SD-WAN for Cloud Edge Computing Continuum
interconnection

Ayoub MOKHTARI, Adlen KSENTINI
Eurecom Biot, France,

mokhtari @eurecom.fr

Abstract—Driven by the emergence of IoT services and the
need to process data as close as possible to its source, the shift
from centralized Cloud computing to Cloud-Edge computing has
become essential. This transition has given rise to a new comput-
ing paradigm known as the Cloud Edge Computing Continuum
(CECC), where microservices that constitute Cloud-native applica-
tions are geographically dispersed across different federated CECC
nodes. This transformation has brought with it new challenges in
terms of interconnecting geographically dispersed CECC nodes
through Wide Area Networks (WANs) to support microservices
interconnection needs (bandwidth, latency, etc.). To address this
challenge, in this paper, we leverage Software Defined Wide Area
Networks (SD-WAN) for interconnecting the CECC nodes. We
first introduce a comprehensive CECC SD-WAN architecture by
demonstrating how dynamic application-aware routing facilitated
by SD-WAN can overcome these limitations, ensuring efficient
and flexible network performance across geographically dispersed
Cloud sites. Then, for the instantiation of the architecture, we adapt
an open-source SD-WAN implementation to the context of CECC.
We also show performance improvement, with our approach being
10% more efficient in terms of memory usage than the VRF lite
approach in the open-source implementation.

Index Terms—SD-WAN, SDN, Cloud Edge Computing Contin-
uum.

I. INTRODUCTION

The next evolution of Cloud computing is the extension of
the centralized computing architecture towards the Edge and
Far Edge, introducing the notion of Cloud Edge Computing
Continuum (CECC). By Far Edge, we mean nodes like IoT
devices, gateways, UAV, etc., which can provide computation ca-
pabilities. Meanwhile, applications are developed with the spirit
of microservices or Cloud-native instead of a monolithic block
application. In the era of CECC, the different microservices
constituting the application will be deployed separately, usually
as containers, such as some microservices being deployed at
the central Cloud while others at the Edge or Far Edge. The
placement of microservices obeys a logic that depends on the
application’s requested QoS support. For instance, for low la-
tency requirements, critical microservices should be deployed at
the Edge or Far Edge (i.e., end-user or IoT devices). Therefore,
the network connectivity between the different microservices
composing the application is very critical. In this context,
the interconnection of the different components of the Cloud-
Edge continuum nodes is very important and critical. The
interconnection of CECC nodes (i.e., centralized Cloud, Edge,
and Far Edge) can be envisioned at two levels. The first level

ksentini @eurecom.fr

concerns the control plan, which needs to interconnect the
CECC nodes. These links do not need specific treatment and
can rely on Internet connectivity or Virtual Private Network
(VPN) links using MPLS or IPSec. However, the data plan
links that interconnect the different CECC nodes carrying the
data plane of the deployed service function chain require (i)
programmability to allow the network orchestrator, for instance,
to specify the level of QoS [1] and the level of resiliency that
needs to be supported for each deployed service; (ii) enforcing
QoS to guarantee SLA of some services, such as low-latency,
high bandwidth, and low-loss rate ; (iii) Resiliency support
by being able to select different routes for the same service.
To satisfy the requirements mentioned above, two approaches
can be envisioned for the interconnection of the CECC nodes.
The first approach assumes that all CECC nodes can control
the underlying network to specify the level of QoS and path
selection for each deployed service function chain. For example,
this could involve building Segment Routing (SRv6) routes or
MPLS tunnels. Typically, Cloud operators have this capability
when interconnecting their own Data Centers using multiple
MPLS tunnels, where several L2 tunnels (such as VXLAN or
GENEVE) are multiplexed to connect services running as con-
tainers or Virtual Machines (VMs). However, such an approach
cannot be envisioned as the Cloud and Edge providers use
network links operated by third-tier Internet Service Providers
(ISP). Usually, CECC includes computing resources from the
Edge and Far Edge, which are connected using classical network
connectivity and in most cases, there is no control over the
underlying network connectivity.

