
Integrated Push-and-Pull Update Model for
Goal-Oriented Effective Communication

Pouya Agheli, Graduate Student Member, IEEE, Nikolaos Pappas, Senior Member, IEEE,
Petar Popovski, Fellow, IEEE, and Marios Kountouris, Fellow, IEEE.

Abstract—This paper studies decision-making for goal-oriented
effective communication. We consider an end-to-end status up-
date system where a sensing agent (SA) observes a source,
generates and transmits updates to an actuation agent (AA), while
the AA takes actions to accomplish a goal at the endpoint. We
integrate the push- and pull-based update communication models
to obtain a push-and-pull model, which allows the transmission
controller at the SA to decide whether to push an update to
the AA and the query controller at the AA to pull updates by
initiating queries at specific time instants. To gauge effectiveness,
we utilize a grade of effectiveness (GoE) metric incorporating
the updates’ freshness, usefulness, and the timeliness of actions
as qualitative attributes. We then derive effect-aware policies to
maximize the expected discounted sum of the updates’ effective-
ness subject to induced costs. The effect-aware policy at the SA
considers the potential effectiveness of communicated updates at
the endpoint, while at the AA, it accounts for the probabilistic
evolution of the source and importance of the generated updates.
Our results show the proposed push-and-pull model outperforms
models solely based on push- or pull-based updates both in
terms of efficiency and effectiveness. Additionally, using effect-
aware policies at both agents enhances effectiveness compared to
periodic and/or probabilistic, effect-agnostic policies at either or
both agents.

Index Terms—Goal-oriented effective communication, status
update systems, push-and-pull model, decision-making.

I. INTRODUCTION

The emergence of cyber-physical systems empowered by
interactive and networked sensing and actuation/monitoring
agents has caused a shift in focus from extreme to sustainable
performance. Emerging networks aim to enhance effectiveness
within the system while substantially improving resource
utilization, energy consumption, and computational efficiency.
The key is to strive for a minimalist design, frugal in resources,
which can scale effectively rather than causing network over-
provisioning. This design philosophy has crystallized into

P. Agheli and M. Kountouris are with the Communication Systems Dept.,
EURECOM, France, email: agheli@eurecom.fr. M. Kountouris is also
with the Dept. of Computer Science and Artificial Intelligence, University
of Granada, Spain, email: mariosk@ugr.es. N. Pappas is with the Dept.
of Computer and Information Science, Linköping University, Sweden, email:
nikolaos.pappas@liu.se. P. Popovski is with the Dept. of Electronic
Systems, Aalborg University, Denmark, email: petarp@es.aau.dk. This
work has been supported in part by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 101003431), the Velux Foundation, Denmark, through
the Villum Investigator Grant WATER, nr. 37793, the Swedish Research Coun-
cil (VR), ELLIIT, and the SNS JU projects under the EU’s Horizon program
Grant Agreement No 101139232(6G-GOALS), No. 101096526 (ETHER), and
No. 101192080 (6G-LEADER), and the European Union’s Horizon Europe
Research and Innovation Programme under the Marie Skłodowska-Curie Grant
Projects SOVEREIGN under Agreement 101131481and ELIXIRION under
Grant 101120135. Part of this work is presented in [1].

the goal-oriented and/or semantic communication paradigm,
holding the potential to enhance the efficiency of diverse net-
work processes through a parsimonious use of communication
and computation resources [2], [3]. From an effectiveness
perspective, a message is generated and conveyed by a sender
if it has the potential to have the desirable effect or the right
impact at the destination, e.g., executing a critical action, for
accomplishing a specific goal. This promotes system scalabil-
ity and efficient resource usage by avoiding the acquisition,
processing, and transportation of information that turns out to
be ineffective, irrelevant, or useless.

