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Abstract—This paper presents bit-interleaved coded modula-
tion metrics for joint estimation and detection in short block
length channels, addressing scenarios with unknown channel
state information and low training dimension density. We show
that it is possible to enhance the performance and sensitivity
through joint detection-estimation compared to standard re-
ceivers, especially when the channel state information is unknown
and the density of the training dimensions is low. The perfor-
mance analysis makes use of a full 5G transmitter and receiver
chains for both Polar and LDPC coded transmissions paired with
QPSK modulation scheme. We consider transmissions where ref-
erence signals are interleaved with data and both are transmitted
over a small number of OFDM symbols so that near-perfect
channel estimation cannot be achieved. This is particularly
adapted to mini-slot transmissions for ultra-reliable, low-latency
communications (URLLC) or for short packet random access
use cases. Performance evaluation spans SIMO and SU-MIMO
configurations, emphasizing the efficacy of BICM detection in
realistic base station receiver scenarios. Our findings demonstrate
that when the detection windows used in the metric units are
on the order of four modulated symbols, the proposed receiver
metrics can be used to achieve detection performance that is
close to that of a coherent receiver with perfect channel state
information.

Index Terms—Bit-Interleaved Coded Modulation, 5G NR Polar
code, SG NR LDPC Code, 5G NR Physical Uplink Channels,
Short Data Transmission, Unknown Channel State Information,
Joint Estimation and Detection.

I. INTRODUCTION

T IS EXPECTED that the 6G air-interface will build upon
Ithe 5G standard and address new paradigms for feedback-
based cyber-physical systems combining communications and
sensing. In particular, there will be a need for tight control
loops using the air-interface to control 6G-enabled objects
with high-reliability, perhaps even requiring lower latencies
than those achieved by current 5G technology, for exam-
ple sub-Ims uplink application-layer latency in microwave
spectrum. Although 5G transmission formats can provide
very short-packet transmission through the use of mini-slots,
the ratio of training information to data is not necessarily
adapted to extremely short data transmission. Moreover, the
transmission formats are designed with conventional quasi-
coherent receivers, which can be quite suboptimal in such
scenarios where accurate channel estimation is impossible
because of sporadic transmission of short packets. One such
instance is because of stringent decoding latency constraints,
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such as those emerging in so-called ultra-reliable-low-latency
communication (URLLC) industrial IoT applications. This
would be similar for evolved channel state information (CSI)
feedback control channels or future combined-sensing and
communication paradigms requiring rapid sensory feedback
to the network. One of the main applications is in the field
of mission-critical communications, such as those used by
emergency services or in industrial control systems that require
extremely high levels of reliability and low latencies.

In this work, we investigate bit-interleaved coded mod-
ulation (BICM) and detection strategies for packets in the
range of 20-100 bits for these envisaged beyond 5G/6G
signaling scenarios. Furthermore, BICM stands as a ubiquitous
coding paradigm in wireless communication channels, serving
as a cornerstone for contemporary high spectral efficiency
systems and low spectral efficiency orthogonal modulation
systems. The significance of BICM becomes especially evident
in scenarios marked by error-prone communication channels,
necessitating a heightened level of reliability. Its efficacy
depends on detection and decoding metrics, requiring a nu-
anced equilibrium between enhanced performance and low
complexity, especially in URLLC scenarios. Noteworthy is the
historical integration of BICM into 3GPP systems, a practice
dating back to the 3G-era.

A. Relevant prior of art

There is a wealth of literature on BICM receivers from
various perspectives [1]-[3] demonstrating their potential im-
pact and importance.Among the pioneers who sparked in-
terest in BICM was the seminal work conducted by Caire
et al. [3], wherein they provided a comprehensive analysis
of BICM in terms of information rate and probability of
error, encompassing both coherent and non-coherent detec-
tion. We are particularly interested in BICM multiple input
multiple output (MIMO) receivers for joint estimation and
detection. This is particularly relevant as BICM MIMO OFDM
emerges as an appealing prospect for future wireless networks,
wherein MIMO enhances spectrum efficiency, OFDM reduces
equalization complexity, and BICM provides reliable coded-
modulations. In the early 21st century, noteworthy advance-
ments were put forth in the design of maximum likelihood
receivers tailored for MIMO systems [4]-[6]. Afterwards,
numerous research inquiries have been directed towards the
design of low-complexity receivers for BICM MIMO, with
a particular focus on low-dimensional and high-dimensional
MIMO systems, but primarily restricted to coherent com-
munication and more recently, particular attention has been
paid to machine-learning-based MIMO receiver designs [7],
[8]. Upon revisiting the core of this investigation, namely
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the transmission of short packets, it becomes apparent that
this area has attracted noteworthy scholarly interest in recent
years. Considerable research efforts have been dedicated to
various facets, including the design of signal codes, enhanced
receiver algorithms [9]-[15], as well as establishing state-of-
the-art converse and achievability bounds for coherent and
non-coherent communications [16]-[21].

B. Contributions

This work stands out from prior literature by introducing
a novel BICM receiver design within the imperfect channel
state information (CSI) scenario, aiming to assess the impact
of various channel conditions. Hence, we present enhanced
receiver metrics for short data in the range of 20-100 bits for
the envisaged beyond 5G/6G signaling scenarios by evaluating
their performance over 5G short block channels, utilizing Polar
and low-density parity-check (LDPC) coded formats. We look
into receiver metrics exploiting joint estimation and detection
(JED) which is amenable to situations where low-density
demodulation reference signals (DMRS) are interleaved with
coded data symbols. We specifically address situations where
accurate channel estimation is impossible, demonstrating that
a well-conceived metric exploiting interleaved DMRS in the
detection metric computation achieves performance compa-
rable to a receiver with perfect channel state information.
Remarkably, this approach demonstrates substantial perfor-
mance gains when compared to conventional 5G orthogonal
frequency division multiplexing (OFDM) receivers, applicable
to both uplink and downlink transmission scenarios. The
proposed scheme performs detection over contiguous groups
of modulated symbols, including those from the DMRS to
provide soft metrics for the bits in each set, to the channel
decoder. Explicitly, our main proposal consists in the non-
coherent metric design/use in which channel estimation based
on averaging/smoothing over the number of dimensions ex-
hibiting channel coherence, constitutes a part of the metric for
generating the log likelihood ratio (LLR) outputs.

Our contributions span the following principal avenues.
Initially, we introduce BICM metrics tailored for non-coherent
fading channels in a single-input multiple-output (SIMO)
transmission. These metrics effectively address challenges
arising from both line-of-sight (LOS) and non-line-of-sight
(NLOS) fading channels. Subsequently, we broadened the
scope of BICM metrics application within a (Ng x Nt) single-
user (SU)-MIMO system, specifically considering scenarios
involving block fading channels. In the third phase, we pro-
posed BICM metrics designed for a (Ng x 2) SU-MIMO
configuration, specifically tailored for LOS channels. Collec-
tively, these contributions propel the state-of-the-art, pushing
the boundaries in receiver algorithm designs for beyond 5G/6G
short data communication systems.

C. Paper Outline

The article is structured as follows. Section II lays out the
system model and the foundations of 5G polar and LDPC
coded modulations, Section III focuses on the proposed BICM
receiver metrics, Section IV presents the numerical results
and performance analysis, and finally Section V concludes the

paper.

Notation : Scalars are denoted by italic letters, vectors
and matrices are denoted by bold-face lower-case and upper-
case letters, respectively. For a complex-valued vector x, ||x]]
denotes its Euclidean norm, | - | denotes the absolute value.
|l - |le is the Frobenius norm of matrix. tr{-} denotes the
trace of matrix. E{-} denotes the statistical expectation. Re(-)
denotes the real part of a complex number. Iy(-) is the zero-
th order modified Bessel function of the first kind. I is an
identity matrix with appropriate dimensions. Galois field is
denoted by Fy. x € xj = {x:e; =b} is the subset of
symbols {x} for which the j — th bit of the label e is equal to
b = {0, 1}. The number of bits required to a symbol is denoted
by m = log, (M). The cardinality of y is given by M 2 |y|.
A (+) denotes log likelihood ratio, with j = 1,2,...,m. The
superscripts T and T denote the transpose and the complex
conjugate transpose or Hermitian.

