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Iterative multiuser joint detection and parameter estimation:
A factor-graph approach
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Abstract — We examine a multiple-access
AWGN channel with synchronous DS-CDMA in
which the channel amplitude and noise variance
parameters are unknown a priori. We derive an
iterative joint multiuser decoder and parameter
estimator based on soft interference cancellation
and on soft decision-driven least-squares estima-
tion. Our derivation is obtained by applying the
sum-product algorithm to the factor graph of the
joint a posteriori probability measure of the infor-
mation bits and of the unknown channel parame-
ters.

I. INTRODUCTION

In [1], several known iterative multiuser joint decoders
for encoded DS-CDMA have been derived and analyzed
in a unified way. Here we combine the approach of [1]
with that of [2] to the purpose of deriving a conceptually
simple iterative multiuser joint decoder and parameter
estimator based on soft interference cancellation and on
soft decision-directed least squares (LS) estimation. For
simplicity’s sake, our derivation is restricted to the case
of synchronous CDMA and of constant (but unknown)
frequency-flat channels. However, it can be extended
without too much effort to more general channels. The
following notations are used throughout:

e With A a matrix, a,,a*, and aj, (or equivalently
[Alk,) denote the nth column, the kth row and the
(k,n)th element of A, respectively.

e z ~ N (u, X) indicates that the random vector z is
complex circularly-symmetric jointly Gaussian with
mean E[z] = p and covariance E[(z—p)(z —p)t] =
3.

e The superscript T indicates Hermitian transpose.

e The notation A x B (A = B) indicates that A and
B differ by a multiplicative (additive) term.

II. SYSTEM MODEL

Consider the uplink of a coded direct-sequence CDMA
system with synchronous transmission over frequency-
non-selective channels and Nyquist chip-shaping pulses.
The system is frame-oriented, i.e., encoding and decoding
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is performed frame-by-frame and users are synchronous
also at the frame level. In each frame, the complex base-
band equivalent discrete-time signal originated by sam-
pling at the chip rate the output of a chip-matched filter
is given by

Data transmission phase

Y =SWX+N
Training phase

Y® = SWX® + N®
(1)

where:

e Y € CHN and Y® e CM*T are the arrays of
received signal samples in the data and training
phases, respectively.

e N € C" and N® e C"*T are the corre-
sponding arrays of noise samples, assumed complex
circularly-symmetric Gaussian i.i.d. ~ N(C(O, No).

e S € CH*® contains the user spreading sequences
by columns.

e W = diag(w) where w = (wy,...
the user complex amplitudes wy.

,Wk) contains

e X € C**N s the array of transmitted code sym-
bols.

o X ¢ CH*T ig the array of transmitted training
symbols (known at the receiver).

e N, T L and K denote the code block length and the
training sequence length (in symbols), the spread-
ing factor (number of chips per symbol) and the
number of users, respectively.

The total frame includes N + T symbols. With refer-
ence to the above model and to our notation conven-
tions, s, x",y, and x, denote the k-th user spreading
sequence, the k-th user code word, the received signal vec-
tor in the n-th symbol interval and the transmitted sym-
bol vector in the n-th symbol interval, respectively. The
user spreading sequences are normalized to yield |sg|? = 1
for all k. Hence, the signal-to-noise ratio (SNR) of user &k
is SNRy, = |wg|?/No.

At each frame, each user encodes a sequence of infor-
mation bits by into a code word x* = ¢ (by,) € Cg, where
o1 denotes the encoding function and €y, is the code book



of user k, defined over a given complex signal set (e.g.,
a PSK or QAM constellation). For the sake of simplic-
ity, here we consider binary codes mapped onto BPSK, so
that xg, € {—1,+1}. Each code word is independently
interleaved before transmission.