Messages, e.g., in the form of status update packets, are
communicated over existing networked intelligent systems
mostly using a push-based communication model. Therein,
packets arriving at the source are sent to the destination based
on decisions made by the source, regardless of whether the
endpoint has requested or plans to utilize these updates to
accomplish a goal. In contrast, in a pull-based model, the
endpoint decides to trigger and request packet transmissions
from the source and controls the time and the type of generated
updates [4]–[10]. Nevertheless, this model does not consider
the availability of the source to generate updates or the
usefulness of those updates. To overcome these limitations, we
propose an integrated push-and-pull model that involves both
agents/sides in the decision-making process, thereby combin-
ing push- and pull-based paradigms in a way that mitigates
their drawbacks. In either model, decisions at the source or
endpoint could influence the effectiveness of communicated
updates. Therefore, we can categorize decision policies into
effect-aware and effect-agnostic. Under an effect-aware policy,
the source adapts its decisions by taking into account the
effects of its communicated packets at the endpoint. Likewise,
the endpoint initiates queries based on the evolution of the
source and the expected importance of the pulled updates.
Under the effect-agnostic policy, however, decisions are made
regardless of their consequent effect on the performance.

We illustrate the motivation behind the integrated push-and-
pull model under effect-aware policies with a real-world exam-
ple: Consider an autonomous mobile robot (AMR) platform,
such as Amazon’s Proteus. In addition to communicating with
a central control system, robotic agents might engage in peer-
to-peer interactions to support dynamic obstacle detection,
collision avoidance, and cooperative task execution. In this
context, timely and effective information exchange becomes
critical, particularly in dense environments, such as ware-
houses. Each robot may serve as a sensing agent, an actu-
ation agent, or both, depending on its current state, assigned

tasks, and proximity to other robots. A purely push-based
communication model risks overwhelming actuation agents
with irrelevant or redundant data, or miss critical updates
amid competing transmissions. Conversely, a purely pull-based
model requires actuation agents to query sensing agents for
updates, which can delay the detection or response to urgent
events, such as unexpected obstacles. The push-and-pull model
offers a balanced alternative by integrating both strategies.
Actuation agents retain the flexibility to pull information as
needed, while sensing agents can proactively push updates
deemed highly relevant to current goals. With effect-aware
decision-making, information exchange and robotic actions
are prioritized based on contextual relevance and the actu-
ator’s readiness to respond. This fosters efficient multiplexing
of shared computational resources, and thus energy, across
concurrent tasks of a robot, including sensing, actuation,
and communication. Furthermore, by continuously monitoring
environmental dynamics, actuation agents can adapt the timing
of their queries to align with the evolving urgency and impact
of the incoming information.

In this work, we investigate a time-slotted end-to-end status
update system in which a sensing agent observes an infor-
mation source and communicates updates/observations in the
form of packets with an actuation agent. The actuation agent
then takes action based on the updates successfully received as
a means of accomplishing a subscribed goal at the endpoint.
We develop an integrated push-and-pull model, which allows
both agents to make decisions based on their local policies
or objectives. In particular, a transmission controller at the
sensing agent decides to either send or drop update packets
according to their potential usefulness at the endpoint. On
the other side, a query controller at the actuation agent also
determines the time instants around which the actuator should
perform actions in the form of initiating queries. In that sense,
effective updates are those that result in the right impact
and action at the endpoint. These queries, however, are not
communicated to the sensing agent. Instead, the actuation
agent acknowledges effective updates to the sensing agent.
With prior knowledge that the effectiveness of updates depends
on the actuator’s availability to perform actions, the sensing
agent can infer the initiated queries based on those acknowl-
edgments. A time diagram showing processes at both agents
is depicted in Fig. 1.

We introduce a metric to measure the effectiveness and
significance of updates and derive a class of optimal policies
for each agent that make effect-aware decisions to maximize
the long-term expected effectiveness of the update packets
communicated to achieve the goal, subject to induced costs.
These costs may arise from transmitting updates, initiating
queries, and the availability of the actuation agent to respond
and take action, all of which depend on the communication
model. To do so, each agent must first estimate the necessary
system parameters to make the right decisions. Our analytical
and simulation results show that the integrated push-and-pull
model offers higher energy efficiency compared to the push-
based model and better effectiveness performance compared
to the pull-based one. Moreover, we observe that utilizing
effect-aware policies at both agents significantly improves the

Fig. 1. A timing diagram of processes involving the sensing and actuation
agents, illustrating interactions and update communications leading to actions.

system’s effectiveness performance in most cases, with a large
gap compared to periodic and probabilistic effect-agnostic
policies at either or both agents. Accordingly, we demonstrate
that the solution for finding an optimal effect-aware policy
at each agent converges to a threshold-based agent decision
framework where the agent can make timely decisions based
on an individual lookup map in hand and threshold boundaries
computed to satisfy the goal.