II. GENERAL FRAMEWORK
A. Bit-Interleaved Polar-coded Modulation (BIPCM)

Bit interleaved polar coded modulation is referred to as
BIPCM. In this instance, we are dealing with the cyclic re-
dundancy check (CRC)-aided polar coding scheme, one of the
basic code construction techniques established by the 3GPP
Standard [22]. Using polar codes as a channel coding scheme
for 5G control channels has demonstrated the significance of
Arikan’s invention [23], and its applicability in commercial
systems has been proven. This new coding family achieves
capacity rather than merely approaching it as it is based on
the idea of channel polarization. Polar codes can be used
for any code rate and for any code length shorter than the
maximum code length due to their adaptability. They are
the first kind of forward error correction codes that achieve
symmetric capacity for any binary-input discrete memoryless
channel under low-complexity encoding and low-complexity
successive cancellation (SC) decoding with quasi-linear order
for infinite length codes. In 5G new radio, the polar codes
are employed to encode broadcast channel (BCH) as well
as downlink control information (DCI) and uplink control
information (UCI). Furthermore, the transmission process is
straightforward and complies with the 3GPP standard specifi-
cations [22].

Assume that the input message (UL/DL Control Informa-
tion) before CRC attachment is a(0), a(1),...,a(A—1), where
A is input sequence, parity bits are p(0), p(1),...,p(L—1), L
is the number of parity bits. For the downlink, a CRC of length
L = 24 bits is used, and for the uplink, depending on the quan-
tity of A, CRCs of length L = 6 and L = 11 bits are used. The
message bits after attaching CRC are b(0),b(1),...,b(B—1),
where B is the size of control information with CRC bits:
B = A + L. The input bit sequence to the code block
segmentation is denoted a(0),a(1),...,a(A — 1), where the
value of A is no larger than 1706. Assume that the maximum
code block size is A’ and C the number of existing code
blocks, the sequence ¢,.(0),¢.(1),...,¢-(A"/C — 1) is used
to calculate the CRC parity bits p,-(0),p-(1),...,p(L — 1).
The sequence of bits resulting after attaching a CRC to the
r —th code block is denoted by ¢, (0), ¢, (1),...,¢- (K —1),



where K. is the number of bits in the » — th code block to be
fed to the channel encoder. Then, the coded bit are denoted by
d-(0),d.(1),...,d.(N, — 1) where N, = 2". Denote by E,
the rate matching output sequence length of the r — th coded-
block: if E, < (9/8) - 2(Mog2 Er1=1) and K, /E, < 9/16,
ny = [logy B — 1, else ny = [log, E,.].

And then, Rpyin = 1/8; ny = [logy (K/Rmin)]; n =
max {min {n1, N2, Mmax } > Wmin } ) Where Npin and Mmax
provide a lower and an upper bound on the code length,
respectively. In particular, and n,;, = 5 and ny . = 9 for the
downlink control channel, whereas n,,x = 10 for the uplink
control channel. The polar encoding process is based on a
well-defined procedure outlined in [22]:

1) The sequence ¢, (0),¢,-(1),...,c.(K, —1) is interleaved
into bit sequence ¢,.(0), c,.(1),...,c (K, — 1) via a defi-
nite interleaving pattern [22].

2) The interleaved vector ¢’ is assigned to the information
set along with the polar codes PC bits, while the re-
maining bits in the N,-bit vector u are frozen. Hence,
u, = u-(0),u-(1),...,u-(N,—1) is generated according
to the clause 5.3.1.2 [22].

3) Denote Gy, = (G2)®" as the n — th Kronecker power

1 0
11 ], the output after

,dr (N, — 1), such that

of matrix G, , where Go =

encoding d, = d,(0),d.(1),...

d, =u, Gy, €Fs.
Subsequently, a rate matching process is performed per coded
block, involving sub-block interleaving, bit collection, and
bit interleaving. The output bit sequence after rate matching
consists of sequences e, j, where r = 0,...,C — 1 and
k=0,...,E.—1, with E, being the number of rate-matched
bits for the r-th code block. Different techniques such as
perforation, shortening, or repetition (£, > N,) may be
applied during rate matching to convert a vector of N, bits
into a vector of FE, bits. Following rate matching, code
block concatenation is performed to convert all code block
messages into a sequence of transport block messages. The
output bit sequence after code block concatenation is denoted
as g(0),g(1),...,9(FE — 1). Regarding the decoding process,
several main polar code decoding algorithms are currently
used, including the SC algorithm [23], the successive
cancellation list (SCL) algorithm [24], [25], the CRC-aided
SCL (CA-SCL) algorithm [26], [27], the belief propagation
(BP) algorithm [28], and the successive cancellation with
adaptive node (SCAN) algorithm [29]. The SCL algorithm
improves upon the SC algorithm by providing multiple paths
and outperforms it in terms of performance. The CA-SCL
algorithm incorporates a high-rate CRC code to assist in
selecting the correct codeword from the final list of paths in
the SCL decoder, effectively enhancing its reliability. It has
been observed that the right codeword is usually included in
the list every time the SCL decoder fails.
The performance ranking of the decoding algorithms
is as follows: CA-SCL> state-of-the-art
SCL>BP=SCAN>SC. Therefore, for improved performance,
the channel decoder technique should utilize CA-SCL
decoding for downlink (DCI or BCH) or uplink (UCI)
messages. The adoption of polar codes by 3GPP was partly

due to the well-acknowledged potential of CA-SCL decoding
to outperform Turbo or LDPC codes.

Figure 1 presents an overview of the BIPCM/BILCM process
short block uplink channels. The transmit-end procedure
includes several steps such as adding a transport block CRC,
segmenting code blocks with additional CRC attachment,
channel encoding, rate matching, code block concatenation,
and modulation. It is important to emphasize that the receiving
chain simply follows the reverse flow of the transmitting
chain.

B. Bit-Interleaved LDPC-coded Modulation (BILCM)

Bit-Interleaved LDPC-Coded Modulation is referred to as
BILCM. First proposed by Gallager in the early 1960s [30],
LDPC coding has proven to be highly suitable for 5G NR due
to its advantages such as high throughput, low latency, efficient
decoding complexity, and rate compatibility. The performance
of LDPC codes in 5G NR is impressive, exhibiting an error
floor at or below the 107° block error rate (BLER), a
significant improvement over traditional coding techniques.
The construction of an NR LDPC code involves a base graph
matrix (BG) of dimension M x N, denoted as Hgg. The
choice of Hgg matrices in the 5G NR coding process depends
on the coding rate and the length of the transport block
or code block. Two base graphs are commonly used: BG;
with dimensions N = 68 and M = 46, optimized for large
information block sizes (K < 8448) and high coding rates
(1/3 < R < 8/9), and BGy with dimensions N = 52
and M = 42, optimized for small information block sizes
(K < 3840) and lower coding rates (1/5 < R < 2/3).
These LDPC codes are particularly well-suited for scenarios
requiring high reliability, as they offer additional coding gain
at low code rates. The maximum number of information bits
for BGy is K = 22Z., and for BGy it is K = 10Z,,
where Z, represents the lifting size. Each base graph has 51
different lifting sizes, ranging from 2 to 384. The parity check
matrix H is derived from Hpgg by replacing each element
with a cyclic permutation identity matrix, denoted as I(p;;).
In this process, each element of Hpg is substituted with the
corresponding cyclic permutation matrix (CPM), along pj;
times. The resulting matrix H has a size of m x n, with
m=MxZ.,n=NxZ,andk=n—m=(N—-M)xZ,..
Both BG; and BG share similar structures.