ITII. FACTOR-GRAPH REPRESENTATION

The receiver we seek minimizes the per-user
information-bit error probability while considering the
user complex amplitudes wy and the noise variance Ny
as unknown parameters. We write @ = (w, Np), with
an a priori density p(@) uniform over a subset of feasible
parameter realizations ©. Let TT = Pr(by,... bk, @ |
Y, Y® X®) denote the joint a posteriori probability
distribution of the users information bits and of the pa-
rameters given the observation Y, Y and the known
training symbols X(*). The optimal joint decoder makes
bit-decisions based on the marginal a posteriori probabil-
ities (APP)

APPy, (b)) =

>

bi...,bx:bg,e=b

1T do 2)

Direct calculation of (2) is too complex in any practical
situation. Hence, we seek a low-complexity iterative ap-
proximation of the a posteriori marginals (2) by applying
the sum-product algorithm to the factor graph represent-
ing II. Straightforward calculations yield

IT « 2T (w, No)p(8) Pr(X®) (3)

where = 2 p(Y | by,...,bg,0,Y®H X®)  and
T(w,Ng) 2 p(Y® | X ) is the likelihood function
of the parameters given the observation over the training
phase only. Also, we have used the fact that Y®) is con-
ditionally independent of by,... ,bg given X and @,
that by,... ,bx are uniformly distributed over all possi-
ble binary information sequences, and that they are in-
dependent of X(*) and of 6.

Since p(@) is uniform, we include it into the propor-
tionality constant in (3) for 8 € ©. Moreover, since the
training symbols are known and fixed, Pr(X(®)) = 1 if
X® is the actual training sequence and zero elsewhere.

Now, we focus separately on the first and second fac-
tors of the RHS of (3). Since users encode their infor-
mation bits independently and the synchronous CDMA
channel (1) is memoryless, we have, after some algebra,

(1]

Ny K
— —|¥n—SWx,|%/No 1xk = b 4
nl;[l”NOe kl;[l {x" =or(br)} (4)

where we have used the fact that Y is independent of
Y® and X® given @ and X, and the fact that X is
independent of anything else given by,... ,bg, since X
is a function of the information bits (via the encoding
functions ¢1,... ,¢K).

Since Y is conditionally jointly Gaussian given 6 and
X® | we have

2
1 e i ygi)fsxgt)w| /No (5)

T(w,No) = (7No)ET

where we define DC,(Zt) = diag(xgt)), a diagonal matrix with
the training symbols x,(zt) as diagonal elements.

By using (4) and (5) in (3), we can write the joint a pos-
teriori probability distribution as proportional to a mul-
tivariate function of by,... ,bg, w, Ny and X, where the
training symbols X® and the channel output observed
signals Y and Y® play the role of given parameters. We
obtain

2
L s [ -saow]

I —NOLT
N 1 . K
. H ﬁe‘Yn*SWXn‘ /NO H ].{Xk — ¢k(bk)}
n=1"0 k=1

The factor-graph representation [3] of the above is a bi-
partite graph with wvariable nodes corresponding to the
variables {b ¢}, w, Ng and {z, » } and function nodes cor-
responding to the terms in the factorization (6), and an
edge between a variable node and a function node if the
variable is an argument of the function.

The terms NLOL exp (—N%)b’n - SWxn|2) are referred

to as channel transition functions, since they are propor-
tional to the channel transition pdf (for given parameters
w, Np) and the terms 1{x* = ¢ (by)} are referred to as
code constraint functions, since they define the constraint
that x* is the code word of € corresponding to the in-
formation sequence by. The factor-graph corresponding
to (6) is shown in Fig. 1. The variable and the function
nodes are represented as circles and squares, respectively.

IV. APPLICATION OF THE SUM-PRODUCT ALGORITHM

The sum-product algorithm applied to the graph of
Fig. 1 yields the following local computation “steps”: [3]

Multiuser detection (MUD) step. This computa-
tion is carried out at the n-th channel transition function
node, for n = 1,..., N, with output edge towards zy
and input edges from w, Ny and from «;, for all j # k.
The output message is the extrinsic probability (EXT) [1]
for the symbol-by-symbol detection of symbol zy,, from
the observation y,. Notice that a basic consequence of
the sum-product algorithm computation rules is that only
EXT pmfs are propagated at each step.