A. Related Works

This paper widely broadens prior work on push-based and
(query-) pull-based communications by enabling both agents
to make decisions in order to maximize the effectiveness of
communicated updates in the system. The pull-based commu-
nication model has been widely analyzed; see, for example,
[4]–[10]. In [4], a metric called effective age of information
(EAoI), which comprises the effects of queries and the fresh-
ness of updates in the form of the age of information (AoI)
[11]–[13], is introduced. Query AoI (QAoI), which is similar
to the EAoI, is utilized in [5]–[9]. Following the same concept
as QAoI, on-demand AoI was introduced in [10], [14]. Probe-
based (query-based) active fault detection, where actuation or
monitoring agents adaptively decide to probe sensing agents to
detect probable faults at the endpoint, is studied in [15]. Most
prior work has employed a pull-based communication model
and focuses on the freshness and timeliness of information.
In this work, we consider multiple information attributes
and propose a grade of effectiveness metric to measure the
effectiveness of updates, which goes beyond existing metrics
such as AoI, EAoI, QAoI, on-demand AoI, age of incorrect
information (AoII) [16], and value of information (VoI) [17],
[18]. In particular, we focus on the freshness of successfully
received updates and the timeliness of performed actions as
two attributes of interest at the link level and on the usefulness
of the updates to achieve the goal at the source level.

This paper extends our prior work [1], which only considers
a pull-based model and an effectiveness metric with two
attributes: freshness and usefulness. As such, [1] conveys a
special form of the decision problem we solve here. In this
work, we generalize the problem to a push-and-pull communi-
cation model, considering that the sensing and actuation agents

individually make decisions and converge to a point where
they can transmit updates and initiate queries, respectively, to
maximize the effectiveness of updates and achieve the desired
impact at the endpoint. Importantly, we assume that the source
distribution is unknown to the actuation agent, and the sensing
agent does not have perfect knowledge of the goal. Therefore,
the agents must estimate the required parameters separately.
This approach is substantially different from the one in our
previous work and other state-of-the-art techniques.

B. Contributions

The main contributions can be briefly outlined as follows.

• We develop an integrated push-and-pull update communi-
cation model, which allows both agents to take decision-
making roles in communicating updates and taking appro-
priate actions to satisfy the goal, following the paradigm
of goal-oriented communications. This makes the system
more adaptable from an effectiveness viewpoint com-
pared to the conventional push- and pull-based models.

• We use a grade of effectiveness metric to capture the
timely impact of communicated updates at the endpoint,
which relies on the freshness of successfully communi-
cated updates, the timeliness of actions performed, and
the usefulness of those updates in fulfilling the goal.
Our approach maps multiple information attributes into
a unique metric that measures the impact or effect that
each status update packet traveling over the network can
have.

• We obtain optimal model-based control policies for
agents that make effect-aware decisions to maximize the
discounted sum of updates’ effectiveness while keep-
ing the induced costs within predefined constraints. To
achieve this, we formulate an optimization problem,
derive its dual form, and propose an iterative algorithm
based on dynamic programming to solve the decision
problem separately and independently from each agent’s
perspective.

• We demonstrate that the integrated push-and-pull model
offers higher energy efficiency than the push-based model
and better effectiveness performance compared to the
pull-based one. We also show that applying effect-aware
policies at both agents results in better performance than
in the scenarios where one or both agents utilize effect-
agnostic policies. We also broaden our results by deriv-
ing model-free decisions using reinforcement learning.
Finally, we provide a lookup map presenting the optimal
decisions for each agent that applies the effect-aware
policy based on the given solution. This allows the agent
to make decisions on time by merely looking up the map
with the obtained threshold-based policy for the goal.