The second approach is to use overlay networks over the
existing Internet connectivity link to interconnect the different
CECC nodes. Among the most prominent and well-adapted
solutions to CECC is based on Software-Defined WAN (SD-
WAN). SD-WAN is an architecture that leverages Software
Defined Network (SDN) principles and aims at simplifying the
management and operation of the networks (with a particular
focus on WAN scenarios) by decoupling the networking hard-
ware from its control programs and using software and open
APIs to abstract the infrastructure and manage the connectivity
and services. SD-WAN is able to create overlay networks on top
of heterogeneous underlay networks, as well as from different
ISPs, supporting multiple WAN connections concurrently. The
various WANSs can have different performance levels and costs,
as seen, for example, in the cases of the Internet, MPLS, 4G/5G,

and others.

The Overlay Network created by SD-WAN allows having
a dynamic topology (full-mesh/hub-and-spoke) constituted by
logical links between different SD-WAN edges, enabling new
paradigms application-aware, policy-driven, and orchestrated
connectivity between SD-WAN users. As described in [2], SD-
WAN can interconnect sites using different topologies, including
Mesh, which will allow building a full overlay, where routing
can be envisioned between the different SD-WAN Edge nodes
supporting application SLA, resiliency, and scalability without
the need to use the underlying network resources.

Believing that SD-WAN is one of the key technologies to
interconnect the CECC nodes as it satisfies the three above-
mentioned requirements, we propose in this paper a high-level
architecture of CECC SD-WAN, featuring an implementation of
application-aware routing leveraging Linux networking as well
as an adaptation of an open-source implementation to the context
of CECC.

The rest of the paper is structured as follows. Section II
provides a background and high-level overview of the CECC.
Then, it highlights some related works on SD-WANSs, from
ones focusing on only private WAN to those on enterprise
networking and Cloud to open source ones. Section III describes
the overall CECC SD-WAN architecture. Section IV presents
the architecture instantiation leveraging an open source SD-
WAN, as well as the contributions to this solution enabling an
application-driven routing and hybrid WAN. Section V discusses
the evaluation experiments comparing the open-source VRF
approach to our Linux Routing Table and mangle table-based
approach. Finally, Section VI concludes the paper.

II. BACKGROUND

Despite the simplicity and ease of development offered by
the monolithic model, it presented limitations in scalability
and maintenance as applications grew in complexity and size.
Microservices emerged as a response to these challenges, draw-
ing inspiration from Service-Oriented Architecture (SOA) and
distributed systems principles. By breaking down applications
into smaller, loosely coupled services, microservices offer sev-
eral advantages, including enhanced scalability, flexibility, and
resilience.

The rise of Cloud and Edge computing further accelerated
the adoption of microservices, providing a scalable and cost-
efficient infrastructure for deploying and managing distributed
systems and allowing ease of application’s life cycle manage-
ment. The following section introduces the CECC Framework
and related works on interconnecting CECC nodes using SD-
WAN.

A. Cloud Edge Computing Continuum

Figure 1 depicts an envisioned architecture design of the CECC
framework. This framework considers an infrastructure where
multiple computing Cloud or Edge providers can be incorpo-
rated as computing resources for microservices deployed within
the CECC. The IT domain represents a computing provider
infrastructure joining the CECC that can be an Edge, a Cloud or
both. For instance, as shown in Figure 1, IT domain 2 integrates

both Cloud and Edge resources. The framework extends to
include Far Edge resources, which consist of end devices such
as drones, IoT devices, user equipment, and data sources. The
Edge domains are connected to the data sources and Far Edge
via Edge Access Networks (EAN) like 5G or other types of
access networks.

Each IT domain within this framework is governed by a
local infrastructure manager, referred to as a Local Manage-
ment System (LMS), responsible for managing the domain’s
resources and overseeing the local placement and deployment
of microservices. These LMSs can range from Cloud, Edge, or
Far Edge management systems to network management systems,
such as SD-WAN controllers or IoT gateways. All LMSs expose
APIs to the Microservices Manager and Orchestrator (MMO),
enabling the deployment of microservices across the CECC
infrastructures. The WAN and EAN are managed by SDN
controllers, which provide interfaces for the dynamic adjust-
ment of networking rules, enabling functionalities such as path
updates when network QoS degrades and optimizing networking
resources.

