel load K/L
is out of the scope of this paper. However, from the simulation results shown here we can get some conclusions
on the overall benefit of the proposed approach.
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