Due to the specific structure and features of these base
graphs, various effective LDPC encoding techniques have been
proposed in the literature. Recently, a novel and efficient
encoding technique was proposed in [31], which offers high
throughput and low complexity, making it an attractive option
for LDPC coding architecture. Furthermore, the BILCM trans-
mission procedure is almost identical to that described with
BIPCM, starting by attaching a CRC to the transport block.

Let the transport message before CRC attachment be de-
noted as a(0),a(1),...,a(A — 1), where A is the size of the
transport block message. The parity bits are represented as
p(0),p(1),...,p(L—1), where L is the number of parity bits,
representing the CRC length. If A > 3824, L is set to 24,
otherwise, it is set to 16. The message bits after attaching
CRC are denoted as b(0),b(1),...,b(B — 1), where B is the
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Fig. 1. Bit-Interleaved Polar/LDPC coded Modulation (BIPCM/BILCM) : Transmitter end.

size of the transport block information with CRC bits, and
B = A+ L. The LDPC base graph is selected based on the
size of the transport block message A and the transport block
coding rate R. If A <292, or if A <3824 and R < 0.67, or
if R < 0.25, LDPC BGs is used. Otherwise, LDPC BG;
is used. The output of code block segmentation and CRC
attachment is denoted as ¢, (0),c.(1),..., ¢ (K, — 1), where
K, = K/ + L, and K| represents the number of bits in
the r-th code block, and L is the number of attached CRC
bits on the r-th code block. Each code block message is
encoded independently. In 3GPP NR, the input bit sequence
is represented as c, = [c(0),c(1),...,c¢(K, — 1)]T, where
K, is the number of information bits in a code block, and
the redundant bits are called parity bits, denoted by w =
[w(0),w(1),...,w(N, +2Z, — K, —1)]T. The LDPC coded
bits are denoted by d,.(0),d,.(1),...,d. (N, — 1).

A code block is encoded by the LDPC encoder based on
the following procedure [22]:

1) Find the set with index iLLS which contains Z. in [22].

2) Set dr,k—2Zc =c,,Vk=2Z.,...,K, — 1

3) Generate N, + 27, — K, parity bits w

[w(0),w(1),...,w(N, + 2Z. — K, — 1)]% such
that H x [c, w]' =0

4) The encoding is performed in F.

5) Set dr’k72ZC = wk,KT,Vk =K,....N.+27.—1
The subsequent steps involve rate matching and code block
concatenation. At the receiver, the LDPC decoding is per-
formed on each code block individually. For LDPC decoding,
various techniques can be implemented, with belief propa-
gation (BP) methods being the most commonly used. BP
methods rely on iterative message exchange between bit nodes
and check nodes, offering near-optimal decoding performance
at the cost of computational complexity. However, to strike
a better balance between performance and complexity, sev-
eral simplified and effective decoding algorithms have been
proposed in the scientific literature. One such decoding algo-
rithm is layered message passing [32], which stands out as a
promising approach for URLLC due to its ability to speed up
convergence times [33], [34], making it a suitable candidate
for short packet transmissions.

C. Modulation and Resource Mapping

In both scenarios, the encoded payload undergoes rate-
matching and code block concatenation prior to being fed into
a QPSK modulator. This process yields a set of complex-

valued modulation symbols. Subsequently, the resource al-
location process is executed, where one or multiple OFDM
symbols are used to allocate the modulated symbols to re-
source blocks and insert the DMRS resources. The number of
resource blocks is determined by the payload size and coding
settings. When the payload size is small, fewer resource blocks
are required, thereby maintaining a constant effective coding
rate. As illustrated in Figure 2, the resource mapping process
in use is in the same spirit as the 3GPP physical uplink control
channel (PUCCH) format 2 transmission [35].
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Fig. 2. General resource mapping: 1 OFDM symbol.

Furthermore, the transmitted signal x typically consists of
data-dependent x@ and data-independent x(P) components,
known as pilot or reference signals. The reference signals
are used to resolve channel ambiguity in time, frequency and
space. Specifically, they are employed to estimate the channel.
In practice, the reference signals are commonly interleaved
among the data-dependent components. It is notably the case
in current OFDM systems. In earlier CDMA systems, refer-
ence signals were sometimes superimposed on top of data-
dependent signals. The number of data dimensions is denoted
by Ny, and the number of reference signal dimensions is
denoted by N,, where Ny + N, = N. In 3GPP standard,
N is typically equal to 12/CL. This represents the number of
complex dimensions or resource elements(REs) in the physical
resource blocks (PRBs). The number of PRBs, K ranges from
1 to 16, while the number of OFDM symbols, £, ranges from
1 to 14, and can be increased if multiple slots are used for
signaling the channel bits. The assumption in this work is
that the data-dependent components of x are generated from
a binary code whose output is interleaved and mapped to
an M-ary modulation symbol alphabet. We will assume that
the binary code generates F bits and the interleaver mapping
is one-to-one, so that E bits are also fed to the modulator.



The binary-code and interleaver combination can thus be seen
as a (F, B) binary block code. Denote the E coded bits
as ey, k = 0,1,--- , E — 1. Adjacent log, M bit-tuples are
used to select the modulated symbols in the symbol alphabet.
Typically, we will assume that a Gray mapping is used in the
case of non-binary modulation.

D. Pilot allocation procedure within the spatial dimension

The resources mapping procedure within spatially mul-
tiplexed MIMO systems. The resource mapping procedure
in spatially multiplexed MIMO systems needs to consider
the way in which pilot symbols are allocated in the spatial
dimension, in addition to the time and/or frequency dimen-
sions. Precisely, the transmission of training symbols must
be executed in a manner that prevents interference, ensuring
the accurate estimation of channel state information. This
consideration involves the exploration of pilot allocation as-
pects that leverage frequency orthogonality, time orthogonality,
and signal orthogonality.The most straightforward method for
interleaving pilot symbols and data is arguably through time
and/or frequency insertion, although other approaches such as
superposition or code-division multiplexing are also possible
[36]. In the instance of block fading, at least N1 pilot symbols
must be inserted in each coherence block, one per antenna,
with N, > Nt pilot symbols per coherence block [37].
Widely adopted in today’s emerging communication standards,
frequency orthogonality seems to have more merit and is
particularly well suited to OFDM-type systems.

ITII. BICM RECEIVER DESIGN
A. A (Ng x 1) SIMO within Non-Coherent Fading Channel

Considering a SIMO OFDM BICM system with a sin-
gle antenna element on the transmit array (Nt = 1) and
multiple element receive arrays (Ng). The transmitted and
received signals are N-dimensional column vectors, and thus
a system is designed in such a way that the relationship
between the transmitted and received signals is as follows:
yi =h;x+1z;, ¢=0,1,--- ,Ngr — 1, where z; is additive
white Gaussian noise whose real and imaginary components
are independent and have variance and h; represents the
channel vector.