In addition to computing and networking resources manage-
ment, the MMO is responsible for managing the application
lifecycle, ensuring agility in managing the different phases of
the application lifecycle and resource efficiency optimization.

o [TN . ® Dala Plane
- []
= IT Resource Management
Application developer / = Network Resource Management
| MMO Users g
. MMOUsers i € orosonices
}RUD/MON(GT‘IHQ
il { - 1
Manager & O Py y
P | I
5
PR
t WAN 7
Ly ~—_\ /
D /
Y /
~
~ Ean &
o ¥

B B X &

Far Edge & Data source

Fig. 1: CECC High-level Framework Overview

B. Related Works

To the best of our knowledge, the academic research on SD-
WAN appears to be at an early stage, with very few research
works done on interconnecting Cloud, Edge and Far Edge using
SD-WAN. This section considers works on Cloud interconnec-
tion, enterprise networking, and works that suppose underlay
network control, although we are mainly concerned with inter-
connecting nodes without controlling underlay networks.

In [3], Phemius et al. focus on multi-homed enclaves inter-
connection using OpenFlow and QoS management of applica-
tions in multi-WAN environments. Authors in [4] propose an
SDN-based architecture for remote data centers interconnection
aiming to improve resiliency. However, they assume that overlay

nodes are located at Internet Exchange Points (IXPs) or ISPs, or
collocated with Content Delivery Network (CDN) cache nodes.

B4 [5], [6], represents the software-defined inter-datacenter
backbone network deployed by Google. B4 connects data cen-
ters in different locations using a two-tier hierarchical control
framework. At the lower layer, each data center site contains a
network controller and hosts local control applications managing
site-specific traffic. At the top layer, a logically centralized traffic
engineering server is implemented. This server enforces high-
level traffic engineering policies aimed to optimize bandwidth
allocation between competing applications across different data
center sites. In [7], the authors focus on optimizing inter-DC
WAN bandwidth utilization and efficient traffic engineering,
addressing the resulting congestion challenges that arise from
frequent updates to meet service traffic demands. They demon-
strated that leaving 10% of link capacity free allows for quick,
congestion-free updates. However, these solutions are platform-
centric and assume complete control over the private underlay
network.

There are also open-source SD-WAN solutions like Flexi-
WAN [8] and EveryWAN [9]. In [8], the controller is imple-
mented based on Free Range Routing (FRR) [10], and the
Edge device or route infrastructure using FD.io Vector Packet
Processor (VPP). However, it envisages a more classic approach
to SD-WAN with some control functionalities still running
at the virtual Edge routers. EveryWAN, on the other hand,
uses a hybrid IP/SDN approach where a local control logic
based on distributed IP routing coexists with a programmable
IP forwarding engine controlled by a SD-WAN controller [9],
leveraging Linux networking and pyroute2 netlink library.

III. OVERALL ARCHITECTURE

The key idea of the proposed architecture is to abstract and
aggregate the various networking resources, including multiple
heterogeneous WAN paths, that interconnect the CECC nodes
to the MMO. This approach introduces flexibility, agility, and
programmability in managing the traffic flow of deployed mi-
croservices based on defined SLA/QoS requirements and current
network conditions. The overall architecture is composed of
three planes: management, control, and data plane, as depicted
in Figure 2.

A. Management Plane

The management plan of the SD-WAN is an integrated part of
the MMO. In addition to computing infrastructure like Cloud
and Edge LMS exposing APIs to the MMO, the SD-WAN,
acting as a LMS for the networking resources part, exposes
network management functionalities to the MMO using its
Northbound Interface (NBI). It bridges the gap between the
abstracted networking capabilities provided by the SD-WAN
controller and the operational demands of the microservices
manager component of the MMO.