Notations: R, R+
0 , and N indicate the sets of real, non-

negative real, and natural numbers, respectively. E[·] denotes
the expectation operator, |·| depicts the absolute value operator,
1{·} is the indicator function, O(·) denotes growth rate of a
function, and ⌈·⌉ is the ceiling function.

II. SYSTEM MODEL

We consider an end-to-end communication system in which
a sensing agent (SA) sends messages in a time-slotted manner
to an actuation agent (AA) as a means of taking effective
action at the endpoint and satisfy a subscribed goal. Specif-
ically, the SA observes a source and generates status update
packets in each time slot, and a transmission controller decides
whether to transmit that observation or not, following a spe-
cific policy. We assume that the source has finite-dimensional
realizations and that the observation at the n-th, ∀n ∈ N,
time slot is assigned a rank of importance vn from a finite
set V = {νi | i ∈ I}, with I = {1, 2, . . . , |V|}, based on its
significance or usefulness for satisfying the goal, measured or
judged at the source level.1 The elements of V are independent
and identically distributed (i.i.d.) with probability pi = pν(νi)
for the i-th outcome, where pν(·) denotes a given probability
mass function (pmf).2

The AA is assisted by a query controller that decides
to initiate queries and to pull new updates according to a
certain policy. A packet received at the AA has a satisfactory
or sufficient impact at the endpoint if that update achieves
a minimum effectiveness level, subject to the latest query
initiated and the AA’s availability to act on it. An effective
update communication is followed by an acknowledgment of
effectiveness (E-ACK) signal sent from the AA to the SA
to report the effective update communication. We assume all
transmissions and E-ACK feedback occur over packet erasure
channels (PECs), with pϵ and p′ϵ being the erasure probabilities
in the forward communication and the acknowledgment links,
respectively. Therefore, an E-ACK may not be received at
the SA due to either ineffective update communication or
erasure in the acknowledgment (backward) channel. With this
interpretation, channel errors lead to a graceful degradation of
the proposed scheme. An initiated query does not necessarily
need to be shared with the SA. As discussed in Section III-C,
the SA can deduce the initiation of a query or the availability
of the AA to take action from a successful E-ACK, given prior
knowledge that an update can be effective only if it arrives
within the period during which the AA is available to act.

In this model, we consider the goal to be subscribed at the
endpoint, with the AA fully aware of it. In contrast, the SA
does not initially know the goal but learns which updates could
be useful to accomplish the goal based on the received E-ACK
and the significance of observations. Meanwhile, the AA is not
aware of the evolution of the source or the likely importance
of observations, attempting to approximate it based on arrival
updates. Consequently, the agents might use different criteria
to measure the usefulness of the updates and may need to
adjust their criteria or valuation frameworks to account for
possible goal changes over time. Finally, we assume that
update acquisition, potential communication, and waiting time
for receiving an E-ACK occur within one slot.

1To determine the usefulness of an update, we can use the same metavalue
approach proposed in [19, Section III-A].

2A more elaborate model could consider the importance of a realization
dependent on the most recently generated update at the SA. This implies that
a less important update increases the likelihood of a more significant update
occurring later, which can be captured by utilizing a learning algorithm.

A. Communication Model

The following three strategies can be employed for effective
communication of status updates.

1) Push-based: Under this model, the SA pushes its
updates to the AA, taken for instance based on the source
evolution, without considering whether the AA has requested
them or is available to take any action upon receipt. This
bypasses the query controller, enabling the SA to directly
influence actions at the AA side.

2) Pull-based: In this model, the query controller plays
a central role in the generation of update arrivals at the AA
by pulling those updates from the SA. Here, the AA can only
take action when queries are initiated. However, this model
excludes the SA from generating and sending updates.

3) Push-and-pull: This model arises from integrating the
push- and pull-based models so that the transmission and
query controllers individually decide to transmit updates and
send queries, respectively. Thereby, the AA is provided with
a level of flexibility where it is also able to take some actions
beyond query instances within a limited time. As a result,
the effectiveness of an update packet depends on both agents’
decisions. Dismissing the decision of either agent transforms
the push-and-pull model into the push- or pull-based model.