1) Perfect Channel State Information
In the instance of perfect channel state information, the
likelihood function is shown to be:

a (%, {yi:hi}) = p({ys, hi} [ x) = p ({yi} | %, hi) p ({hs} | x)

(D
If the transmitted signal x is independent of the channel
realization {h;}, the term p ({h;} | x) in (1) can be dropped
since it will disappear in (2). The likelihood function is
commonly equivalent to :

1
0 (x, {2, B }) ox exp (—Nom - hixn?) —

Using the norm extension property, ignoring terms that are in-
dependent of x, the likelihood function then simply becomes:

2 1
. h; = hixt) — —||hx||? ).
q(Xv{Yza 1})0( eXp (NO Re (yl ZX) NOH ZXH )(3)

The likelihood of coded bit e; € {0,1} is

ale;(x) =b{yih}) = Y alx{ysh}). @

XGX%

As is common in the case of BICM-based systems, the soft
input to the binary channel decoder is given as the log-
likelihood ratio (LLR) for the 5 — th coded bit, such that :

(ej(x) =0,{yi, hi})

j q
A () = log S
q(ej(x) =1,{yi, hi})
We simplify (5) wusing a max-log approximation:
log {>°, exp (Ai)} ~ max; {\;}, resulting in (6)
1 Ngr—1 1_
A = max — 2Re< Z—h-xT> — ||h;x|[?
(v) xeXgN()(; yih; [[hix]|
7 (6)
1 Ng—1 T ,'_ )
— max — 2Re (yihix ) — |[h;x]|]? | .
x € x3 NO ;

We consider the ideal receiver, referred to as Perfect CSI,
as a benchmark for comparison with the subsequent receiver
architectures. This above metric is typically employ in con-
ventional quasi-coherent receivers based on a separate least-
squares channel estimation method by substituting h, with
the corresponding estimated channel h. Moreover, within the
framework of a conventional receiver, it is presupposed that,
at the very least, the observation of a single reference signal
spans the entirety of a physical resource block (PRB) to gen-
erate the coded bits corresponding to each data symbol within
that PRB. Consequently, a block is construed as comprising a
singular data symbol assisted at least by one reference symbol
dimension. We will note this case throughout this manuscript
as No CSI (Ng = 1).
2) Unknown Channel State information

We describe BICM metrics for a general non-coherent fad-
ing channel with unknown phase on the line-of-sight (LOS)
components and fully unknown diffuse (Non-LOS) compo-
nents. The overall unknown channel gain is given by h; =

(\/aejei +v1- ozhl(f)> I, where 6; is assumed to be i.i.d.

uniform random variables on [0, 27), hgf ) is a zero-mean,
unit-variance, circularly-symmetric complex Gaussian random
variable and « is the relative strength of the LOS component.
The amplitude |h;| on each receiver is thus Ricean distributed.
It is worth noting that the i.i.d. assumption for the 6; is
somewhat unrealistic for a modern array receiver with accurate
calibration. The phase differences would be more appropri-
ately characterized by two random-phases, one originating
from the time-delay between transmitter and receiver and the
other from the angle of arrival of the incoming wave. The
phase differences of individual antenna elements for a given
carrier frequency could then be determined from the angle
of arrival and the particular geometry of the array. To avoid
assuming a particular array geometry, the i.i.d. uniform model
provides a simpler and universal means to derive a receiver
metric.



Nr—1 2
N (y) = max, (Z _O‘lix” T e ity + QLﬁ \Xfyi,) — ¥ Nrlog (L)
*E X0\ i=0 * * x € x})
_ 3)
Ngr—1 2
x| . 2/a
7xnéa§{ <; - L + B ‘XTy,| + Tx |xTy7;| + ezj Ng log (Ly) -
= x € xi

Proposition 1. After neglecting multiplicative terms indepen-
dent of the transmitted message, the likelihood function can
be expressed as follows:

pe| o ||
aty) =[] T exp ( T
i=0 X x
2
b xiyif”) < 1o (52 v ).
2(1—a)

— _ 2 —
where Ly = No +2(1 — o) [X[I, S = o iamaymm
and Io(-) is the zero-order modified Bessel function

(7

Proof. see appendix section A.
Then we succinctly use (4-5) to generate the LLR of the j-th
coded bit.

Note that in the above expressions, we do not limit the di-
mensionality of the observations when computing likelihoods
of particular bits. In the original work of Caire et al. [3],
the authors assume an ideal interleaving model which allows
limiting the observation interval of a particular coded bit to
the symbol in which it is conveyed. For long blocks, this as-
sumption is realistic for arbitrary modulation signal sets and is
sufficient for BPSK and QPSK irrespective of the block length
when the channel is known perfectly. Nevertheless, practical
systems usually apply single symbol likelihood functions for
short blocks and high-order modulations. Furthermore, for the
primary case of interest here, namely transmission without
channel state information, single symbol detection is impossi-
ble. At the very least, the observation of one reference symbol
must be used to generate likelihoods of the coded bits of a data
symbol, thus warranting the study of block detection.

Corollary 1. The LLR binary metric calculations based on (7)
in the logarithmic domain can be computationally complex to
implement. To simplify the calculations, the max-log approxi-
mation is commonly used. First, an exponential approximation
is applied to the modified Bessel function of the @rst kind

Io(z), which results in the approximation Ip(z) ~ =~ e

Using this approximation, the log-likelihood ratio (LLR) for
coded bit j is given in (8).

Remark 1. Furthermore, in equation (8), many terms can be
omitted when the magnitude of vector x remains constant, as
is the scenario in BPSK or QPSK modulation, for example.
Additionally, in the presence of strong line-of-sight (LOS)
channels, the quadratic terms in equation (8) can also be
disregarded. Conversely, the computational complexity of the
LLR metric in a BICM SIMO system is typically on the order
of O(Nr x N4 X logy M). This complexity exhibits linearity
with respect to the number of received data symbols (INy), the

number of receiving (Ng) antennas , as well as the size of the
modulation alphabet (M). Consequently, an increase in the
number of symbols or receiving antennas results in a linear
escalation of computational complexity.

3) Joint Estimation and Detection

For the case of polar or LDPC-coded data, there is a com-
pelling motivation to divide the coded streams into smaller
blocks for detection due to complexity reasons. Furthermore,
assuming an ideal interleaving scenario with known channels
[3], detection can be performed on individual modulated
symbols. However, in the presence of joint detection and
estimation, where interleaved DMRS and data symbols are
considered, we need to deal with short blocks that encompass
both data and DMRS symbols. To achieve this, the N-
dimensional vectors y and x are subdivided into smaller, more
manageable segments of blocks. Subsequently, the detection
metric is applied to each of these underlying segments.

Proposition 2. Observing the structure of the metrics and the
absence of overlap between the data and DMRS symbols, we
can easily see that the estimated channel impulse response
(CIR) is part of the metric. By writing x = x(P) + x4 where
d and p are subscripts representing data, DMRS components,
respectively, we can reveal h"S in the metrics:

Ixty,| = X(p)*yl(p) +X(dﬁygw — | N he 1 X(d)Tygd) .
——

channel estimate

(€))

Mathematically, we can deduce the following relationship:

xPTy® = (xPTx®)) i = x5 = Nyphtt where
N, number of pilots and p is the reference signal power and
is typically normalized to unity.

The channel impulse response ﬁ;s is obtained via a joint
least-squares (LS) channel estimation using averaging or
smoothing over the number of dimensions exhibiting channel
coherence, as illustrated in Figure 3. In the process of short-
block detection, we can make use of such a channel estimate
like that. In general, the channel estimation procedure will
work as usual and the resulting estimates are fed into the

metrics considered here.

Corollary 2. Considering an iterative JED for more reliable
output LLRs, the estimation-detection process based on the
proposition 2 can be extended to include iterative steps to
enhance transmission quality.

In general, the choice of where to apply the iterative
process depends on the specific system requirements, com-
plexity, available resources, transmission channel conditions,
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Fig. 3. Conceptual illustration of JED principle with detection windows of
order Ng = 4.

and performance goals. Each step has different implications
in terms of complexity and efficiency. Moreover, the number
of iterations possible in a communication system typically de-
pends on specific design requirements and system constraints.
In the case of sporadic transmission of short packets, strict
latency constraints limit the number of iterations. Therefore,
the number of iterations to be implemented must be finely
adjusted to strike a balance between complexity, performance,
and efficiency, aiming to achieve the desired transmission
quality goals. Additionally, a minimal number of iterations can
be used for basic adjustments, while more complex scenarios
may implement multiple iterative processes for progressive
optimization.