Soft-in Soft-out (SISO) decoding step. This com-
putation is carried out at the k-th code constraint func-
tion node, for k = 1,... , K, with output edge towards
Zkn and input edges from x ¢ for all £ # n and from
all by ;. The output message is the EXT pmf for the
symbol-by-symbol detection of symbol zj, ,, given an ob-
servation in the form of an priori product pmf and the
code constraint defining Cy.

Local parameter estimation (LPE) step. This
computation is carried out at the n-th channel transition
function node, for n = 1,...,N, with output towards
w, Ny and inputs from zy, for all &k = 1,... ,K. The



output message is the likelihood function for the estima-
tion of w, Ny based on y,, (since only y,, rather than the
whole observed signal Y is used here, we refer to this
estimation as “local”).

Global parameter estimation (GPE) step. This
computation is carried out at the parameter variable node
w, Np, with output towards the n-th channel transition
function node, and input from all other channel transi-
tion function nodes ¢ # n. and from the training-only
likelihood function node T(w, Npy). The output message
is the global likelihood function for the parameters w, Ng
with observations extended over all {y; : ¢ # n} and over
the whole training phase.

V. SIMPLIFICATIONS: PRACTICAL RECEIVER
STRUCTURE
The sum-product algorithm summarized above is too
complex for a practical implementation. Simplifying as-
sumptions are necessary to obtain a practical algorithm
for iterative joint data detection and parameter estima-
tion.

Soft-decision driven LS estimation. Following [2],
we replace f,(w, Ng) by its single-mass point approxima-
tion §(w — w,,)d(Nog — No,,), where

(Wn, Nop,) = arg ‘r)vn?*v)gfn(vaO) (6)
is the “global” ML parameter estimate obtained from the
likelihood function f,(w, Ny).

Next, we make the key assumption that the code sym-
bols zy,, are independent and Gaussian distributed, i.e.,
we replace the discrete pmf Py, (a) with the Gaussian
pdf pg.n(a) having the same mean Ty, and variance.
By defining the total observed signal vector of length
LIN+T-1) as

Y, = (yfv s 7y£7 (ygt))Tv Tt (yg))T)T
l#n

and the block matrix of size L(N + T — 1) x K

T
M, = |(SX1)7,...,(SXn)", (8K, ..., (8x{")T
Z;ﬁrn
(where X; £ diag(%()) we estimate w in the form
-1
W= (MM, ) My, (7)

and Ny in the form

1

Nop=——"
T LIN+T —1)

(v, 2= 1%a)  ®
The parameter estimates (7) and (8) can be interpreted
as follows. The first is the LS solution of the prob-
lem miny [y - M, w|?, originated by replacing the (un-
known) data symbols by their soft estimates. For this rea-
son, we refer to (7) as a soft-decision directed LS channel

estimation. The second can be interpreted as the dif-
ference by the total received signal energy |Xn|2 and the
total estimated signal energy |W,|?, divided by the num-
ber of noise samples L(N + T — 1), over the data and the
training phase (the n-th symbol interval excluded).

An approximate analysis of the bias of the above es-
timators, for large block size N, shows that the method
advocated here yields almost unbiased channel amplitude
estimates when symbols are either almost unknown or
known with high probability, corresponding to the be-
ginning and to steady-state convergence of the iterative
decoder.

Soft interference cancellation. In order to break the
exponential complexity of the MUD step, we use again the
Gaussian approximation of the symbol distribution. With
this approximation, we obtain a cancellation structure
that can be interpreted as the result of soft IC followed by
conditional MMSE filtering, given the output log-ratios
produced by the SISO decoders at the previous decoder
iteration.
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Figure 1: The edges connecting the coded symbols nodes
with the channel transition nodes represent random in-
terleaving.