B. Agent Decision Policies

We propose that the agents can adhere to the following
decision policies, namely effect-agnostic and effect-aware, for
transmitting updates or initiating queries to satisfy the goal.

1) Effect-agnostic: This policy employs a predetermined
schedule or random process (e.g., Poisson, binomial, or
Markov [5]–[9]) to send updates (initiate queries) from (by)
the SA (AA), without considering their impact at the endpoint.
We define a controlled update transmission (query) rate spec-
ifying the expected constant number of updates (queries) to be
communicated (initiated) within a period. Also, as the effect-
agnostic policy does not account for what might be happening
in the other agent during the decision time, an aleatoric
uncertainty is associated with random updates (queries).

2) Effect-aware: The effect-aware policy takes into consid-
eration the impacts of both agents’ decisions at the endpoint.
In this regard, the SA (AA) predicts the effectiveness status
at the endpoint offered by a sent update that is potentially
received at the AA (the usefulness of a possible update at the
source). Then, based on this prediction, the agent attempts to
adapt transmission (query) instants and send (pull) updates in
the right slots. This policy comes with an epistemic uncertainty
because decisions are made according to probabilistic estima-
tions, not accurate knowledge. However, such uncertainty can
be decreased using learning or prediction techniques.

III. EFFECTIVENESS ANALYSIS METRICS

To achieve the right effect at the endpoint, an update packet
that is successfully received at the AA has to satisfy a set of
qualitative attributes, captured by the metrics as follows.

A. Grade of Effectiveness Metric

We introduce a grade of effectiveness (GoE) metric that
comprises several qualitative attributes and characterizes the
amount of impact an update makes at the endpoint. Mathemat-
ically speaking, the GoE metric is modeled via a composite
function GoEn = (f ◦ g)(In) for the n-th time slot. Here,
g : Rx → Ry, x ≥ y, is a (nonlinear) function of x ∈ N
information attributes In ∈ Rx, and f : Ry → R is a context-
aware function.3 The particular forms of functions f and g
could vary according to different subscribed goals and their
relevant requirements.

In this paper, without loss of generality, we consider
freshness of updates and timeliness of actions as the main
contextual attributes. The first comes in the form of the AoI
metric, which is denoted by ∆n ∈ N. The second is measured
from the action’s lateness, denoted by Θn ∈ N. Thereby, we
can formulate the GoE metric as follows

GoEn = fg
(
g∆(v̂n,∆n), gΘ(Θn); gc(Cn)

)
(1)

where Cn ∈ R+
0 represents the overall cost incurred at the

n-th time slot. Also, g∆ : V̂ × N → R+
0 , gΘ : N → R+

0 , and
gc : R+

0 → R+
0 are penalty functions, and fg : R+

0 × R+
0 ×

R+
0 → R+

0 is a non-decreasing utility function. Moreover, g∆,
gΘ, and gc are non-increasing with respect to (w.r.t.) ∆n, Θn,
and Cn, respectively, while g∆ is non-decreasing w.r.t. v̂n.
Here, v̂n is the usefulness of the received update from the
endpoint’s viewpoint at the n-th slot. Thus, we assume that v̂n
belongs to the set V̂ = {0} ∪ {ν̂j | ν̂j > 0, j ∈ J } with i.i.d.
elements, where J = {1, 2, . . . , |V̂| − 1}, the j-th element
has probability qj = pν̂(ν̂j), and pν̂(·) is a pmf derived in
Section V-A. Since the packet is sent over a PEC, v̂n = 0 if it
is erased or the update ends up being useless at the endpoint.

1) AoI: Measuring the freshness of correctly received
updates at the AA within a query slot, the AoI is defined
as ∆n = n− u(n), where ∆0 = 1 and u(n) is the slot index
of the latest successful update, which is given by

u(n) = max
{
m |m ≤ n, βm(1− ϵm) = 1

}
(2)

with ϵm ∈ {0, 1} being the channel erasure at the m-th slot. In
addition, βm ∈ {0, 1} indicates the query controller’s decision,
where βm = 1 means pulling the update; otherwise, βm = 0.