B. A (NgxNt) MIMO Within Rayleigh Block Fading Channel

Consider a SU-MIMO transmission model featuring multi-
ple antenna elements in both transmitter and receiver arrays.
The system dimensions are defined by parameter Ng x N,
N+ and Ng represent the number of transmitting and receiving
antennas, respectively. We assume no inter-symbol interference
(ISI) and consider a time-invariant configuration, making it
feasible to use the standard baseband complex-valued repre-
sentation. Let h; ; represent the complex-valued path gain,
serving as the fading coefficient from transmit antenna j to
receive antenna ¢. At any given time instance, the complex-
valued signals {x1,X2,...,Xn,} are transmitted through the
Nt respective antennas. The received signal y belongs to
the complex vector space C'*NT while the received signal
y belongs to the complex vector space C'*N&. The additive
white Gaussian noise z belongs to the complex vector space
C™*Nr with independent real and imaginary components, each
having a variance of o2 in every dimension, and the channel
matrix is denoted by H € CN®*N7_ The MIMO channel model
is succinctly expressed as

y =xH + z. (10)

However, the system model described in (10), which represents
transmission within a single symbol interval, can be extended
to accommodate the transmission of several consecutive vec-
tors {xXi1,X2,...,Xn} over the channel. Here, N denotes

the total number of symbol intervals utilized for transmis-
sion. For the sake of clarity, we employ a matrix frame-
work. As a result, we organize the transmitted, received, and
noise vectors into matrices, X = [x1,X2, ... 7xN]T, Y =
[Y1,¥2,--- 7yN]T7 Z = [z1,22,.. .,zN]T, respectively.

The elements within H represent the complex-valued chan-
nel gains between each transmit and receive antenna. We adopt
a wide assumption regarding H, which is that its elements,
h; ;, are statistically independent for the sake of simplicity.
In practice, the complex path gains h;; exhibit correlations
influenced by factors such as the propagation environment, an-
tenna element polarization, and their spacing. Accordingly, the
entries of H can be treated as independent zero-mean complex
Gaussian random variables with unit variance. This channel
model is often referred to as the identically and independently
distributed (IID) Rayleigh fading MIMO channel model, or
more precisely, the Rayleigh block-fading.

1) Perfect Channel State Information
The channel matrix H is assumed to be perfectly known by
the receiver. The likelihood function or conditional probability
density is approximately given by:

a (X, {Y, H}) o exp (—5 tr { (Y = XH) (Y - XH)'}).
(1
Using the norm extension property ||[Y — XH||? = ||Y]||? +
|XH]|7 —2Re (tr {YXTH}) and neglecting terms that are
independent of X, it comes,

q(X,{Y,H)) x exp (N% Re (tr {YH!X'}) — L |HX|§2.

12)
The LLR bit metric for the 57 — th bit in BICM receiver is
q(e;(X) =1,{Y,H})
and the corresponding max-log approximation of (13) is shown
to be

A (Y) =log (13)

N (Y) = max Ni (2 Re (tr { YH'X) — ||XH|\§)
Xexd Vo
1
_ — Tytl) 2
Jnax, (2Re (6 {YH'X'}) - [XH]).
(14)

Remark 2. We consider the ideal receiver, denoted as Perfect
CSI to be a benchmark for comparison with the subsequent
receiver architectures. These subsequent architectures typically
employ a separate least-squares channel estimation method by
substituting the actual channel matrix, denoted as H, with
an estimated channel matrix H. The separate least-squares
channel estimation aims to independently estimate the channel
characteristics for each antenna, disregarding inter-antenna
correlation considerations.

2) Rayleigh Block Fading Channel With No CSI
As described earlier, it is assumed that the elements of the
channel matrix H are zero- mean complex-valued Gaussian
random variables with unit variance, i.e., H ~ CAN/(0,I).
The complex-valued fading coefficient h;; represents the
channel gain between the j-th transmit antenna and the -
th receive antenna. These fading coefficients are assumed to



be constant over the N symbol periods and are independent.
Therefore, the magnitudes of the channel gains h; ; have a
Rayleigh distribution and their probability density function can
be expressed as p (h; ;) = < exp (—|h; ;|?).

Both the fading coefficients and the noise follow complex
Gaussian distributions. Thus, conditioned on the transmitted
signal, the received signals are jointly complex Gaussian.
The received signal is zero mean E{Y|X} = 0, circularly
symmetric complex Gaussian with a N x [NV covariance matrix
®v, concretely.

Definition 1. [Complex-valued Gaussian distribution]
Let € CNT, then the probability density function f(v) of
x is given by:
falv) = —teexp [~ (v ) By (0 )]
mdet (D) *

15)
Based on the above definition, the likelihood function or
conditional probability density is simply given by :
exp (—tr {Y®,'Y1})
TN xNe detN® (By)

We will proceed by following the steps below to derive the
detection metric. Consequently, to ascertain the formulation
for the covariance matrix, ®y, we shall invoke the subsequent
theorem.

q(X7Y) =

(16)

Theorem 1. [38, Sec. 2, Th. 2].

Let A be an arbitrary M by N complex matrix, and let R =
AW, where W ~ CN(0,1I,/), meaning that W1, ..., Wy,
are independent and identically distributed with independent
real and imaginary parts. In that case, ® = E{AWWTAT} =
AAT. Therefore, R ~ C/\/’(O,AAT).

Stated directly, the covariance matrix can be expressed as
follows:
&y 2 E{YY'},
L E{(XH+Z) (XH+Z)'},
£ E{XHH'X'} + E{ZZ'},
2 XX+ 20T 2 XX+ NI .

a7

This expression for the covariance matrix is commonly en-
countered in the literature [5], [6].

Definition 2. Let’s now introduce some relevant mathematical
properties, which we shall consider in the metric derivation
steps.

1) det (I+ AB) = det (I + BA) [39],

2) det (I4+ pA) = 1+tr{pA},

3) (AB)' = BfAT, (Af) = A,

4) tr{AB} =tr{BA}, tr{A+B}=tr{A}+tr{B},
5) tr {A~TBB'} = tr {BtA~!B}.

Next, the determinant of ®vy is shown to be:
det ®y = det (NoI + XXT). (18)

Furthermore, the covariance matrix ® involves the addition of
two matrices, which is amenable to consider the use of matrix

inversion lemmas, Sherman-Morrison-Woodbury formula, or
simply the Woodbury Matrix identity.

Lemma 2. [40, The Woodbury Matrix identity].

(A+UCV) ' =A"'—A"'U(C'+VA'U) ' VA,

(19)
where A, U, C, and V are matrices with comfortable dimen-
sions: A is a n x n matrix, C is a k x k matrix, Uisan x k
matrix, and V is a k X n matrix.

The expression for the inverse of the covariance matrix is
as follows: &' = (NoI+ XXT)fl.
Saying A = NI,

C=I U=X, V=X then,

& '=(A+UCV) ",
— Ny 'T— Ny'X [NoI 4+ XTX] 7' XT,

=Ng'I—-N;'XDX, where D= [NoI+XX]™".
(20)

Proposition 3. The proposed likelihood function ¢ (X,Y) can
be stated as follows:

p(Y[X) = Lixexp (-t {YT®,'Y})

= L—lxexp (—tr {YT (1\}01 — 1\}0XDXT) Y} ,
(2D
where Ly = 7V *Nr det"® (NoI + XXT).
Ignoring the multiplicative terms independent of X, (21)
reduces to:

1 1 +
X, Y)~ — —t{XTY DXTY} L @2
axy)~ poew (o (V) DEY}). @
Corollary 3. As described in the proposition 2, we can
incorporate the channel estimate into the metric to take the
full merit of the JED principle.