Given that the MMO orchestrates microservices’ placement,
deployment, and lifecycle management, it can provide relevant
deployment configuration information to the SD-WAN controller
identifying microservice traffic. This enables the controller to
configure SD-WAN Edge devices with matching rules (e.g.,

32 SD-WANEdge SD-WAN Overlay Link

< » SD-WAN Northbound API DU » Other MMO Management
Interfaces

« - » SD-WAN Southbound AP1

‘ Microservices Manager & Orchestrator (MMO) ‘

| —

-
) (o
Controller Sources
SBI
L
” -
e =
o, LA
SD-WAN Edge o’
SD-WAN Edge
¥ ,
”)
s %
SD-WAN Edge Ry

%
SD-WAN Edge
SD-WAN Overlay Network

Fig. 2: Overall CECC SD-WAN Architecture

protocol, port number, source/destination IP addresses, etc.)
to identify and classify application traffic. These classes of
traffic are grouped based on QoS requirements, and different
microservices can be classed into one class according to their
similar QoS requirements. These classes are defined at the MMO
level and passed to the controller as requests to be then pushed
as configurations to the Edge devices as matching rules, which
will be used for traffic identification and classification.

For instance, consider a microservice experiencing SLA
degradation, such as exceeding the maximum acceptable latency
threshold while its traffic flows through overlay network “ON-
17, the MMO, assessing both the overall QoS requirements
specified by the application developer and the current conditions
of the overlay network leveraging a monitoring module, will
request rerouting the microservice’s traffic to a different overlay
network “ON-2” that satisfies the QoS requirements.

Subsequently, the controller implements policy adjustments
to redirect the traffic through the tunnels of the overlay network
“ON-2”. These traffic updates could be static, as specified
by the application developer or the MMO user, or dynamic,
using an integrated AI/ML-based module such as Reinforcement
learning.

In case more than one overlay link satisfies the QoS require-
ments of a specific traffic class; the MMO can load balance
traffic over overlay links that satisfy the QoS requirements
of this class (e.g., per-flow load balancing). Another MMO’s
management plane functionality is the deployment of Edge
device’s Virtual Network Functions (VNFs) after adding a new
CECC node.

B. Control Plane

Decoupled from the data plane, the control plane is fundamen-
tally responsible for enforcing the control and configurations of
the Edge devices. Through the NBI, the SD-WAN controller
receives network update requests from the MMO, and translates
them into configurations to perform at the Edge devices lever-
aging the Southbound Interface (SBI).

In addition to central management of the Edge devices’s
networking aspects, from interface configurations and overlay
tunnels to routing tables and advanced policy-based routing
decisions, the controller also handles the monitoring agents
on Edge devices that monitor overlay tunnel-specific network
metrics (e.g., latency and packet loss).

This global view of the network, in terms of different overlay
topologies and real-time network performance exposed to the
MMO, can be leveraged for dynamic microservices traffic
management and optimizing the microservice SLA (network
QoS requirements) fulfillment.

C. Data Plane

In a typical SD-WAN solution, for example, in enterprise net-
works, the data plane connecting different enterprise branch sites
and headquarters is established by creating overlay links over
both private and public IP/WAN infrastructures. However, in the
CECC context, the private IP/WAN connectivity is not always
guaranteed, and Cloud/Edge resources could be provided by
different providers that do not share dedicated private IP/WAN
links.

For instance, as shown in Figure 1, unlike IT domain 2, where
computing infrastructure could be connected using private WAN,
Cloud infrastructure in Domain 1 and Edge infrastructure in
Domain 3 belong to different providers, hence can be connected
using only public IP/WAN connectivity.

In order to connect the geographically separated CECC nodes
and abstract the heterogeneous WAN connections (broadband
LTE/5G, Internet, MPLS, etc.), logical overlay links are created
over the existing physical underlay WAN infrastructures. The
SD-WAN overlay network consists of the Edge devices (also
known as CPE/VCPE in enterprise networking) and the set
of logical tunnels created between these Edge devices. Each
Edge device is deployed at the border of each CECC node as
a gateway between the CECC node’s (Cloud or Edge) local
network and the different WAN; hence, representing an endpoint
for overlay tunnels.