2) Action lateness: The lateness of an action performed at
the n-th time slot in relevance to a query initiated at the n′-th
slot, n′ ≤ n, is calculated as follows

Θn = (1−βn)(n−n′), (3)

which is valid for Θn < Θmax. Herein, Θmax shows the width
of action window within which the AA can act on each query
based on update arrivals from the SA. Outside the dedicated
action window for the SA, the AA might undertake other tasks
or communicate with other agents. Employing the push-based,
pull-based, and push-and-pull update communication models,
we have Θmax =∞, Θmax = 1, and Θmax > 1, respectively.
Fig. 2 shows the action and idle windows for different models.

3The GoE metric in this form can be seen as a special case of the semantics
of information (SoI) metric introduced in [2], [19], [20].

Fig. 2. The outline of the action and idle windows in different models.

A wider action window enables higher flexibility during heavy
action loads at the cost of longer actuation availability.

B. Special Forms of the GoE

The GoE metric’s formulation in (1) can simply turn into
the QAoI and the VoI metrics as special cases. In this
regard, we obtain a penalty function of the QAoI such that
GoEn = g∆(∆n) if we set Θmax = 1, assume linear gΘ(·),
and overlook updates’ usefulness and cost. In addition, by
removing the concepts of query and time, hence the freshness
and timeliness in the GoE’s definition, we arrive at a utility
function of the VoI, i.e., GoEn = fg(v̂n; gc(Cn)).

C. Effectiveness Indicator

An update at the n-th time slot is considered effective at the
system level if its GoEn is higher than a target effectiveness
grade, which is called GoEtgt and is necessary to satisfy the
goal. Let us define En as an effectiveness indicator at the n-th
time slot. Thus, we can write

En = 1{GoEn ≥ GoEtgt ∧Θn < Θmax}. (4)

The second condition in (4) appears from (3). According to (4),
an update could be effective only if it arrives within the action
window of the AA. Hence, a consequent E-ACK shared with
the SA can imply the initiation of a query or the availability of
the AA to take action. Given the values of ∆n and Θn, and by
inserting (1) into (4), we reach a target usefulness level vtgt
as the importance threshold that the update should exceed to
be considered effective. In this case, if Θn < Θmax, we have

vtgt =

min
{
ν̂j | ν̂j ∈ V̂, fg(g∆(ν̂j ,∆n), gΘ(Θn)) ≥ GoEtgt

}
; (5)

otherwise, vtgt = max{ν̂j | ν̂j ∈ V̂}. In (5), vtgt can be
computed using exhaustive search.

IV. MODEL-BASED AGENT DECISIONS

In this part, we first formulate a decision problem for
effect-aware policies, cast it as a constrained Markov decision
process (CMDP) [21], and then solve it based on its dual form.

A. Problem Formulation

The objective is to maximize the expected discounted sum
of the updates’ effectiveness in fulfilling the subscribed goal,

where each agent individually derives its decision policy sub-
ject to the relevant imposed cost by looking into the problem
from its own perspective. Let us define π∗

α and π∗
β as the

classes of optimal policies for transmission and query controls,
respectively. Therefore, we can formulate the decision problem
solved at each agent as follows4

P1 : max
πγ

lim sup
N→∞

1

N
E
[N∑
n=1

λnEn

∣∣E0

]

s.t. lim sup
N→∞

1

N
E
[N∑
n=1

λncγ(γn)

]
≤ Cγ,max (6)

where λ ∈ [0, 1] indicates a discount factor, and γ ∈ {α, β} is
replaced with α and β for the update transmission and query
decision problems, respectively, at the SA and the AA. Herein,
γn ∈ {0, 1} denotes the decision at the relevant agent, cγ :
{0, 1} → R+

0 is a non-decreasing cost function, and Cγ,max

shows the maximum discounted cost.
For either update communication model introduced in Sec-

tion II-A, optimal decisions at the agent(s) following the
effect-aware policy, i.e., π∗

α and/or π∗
β , are obtained by solving

P1 in (6). However, for every agent that employs an effect-
agnostic policy, with regard to Section II-B, there is a pre-
defined/given set of decisions denoted by π̃α or π̃β such that
πα = π̃α or πβ = π̃β , respectively.