For this purpose, we simply rewrite X = X 4 X () Then,
we can reveal Hpg in the metrics:

Xty = X®'y® 4 x@'y©® = ¢ H s + XOTy@ |
channel estimate

(23)
-~ p) T~ (p .
where C, = xX®Tx®) given that Hyg = % This

channel estimate is obtained via a joint least-squares (LS)
channel estimation using averaging or smoothing over the
number of dimensions exhibiting channel coherence.

The joint least squares method enables the consideration
of spatial correlation between the receiving and transmitting
antennas, resulting in a more accurate estimation of the
channel.

Consistent with this proposition, the introduced likelihood
function for advanced joint estimation and detection can be
subsequently formulated as follows.



| 1 _ t
A (Y) = max ( tr { (CPHLS + X<d>TY<d>>

X € x} 0

1 ~ T
_ max < tr { (CPHLS —+ X(d)TY(d)> D

X € xj 0

D (CpﬁLS + X<d>TY<d>) }> — 3 log(Lx)

X € x}

(CpﬁLs + X(d)TY(d)> }) + Z log (Lx) .

Xex{

27

1 1 ~ T
q(X,Y) = Tx exp (No tr { (CpHLS + X(d)TY(d))

D (CpﬁLs n X(d)TY(d)> }) .
(24)
Then, the likelihood of the coded bit ¢; s.t b € {0, 1} is given
by
ale;(X)=bY)= > qa(X.Y).
X € x{;
The LLR bit metric for the j — th bit in BICM receiver is
a(e;(X) =0,Y)
q(e;(X) =1,Y)

(25)

A (Y) =log (26)

To ease the process of implementing such a LLR bit metric
in (25), one may use its max-log approximation version given
in (27).

Furthermore, the computational complexity of the LLR
metric in a BICM MIMO system is typically on the order
of O (Nt x Nr X Ng x logy M). This complexity exhibits
linearity with respect to the length of received data symbols
(Ng), the number of transmitting (Nt), and receiving (Ng)
antennas, as well as the size of the modulation alphabet (M).
Considering Nt = 1, we revert to the SIMO scenario, which
is similar to the proposed metric in (7) for the general non-
coherent fading channel by setting the relative magnitude of
the LOS component o« = 0, which brings the metric back to
the pure Rayleigh fading case.

C. A (Ng x 2) MIMO within Line-Of-Sight Channel

For the sake of simplicity, let’s consider a (Ng x 2) MIMO
configuration due to the complexity of deriving MIMO met-
rics within spatial dimensions Nt > 2 under LOS channel
conditions with unknown phases.

Assuming a LOS channel scenario with coherence blocks
covering N symbols and no antenna correlation with the chan-
nel matrix H, the relationship between receiver and transmitter
is considered to be as follows:

yi=hjix1 +hioxo +2;, i=1,2...,Ng. (28)
where y; ~ CV*?, {x;, x5} ~ CN*! and H ~ CN&*2,
Explicitly, the receiver signal is modelled as
Vi :ew“xl +ej9i’2X2+Zi7 i=1,2,...,Ngr. 29)

Applying the same approach as in the preceding sections, we
establish in what follows the conditional probability density
function in order to determine the BICM metric corresponding
to this typical MIMO LOS scenario. It should be recalled that

;.1 and 0, » are unknown to the receiver and are assumed to
be i.i.d. uniform random variables on [0, 27). Thus, neglecting
multiplicative terms independent of the transmitted message,
the likelihood function is shown to be:

1 0.
q({x1, %2}, yi) o / / exp (N}H, — eIy,
(91‘,1 0i,2 N 0
_6.791',2)(2”2) df; 2 db; ;.
(30)

By expanding the ¢2?-norms term constituting the ex-

pression of the conditional density probability, saying
. + . +
x1x§ = xpc;'ej‘xlxé, xlyi = ‘XJ{yi‘eﬂxlyt xlyi =

‘x;yi’ el éxiy'i, and subsequently disregarding the independent

terms of x; and x», this lends to :
17 2 feall® + e 2fcaxcs | cos (B = 010 + Z3ax

— 2|xJ{y¢\ cos (91-’1 — inyi) — 2|x§yi| cos (91-,2 — éxgyi) .
31

For reasons of simplicity, an assumption of orthogonality
between the modulated symbols x; and x5 is necessary.
Actually, in MIMO systems, it is practicable or desired that
the modulated symbols of distinguish antennas be orthogonal
to each other. Thus, assuming orthogonality between x; and
X2, this means that (x;,x3) = 0. Therefore, we can proceed
with successive integration with respect to ;1 and 6; » using
the Fubini’s Theorem [41].

X 2 X 2 2
a({x1,x2},yi) ocexp (—HIHNM> / exp (
’ 9in No

" 2
cos (0,;71 — Ax];y,;>) / exp (N
0;,2 0

cos (01-72 — Axgyi)) déb; 2 db; ;.

‘XJ{.Yz'

’x;yi

Proposition 4. The likelihood function is shown to be
Ng—1

2 2
X + ||x
Q<{X17X2}7y) X H exp _IHN'H2||> %

=0 0 (32)

2 2

The likelihood of the coded bit e; € {0,1} is

>

{x1,%x2} € xj,

a(ej({x1,x2}) =b,yi) = a({x1,x2},yi) -

(33)
Thus, the LLR bit metric for the j —th coded bit is as follows

J (v} = Jog L€ (X1, X2}) = 0,3i)
Al =1 gQ(ej({Xth}) =1y’

(34)
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channel.

For simpler processing, the max-log approximation of (34) is
provided in (35).

Remark 3. The computational complexity of the LLR met-
ric in such a BICM system is typically on the order of
O (2 x Ng x Ng x logy M). Considering Nt = 1, we revert
to the SIMO scenario, which is similar to the metric we
presented in (8) for the general non-coherent fading channel by
setting the relative magnitude of the LOS component o = 1,
which is amenable to the pure LOS scenario. Furthermore, if
the orthogonality between x;, X5 is not assumed, it would be
quite challenging to establish a metric for such a LOS channel
when 6, ; is unknown.

IV. NUMERICAL RESULTS
A. Performance Analysis

For illustrative purposes, we consider three distinct con-
figurations: (4 x 1) SIMO BICM, (2 x 2) and (4 x 2)
MIMO BICM. The subsequent figures show the performance
of BIPCM/BILCM with joint estimation and detection under
various channel conditions. The evaluation discerns perfor-
mance disparities across three scenarios: Perfect CSI, No CSI
(Ng = 4), and No CSI (Ng; = 1). The simulations employ
NR POLAR and NR LDPC coding schemes, coupled with
QPSK modulation. The transmission process encompasses

a transport block length of 48 bits.The resource allocation
procedure employs a singular OFDM symbol with either
4 PRBs or 48 resource elements (comprising 32 REs for
data components and 16 REs for DMRS components). The
DMRS sequences occupy 4 REs per PRB. This transmission
framework, featuring joint transmission of reference and data
signals within shared OFDM symbols, adheres to the standard
practice in physical uplink control channel, physical uplink
shared channel, as well as in some downlink control channels.
Hence, from the perspective of 5G NR PHY layers, the
transmission employing BIPCM aligns with a PUCCH format
2 transmission, while that employing BILCM corresponds to
a PUSCH transmission.

The results illustrated in Figure 4 delineate the performance
of the ([8, 4, 2] x 1) SIMO BICM systems, with joint estimation
and detection, over a LOS channel. This evaluation is con-
ducted with a focus on the scenario where o = 1, aiming to
discern the performance disparity between the Perfect CSI and
No CSI conditions, particularly in coverage scenarios marked
by low signal-to-noise ratios.