These tunnels are created using different technologies such
as VXLAN [11] or GRE [12] over IPsec to encapsulate mi-
croservices traffic between CECC nodes, thus providing secure
communication paths and allowing flexibility in forwarding
behavior. The configurations of Edge devices for instantiating
overlay tunnels, defining policies, recognizing and classifying
microservices traffic for application-driven routing, and routing
decisions are centrally managed at the control plane and pushed
by the SD-WAN controller to the Edge devices, leveraging its
SBI. In order to be able to dynamically route traffic of different
microservices deployed in different CECC infrastructures, Edge
devices, in addition to overlay packet encapsulation, need to

be able to identify or recognize microservices traffic based on
defined policies and matching rules in order to route it through
a specific overlay based on defined QoS requirements or SLA
agreements and network conditions, enabling an application-
driven routing which is detailed in the following section.

IV. ARCHITECTURE INSTANTIATION

This section presents an implementation intsance of the pro-
posed architecture. The architecture depicted in Figure 2 has
been implemented based on the SD-WAN open source solution
EveryWAN [9]. We started by leveraging the implementation of
both the Edge device and the controller of EveryWAN, and the
adaptation agent of the MMO for interacting with the controller
NBI that was implemented in EveryWAN using gRPC [9].

In the EveryWAN solution, the SD-WAN Edge device (or
so-called EveryEdge) was implemented as VNF and can be
deployed on any server providing computing, storage, and
network interfaces. Designed with a hybrid IP/SDN approach,
the EveryEdge device combines a Programmable IP Forwarding
Engine (P-IPFE), an IP routing daemon (IPRE), and an SBI also
implemented using gRPC. Besides programming the forwarding
entries, the controller can override the routing decisions taken
by the IPRE. The IP Forwarding Engine was implemented using
Linux networking, with the pyroute2 python library facilitating
interactions with the Linux kernel netlink interface [9].

*——< 1:N Relation
SD-WAN Controller

e 1:1

+
SB Interface (gRPC)

SB Interface
Server
x

Interfaces Overlay

Handler Handler
Routing Tables Traffic Classes

Handler Handler

Overlay Network
~-Tunnel Endpoi l 1)

- Virtual Local
Interfaces

(Linux Routing Table)

Routing
Tables

WAN Interface

Fig. 3: Application-Driven Routing: SD-WAN Edge

For traffic redirection of a specific application over a specific
overlay network, authors in [9] defined an E2E network slice
in their SD-WAN solution as a combination of LAN/VLAN
interfaces and an overlay network. For isolation between ap-
plications traffic in different overlay networks, a VRF lite
approach was adopted mapping for each overlay network, one
LAN/VLAN interface with one VRF and one physical WAN
interface. However, besides the limitation of supporting only one
underlay WAN interface in EveryWAN implementation, the E2E
Slice definition (LAN - Overlay network - LAN) using VRF lite
presents another limitation in our case. Since an interface cannot

be a member of multiple VRFs simultaneously, associating
several overlay networks created on different underlay WANs
with the same LAN interface was not possible with VRF
lite. This limitation arises because virtual WAN interfaces and
bridging would introduce complications.

To address these challenges and adapt to the CECC context,
we reimplemented certain modules, like the overlay manager in
the SD-WAN controller and the different handlers in the SD-
WAN Edge. Additionally, we added other modules that were
needed, such as application-driven routing and monitoring.

Firstly, to support hybrid WANs and enable multiple underlay
links without losing Layer 3 isolation, we opted for Linux rout-
ing tables as instances of P-IPFE instead of VRF. Secondly, for
the application-driven routing, as depicted in In Figure 3, each
Linux routing table for an overlay network is mapped to one or
more traffic classes, rather than mapping a single LAN/VLAN
interface to one VRF instance. Each overlay network has its own
dedicated Linux routing table, which enables logical isolation
from other overlay networks and allows microservices and
applications from different overlays to have distinct routing
behaviors. This setup eliminates the limitation of relying solely
on local interfaces to separate traffic, allowing each traffic class
to have multiple ingress interfaces (LAN/VLAN interfaces).