Note that the No CSI(N; = 1) case also refers to the

conventional receiver and No CSI JED(N; = 4) corre-
sponds to the proposed receiver based on joint estimation

and detection(Ny; = 4). The JED-based receiver yields a
performance gain of 1.25 dB, 1.5 dB and 1.75 dB with respect
to the conventional receiver over 2, 4 and 8 receive antennas
respectively at a BLER threshold of 1%. From this insight, it
is apparent that when the number of antennas increases, the
performance gap between the Perfect CSI and the No CSI
situations (e.g., JED-based receiver) expands. Additionally,
the max-log metric performs nearly as well as the accurate
metric(i.e, Log-based LLRs) since Gray-mapped constellations
are in use. Thus, the max-log metric seems to have minimal
impact on receiver performance, as we operate with low
modulation orders.

In addition, to conduct a comprehensive comparative anal-
ysis of our findings, we have employed finite block length
bounds, integrating both converses and achievability results as
established in the scientific literature [16]-[20]. For a more
insight into the metaconverse (MC) and random coding union
(RCU) bounds used in the aforementioned figures, reference
can be made to the following scholarly contributions [16],
[19], [20]. Figure 5a shows that using the joint estimation and
detection (JED) approach enhances performance by 1.5 dB
and 0.75 dB for polar and LDPC coded configurations in a
(4 x 1) SIMO system with Rayleigh block fading channel.
Additionally, a performance difference of approximately 1.25
dB is observed between our JED-based receiver (Ng; = 4)
utilizing BIPCM and the metaconverse bound. Interestingly,
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this difference diminishes to only 0.5 dB when compared to
the performance of the coherent receiver with Perfect CSI.
Conversely, referring to Figure 5b, which illustrates (4 x 1)
BIPCM SIMO and BILCM SIMO configurations over a LOS
channel scenario. In the first configuration, at a 1% BLER,
the performance gap between the metaconverse bound and the
JED-based receiver (Ng = 4) is 0.7 dB. This stands in contrast
to a 2.2 dB difference observed within the No-CSI(Ny4 = 1).
Despite having similar code rates transmission parameters,
BIPCM consistently outperforms BILCM. This is attributed,
in part, to the optimization of the 3GPP polar code for short
block lengths, whereas the 3GPP LDPC code is designed for
longer transport block lengths.

Furthermore, the results illustrated in Figure 6a, repre-
sentative of a (2 x 2) spatially multiplexed MIMO con-
figuration, align with the trends observed in the preceding
figures. Accordingly, the notable performance enhancements
are significant, indicating improvements of 0.6 dB and 0.3 dB
with JED-based receivers (Ng = 4) when employing BIPCM
and BILCM, respectively.

Likewise, figure 6b illustrates the (4 x 2) BIPCM and
BILCM MIMO configurations over LOS channel. At 1% of
BLER, the performance comparison in the first configuration
indicates a gain of 1 dB with the JED-based receiver over
the conventional receiver. Hence, there is a gap of 0.6 dB
between the JED-based receiver (N = 4) and the Perfect CSI-
based receiver. In the second configuration, namely the (4 x 2)
BILCM MIMO, there is a 0.75 dB improvement with the
JED-based receiver (N; = 4) compared to the conventional
receiver, and a 0.5 dB gap between the Perfect CSI-based
receiver and the JED-based receiver (Ny = 4).

Remarkably, it can be contended that the advanced receiver
outperforms the conventional counterpart and demonstrates
greater resilience in the face of inaccurate channel estimation.

B. Metric Performance Extra Enhancement

1) DMRS Power Boosting
DMRS power boosting was extensively discussed in our prior
correspondence [11], particularly in scenarios where reference

and data symbols are jointly conveyed in common OFDM
symbols. Conceptually, envision the signal as comprising a

data component and a data-independent component, or pilots,
in a frequency-interleaved fashion.

To enhance the power of pilot signals within an interleaved
set, scaling the power of DMRSs while keeping the data sig-
nals unchanged or constant is crucial. Put simply, the boosted
transmitted signal, denoted as Xpoosteq, 1S then defined as
Xpoosteq = xX@ 4+ B x(P). The adaptive power adjustment
procedure is contingent on 3 values and aims to increase the
power or strength of the pilot signals within the composite
signal. Care should be taken to select an appropriate value for
[ to achieve the desired power augmentation without introduc-
ing distortion or signal saturation. To comply with potential
radio frequency constraints, S must be perfectly calibrated.
Optimal performance enhancement is achieved when £ is set to
1.75 (representing a 75% increase in DMRS power compared
to its initial value). In Figure 7a, it is apparent to see that
the proposed JED-based receiver yields an additional gain of
approximately 0.5 dB.

This improvement consistently converges towards an ever-
closer alignment with the performance benchmarks set by the
ideal or coherent receiver, mainly through adaptive DMRS/-
data power adjustment. In this spirit, we can even prioritise
transmission with fewer DMRS in order to bootstrap the
advance receiver, therefore reducing some transmission over-
head.

The implications of slightly adjusting the DMRS power
within the 3GPP standard are significant. Specifically, it is
feasible to allow the user equipment (UE) to adjust the power
allocation between the DMRS and data transmission. This
flexibility in adaptive DMRS power adjustment is somewhat
transparent to the receiver.

2) Iterative Advanced Joint Estimation Detection
Iterative channel estimation detection is extensively investi-
gated in the literature under various facets, showing the merits
of the iterative process in achieving progressive performance.
Considering recent advances in this field, Jiao et al. [42]
introduce a joint channel estimation and decoding scheme for
polar coded sparse code multiple access (SCMA) systems over
fading channels in the wake of enhancing 5G communications
for massive machine-type communications (mMTC) within
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Fig. 6. Block Error Rate, 48 bits(TBs+CRC), NR POLAR BICM (CRC-aided successive-cancellation list decoder, List length=8), NR LDPC BICM (belief
propagation decoder, iteration=30) QPSK modulation, I OFDM symbol, 4 PRBs, 48 REs (32 data, 16 DMRS).

the Internet of Things (IoT). Their proposed joint estimation-
decoding scheme relies on sparse Bayesian learning (SBL) for
initial CSI measurements, iteratively refines channel estimation
and detection for enhanced system performance. Hence, the
iterative joint estimation and detection procedure aiming to
be put forward in this work aligns with existing literature,
underscoring the importance of iterative strategies in both
channel estimation and detection stages. Particularly, within
BICM receiver framework, the iterative process is employed
initially to enhance channel estimation quality and subse-
quently applied to the soft-detector to achieve superior and
high-quality LLRs. The iterative process may spread over
two layers.Merely through the iterative channel estimation
process, one can achieve a gain of few dBs. The iterative
procedure, when applied to an advanced detector leading to a
fully iterative receiver, further enhances these gains by a few
additional dBs. Nevertheless, it is noteworthy that the proposed
JED-based receiver without iteration and with iteration exhibit
a considerable degree of similarity in terms of performance,
as depicted in Figure 7b. Specifically, there is an approximate
difference of 0.15 dB when considering 10 iterations. This
observation underscores the robustness of the proposed JED-
based receiver in terms of channel estimation and detec-
tion, even in the absence of an iterative process. Indeed,
the estimated channel and the employed detection strategy
appear to be robust to a certain extent. In some scenarios,
relying solely on the advanced JED without introducing an
iterative process may be sufficient. This approach offers added
value in terms of reducing receiver complexity, as introducing
excessive operations at the receiver level could incur additional
overhead and latency.

3) Performance Analysis within Various Modulation Sets
We evaluate performance on various M-ary PSK and M-ary
QAM modulations, namely BPSK, QPSK, 8-PSK and 16-
QAM. In the different coded modulation situations, we need
to adapt the transmission parameters, in particular the number
of PRBs or resource elements required. Indeed, considering
the same coding rate R, at the output of the modulator the
modulated symbols from the different scenarios have not the
same length. Table I, gives an inventory of the transmission
parameters according to different modulation configurations,

determining the number of resource elements for data and
DMRS that will be required.

TABLE I
INVENTORY OF THE TRANSMISSION PARAMETERS WITHIN M-ARY
PSK/QAM MODULATION SETS

Modulations Rate REs: N;  REs: Nj,  Npgs
BPSK 48/96 96 48 12
QPSK 48/96 48 24 6
8-PSK 48/96 32 16 4
16—-QAM 48/96 24 12 3

C. Complexity Analysis

The complexity of the detection metrics is analysed using
Monte Carlo simulation. The execution time highlights the
time elapsed between the input and output of the demodulator,
concisely, until the LLRs are generated. It is relevant to ascer-
tain the block size range wherein complexity is comparatively
diminished when contrasted with traditional metrics to estab-
lish a better trade-off between performance and complexity.
Analytically, within a very short block regime, the standard
and advanced receiver metrics exhibit near equivalence, as
illustrated in Figure 9a. However, as the block size increases,
the complexity of the advanced receivers becomes greater
than that of the conventional receivers, hence the need for
block detection to break down this increasing complexity.
By harnessing parallel processing and assuming independence
among the (Ng)-dimensional blocks making up the detection
windows, the detection complexity of the JED oriented re-
ceivers can be reduced. This reduction is directly correlated
with the degree of parallelism, which is contingent not only
upon the quantity of processing nodes but also on the efficient
distribution of the detection window processing among these
nodes. Consequently, this approach unquestionably accelerates
the overall detection process at the receiver level.

V. CONCLUSIONS

This paper presented novel bit-interleaved coded modulation
metrics for joint estimation detection using a training or
reference signal transmission strategy for short block length
channels. We showed that it is possible to enhance the
performance and sensitivity of advanced receivers, especially
when channel state information is unknown and the density
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of training dimensions is low. The proposed techniques take
advantage of joint estimation/detection. The performance anal-
ysis made use of a full 5G transmitter and receiver chain for
both Polar and LDPC coded transmissions paired with M-
ary PSK modulation schemes. We considered transmissions
where reference signals are interleaved with data and both
are transmitted over a small number of OFDM symbols so
that near-perfect channel estimation cannot be achieved. This
is particularly adapted to mini-slot transmissions for ultra-
reliable low-latency communications or short-packet random-
access use-cases. We characterized the performance for up
to SIMO and MIMO configurations in order to determine
the performance gain offered by the proposed BICM detec-
tion in realistic base station receiver scenarios. Our findings
demonstrated that when the detection windows used in the
metric units is on the order of four modulated symbols the
proposed BICM metrics can be used to achieve detection

performance that is close to that of a coherent receiver with
perfect channel state information for both polar and LDPC

coded configurations.
APPENDIX
A. Metric derivation for general non-coherent fading channel

Assuming that #; is unknown and randomly distributed over
[0, 27), the conditional probability density function is defined
as

1 m 1
Q(X>Yi) = m/g exp <—2 (Yi - u{x,@i})T
O (y; — p{x,0:})) db; .
(36)

Saying u{x,0;} = \/ae’%x, then
q(x,yi) = L /Qﬂ exp - (yi — \/aejé)ix)T (37)
T 271— det (P 0 2 !

! (y; — Vaelx)) d; . (38)
Covariance Matrix:
Knowing that y; — \/ae/?"x = /1 — ah; yx + z;, then
1 i
§E [(\/1 — ahgf)x + zi) (\/1 — ahgf)x + zi> ] ,
2 (1 —a)xx'o} + %Iy, where 07 =1,

(1>

)

N
L (1-a)xx+ 7011\/ .
(39)
Determinant:
det ® = det ((1 — a)xx' + o21I),
= det (0'3]: + (1 — Oz)XXT) 5 (40)

=5 (No+20 - ) xI) -

Inverse of P :

The matrix inversion Lemma 1 must be used. Note that, here,
we have a special case where V, U are vectors, consequently
rank{xtx} =1.

Saying: A=0¢’1 C=(1-a)I U=x V=x.
(4D
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2(1 — «) o (42)

No + 2(1 — a) ||x||?

: _ 2(1-a) -1 _ 2
Saying (8, = NN P2V =) then &+ = S 2x6,x7.

Likelihood function :

a(x,yi)

) / e (-3 0= (5 - 2 (=) .

27 det @ v

2w 1 9 T 2
exp ( —x= Vi = 1l + 5o |(vi — 1) X‘
_ o No d6;
27 det @ "

(43)
By extending the terms into the exponential,

ignoring those that are independent of x, the likelihood
function is equivalent to

B 1 2 1 2
atey) = 5 o (—alxl® (g - o IxI°)
2m
2 1
e xtvil?) [ oo (2va (g - o )
0 0
IxTyi|cos (¢; + 6;)) db;.

T

1
Knowing that 7/ exp(zcos(p))de = Ip(z) [43].
Vs =0

Saying L, = Ng + 2(1 — ) ||x||>, and then after ignoring
multiplicative term that are independent of x, it comes

1 1
a6,y o - e (—a Ix? (NO 5, ||x||2)

45)
2 1
+8. |xTyi| ) x Io (2\/5 <No — Bz ||X||2) |xTyi’) .
Expressing 5, w.r.t Ly, we have the relation
1 1
Bz = 2 - 2y - (46)
[Ix[I"No || Ly

B. Finit-Blocklength Bounds

Herein, we present the finite-blocklength information theory
tools. An outer bound, derived from the metaconverse theorem
(cf. [17, Th. 28]), is introduced, while an inner bound is
established using the RCUs bound [20, Th. 1]. In accordance
with an analogical framework, the following is grounded in the
scholarly contributions [16], [19], [20]. We strive to closely fit
these state-of-the-art converse and achievability bounds to our
transmission scenario.

Theorem 3. [20, RCU bound, Th. 1].

Let use capital bold letters X, for random variables (RVs) and
their lower case counterparts, e.g., X, for their realizations. let
denote the random vectors via X = [X;, X5,...,Xy], and
their vector realizations via x = [x1,Xa,...,XN]-

To set the achievability bound, let define the generalized
information density as

_alxy)
Eq(X',y)°]

In the domain of information theory, the Gallager exponent,
represented by s > 0, characterizes a pivotal factor. The expec-
tation relates to the random vector X’ having N-dimensional
ii.d. components. Over a memoryless channel, the decoding
metric q (X,y) = Hf:f:l q (Xn, ¥n)- The random coding unions
(RCUs) posits that, for a specified rate R, the upper bound
on the average error probability is defined as:

e < inf E [67['LS(X,Y)fln(QRXNil)]Jr}
s>0

15 (x,y) =1In (47)

; (48)

where (a)™ £ max(0, a).

In a pilot-assisted transmission, with the N; data sym-
bols uniformly distributed on a shell in CN¢, the maxi-
mum likelihood decoding metric is shown to be q(x,y) =

Pywix@ A (y(d) | x(@) fl). Besides, the underlying PAT de-
coding metric, as outlined in Ostman’s work [19, Sec. III.D]],
is expressed as q(x,y) o exp (—Hy(d) — flx(d)HQ).



Theorem 4. [16, Converse bound, Sec. IV].
To set the converse bound, consider :
Py |x (y | X)
Js (x,y) = In ST (49)
qy (y)

where %, (y) = u(ls)E pyix (v | X)) 1/8, and the normal-
ization factor u(s) is selected such that g3, (y) integrates to
unity.
Subsequently, for a given rate R, the lower bound on
the average error probability is given as follows.
e > supsup P[5 (X,Y) < A — A XN,
5>0 A>0

(50)

In our simulations, we do not engage in optimization over the
parameter s; instead, we opt for the fixed value s = 1, which
offers a more relaxed constraint.
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