Figure 4 illustrates the process of defining a microservice
for traffic classification and routing over a specific overlay
network (ON-1). As mentioned in section III the MMO has a
global view of the microservices deployment, and information
like deployment configurations and matching rules (e.g., pro-
tocol, port number, source/destination IP addresses, etc.) can
be provided as a JSON file to the MMO network manager.
The network manager uses this information to identify and
classify the microservice traffic, which then requests the SD-
WAN controller to add the corresponding rules for a traffic
classe. At the Edge level, we used Linux IPTables tool for traffic
classification and marking and [PRule for redirecting the traffic
marked with the traffic class mark over the overlay routing table.

meceme=ccmaama MMO ------------- + ‘SD-WAN Controller

Traffic Classes | !
Manager

frome=s SD-WAN Edge -------

IPTables.
Handler

' H
| |microservices Manager|] ’IP»RuIe Handler| !
1 H

Network Manager | ! |

Microservice

1
definition JSON !
Add
Deployment Config
& QoS i

Traffic Class

Alt

[Class Exst]

:
Get Class Mark {mj}
[F)
[Else] :
Create Class with Mark {m;}
T

Create |PTables Rule With
Microservice machin
rules.

Mark IPTables Rule
with {my)

SB.success

Create IPRule to route marked traffic |
with overlay ON-1 routing table
;

SB.success
NB.success '

Fig. 4: Application-Driven Routing: Adding Microservice to
Traffic Class

In addition, one of the main functionalities of the MMO is
dynamic rerouting in response to SLA degradation, specifically
violations of microservice QoS requirements. To support this,
we have incorporated overlay monitoring to provide network
metrics to the MMO’s resource monitoring module. These met-
rics can be utilized by an Al-based traffic engineering module,
such as a reinforcement learning algorithm, for dynamic routing.
In our initial implementation, we adopted a straightforward
active monitoring approach, where network measurements, in-
cluding latency and packet loss, are periodically transmitted to
the controller.

V. EVALUATION

This section presents evaluation results on overlay creation time
and Edge CPU and memory usage (VRF vs. Linux routing
table).

The performance evaluations were conducted using a test
bed comprising 2 Edge devices and one SD-WAN controller,
each implemented as a VM. The Edge devices were connected
using two different laboratory networks, and the properties of
a wide area network were emulated using netem. The SD-
WAN Edge VMs were allocated 2GB of RAM and 1 CPU,
while the controller VM was allocated 4GB of RAM and 2
CPUs. The host machine on which the Edge device VM was
provisioned was equipped with an Intel® Core™ i7-1365U
processor with 10 cores, and 3.9GHz clock speed, and 32GB
LPDDR5-6400MHz RAM.

14 F T T T T
Overlay Creation Time. i
12 F VRE -
st RT
10 | b
@
g BE]
E /
=
6r 4]
7
’/
4r & b
2F 7~ 1
. hecron I I |
100 200 300 400

Overlays Number

Fig. 5: Overlay Creation Time

T T T FTE
15.0 | E2E Overlay Creation Time. /]
------- VRF 57

125 |

100 F st]

Time (s)
~J
W
T
N\
|

5.0 F o]

251 b

0.0
100 200 300 400

Overlays Number

Fig. 6: E2E Overlay Creation Time

Figure 5 shows a comparison of the time required to create
SD-WAN overlay tunnels in a single SD-WAN Edge between
our approach using Linux Routing Table (RT) approach and
the VRF approach. Initially, with overlay numbers under 100,
both the VRF and RT approaches show a nearly constant
time, followed by a linear increase after 100 overlay tunnels.
Overall, both approaches had similar overlay creation times with
minor deviations. Figure 6 represents the E2E time taken to
create overlays from the MMO request moment to the overlay
tunnels establishment. These results closely resemble those in
Figure 5, despite the slight delay due to the laboratory network
latency between the MMO/SD-WAN controller and the SD-
WAN Edges.

T e

-

20

=== VRF
....... RT
L Il 1
100 200 300 400
Overlays Number

Fig. 7: SD-WAN Edge CPU Usage

RAM (%)
[\
(=}

10 | SD-WAN Edge RAM consumption. ~-—=--==-==--=j--=-- E

=== VRF
g 0 YR b]
== RT
L | 1
100 200 300 400
Overlays Number

Fig. 8: SD-WAN Edge RAM Usage

The evaluation presented in Figure 7 considers the CPU usage
of the SD-WAN Edge VM in terms of the overlay tunnels
number created at each time in both the VRF and the RT
approach. The findings show a linear rise in CPU usage as the
number of overlay tunnels increases for both the VRF and the
RT approach. The overall performance of both approaches is
similar, although the RT approach tends to have slightly lower
CPU usage.

Figure 8 illustrates memory usage for creating overlay tun-
nels, comparing our approach using Linux RT with the VRF
approach. The findings show a linear, gradual increase in RAM
usage as the number of overlay tunnels rises. Comparatively, the

RT approach demonstrates greater memory efficiency, consum-
ing approximately 10% less memory than the VRF approach.
This difference is attributed to the additional overhead associated
with running multiple VRF instances.

VI. CONCLUSION

In conclusion, this work demonstrated how SD-WAN can be in-
tegrated within the Cloud Edge Computing Continuum (CECC)
to address the challenges of connecting geographically dispersed
microservices and CECC nodes. We presented a high-level ar-
chitecture that integrates SD-WAN with the CECC Microservice
Manager and Orchestrator (MMO) and adapted an open-source
SD-WAN to the CECC context, enabling hybrid WAN sup-
port to create overlay networks across multiple underlay WAN
links. Additionally, we proposed an application-driven routing
implementation to enable microservices traffic classification and
policy-based routing. Future work will focus on enhancing
dynamic application traffic engineering and optimizing QoS
using AI/ML techniques.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon Research and Innovation program under AC® project
and grant agreement No 101093129.

REFERENCES

[1] K. Piamrat, A. Ksentini, C. Viho, and J.-M. Bonnin, “Qoe-aware vertical
handover in wireless heterogeneous networks,” in 2011 7th International
Wireless Communications and Mobile Computing Conference, 2011, pp.
95-100.

[2] P. T. A. Quang, S. Martin, J. Leguay, X. Gong, and X. Huiying, “Intent-
based routing policy optimization in sd-wan,” in ICC 2022-IEEE Interna-
tional Conference on Communications. 1EEE, 2022, pp. 4914-4919.

[3] K. Phemius and M. Bouet, “Implementing openflow-based resilient net-
work services,” in 2012 IEEE Ist International Conference on Cloud
Networking (CLOUDNET). 1EEE, 2012, pp. 212-214.

[4] A. Fressancourt and M. Gagnaire, “A sdn-based network architecture for
cloud resiliency,” in 2015 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC). IEEE, 2015, pp. 479-484.

[5] S.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined wan,” ACM SIGCOMM Computer Communi-
cation Review, vol. 43, no. 4, pp. 3—-14, 2013.

[6] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat, S. Jain,
J. Kaimal, S. Liang, K. Mendelev ef al., “B4 and after: managing hierarchy,
partitioning, and asymmetry for availability and scale in google’s software-
defined wan,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, 2018, pp. 74-87.

[71 C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
2013, pp. 15-26.

[8] (2023) Open source sd-wan and sase.
//flexiwan.com

[9] C. Scarpitta, P. L. Ventre, F. Lombardo, S. Salsano, and N. Blefari-Melazzi,

“Everywan-an open source sd-wan solution,” in 2021 International Con-

ference on Electrical, Computer, Communications and Mechatronics En-

gineering (ICECCME). 1EEE, 2021, pp. 1-7.

(2023) Frrouting project. [Online]. Available: https://frrouting.org

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,

M. Bursell, and C. Wright, “Virtual extensible local area network (vxlan):

A framework for overlaying virtualized layer 2 networks over layer 3

networks,” Tech. Rep., 2014.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic routing

encapsulation (gre),” Tech. Rep., 2000.

[Online]. Available: https:

[10]
(11]

[12]