B. CMDP Modeling

We cast P1 from (6) into an infinite-horizon CMDP denoted
by a tuple (Sγ ,Aγ , Pγ , rγ) with components that are defined
via the agent that solves the decision problem.

1) Modeling at the SA: The CMDP at the SA is modeled
according to the following components:

States – The state of the system Sα,n at the n-th slot from
the SA’s perspective is depicted by a tuple (vn, Ên) in which
vn is the update’s usefulness, and Ên ∈ {0, 1} shows the E-
ACK arrival status at the SA after passing the PEC, as defined
in Section II. Herein, we have Ên = 0 in case En = 0 or the
acknowledgment signal is erased; otherwise, Ên = 1. In this
regard, Sα,n belongs to a finite and countable state space Sα
with |Sα| = 2 · |V| elements.

Actions – We denote αn the decision for update communi-
cation at the n-th slot, which is a member of an action space
Aα = {0, 1}. In this space, 0 stands for discarding the update,
and 1 indicates transmitting the update.

Transition probabilities – The transition probability from
the current state Sα,n to the future state Sα,n+1 via taking the
action αn is written by

pα(Sα,n, αn, Sα,n+1) = Pr
(
(vn+1, Ên+1) | (vn, Ên), αn

)
= pν(vn+1)Pr

(
Ên+1 | vn, αn

)
(7)

since Ên+1 and Ên are independent, and Ên is independent
of vn, ∀n. We can derive the conditional probability in (7) as

4In an ideal scenario, where both agents have full knowledge of the goals
and the source’s evolution, the problem could be approached in a centralized
manner, allowing for the joint derivation of policies for both agents. However,
this falls outside the scope of this work.

• Pr
(
Ên+1 = 0 | vn, αn

)
= Pr(v̂tgt > αnvn) = 1 −

Pv̂tgt(αnvn),
• Pr

(
Ên+1 = 1 | vn, αn

)
= Pv̂tgt(αnvn),

where v̂tgt is a mapped target usefulness that the SA considers,
Pv̂tgt

(v̂tgt) =
∑

v̂′
tgt≤v̂tgt

pv̂tgt
(v̂′tgt) indicates its cumulative

distribution function (CDF), and pv̂tgt
(·) shows the pmf de-

rived in Section V-B.
Rewards – The immediate reward of moving from the state

Sα,n to the state Sα,n+1 under the action αn is equal to
rα(Sα,n, αn, Sα,n+1) = Ên+1 where it relies on the E-ACK
status in the future state.

Despite possible erasures over the acknowledgment link, the
reward defined in this model fits into the decision problem in
(6), where the corresponding objective becomes maximizing
the expected discounted sum of E-ACK arrivals. In this sense,
Ên at the SA resembles En at the AA plus noise in the form
of the E-ACK erasure.

2) Modeling at the AA: For modeling the problem at the
AA, we have the components as follows:

States – We represent the state Sβ,n at the n-th time slot
using a tuple (v̂n,∆n,Θn), where v̂n is the usefulness of the
received update from the perspective of the endpoint, ∆n is
the AoI, and Θn denotes the action lateness, as modeled in
Section III. Without loss of generality, we assume the values
of ∆n and Θn are truncated by the maximum values notated
as ∆max and Θmax, respectively, such that the conditions

g∆(v̂n,∆max−1) ≤ (1 + ε∆)g∆(v̂n,∆max), (8)

for v̂n ∈ V̂ , and

gΘ(Θmax−1) ≤ (1 + εΘ)gΘ(Θmax) (9)

are met with the relevant accuracy ε∆ and εΘ. Given this, at
the AA, Sβ,n is a member of a finite and countable space Sβ
having |Sβ | = ∆max ·Θmax · |V̂| states.

Actions – As already mentioned, βn shows the decision of
initiating a query at the n-th time slot and gets values from
an action space Aβ = {0, 1}. Here, 0 and 1 depict refusing
and confirming to initiate a query, respectively.

Transition probabilities – The transition probability from
the current state Sβ,n to the future state Sβ,n+1 under the
action βn is modeled as

pβ(Sβ,n, βn, Sβ,n+1) =

Pr
(
(v̂n+1,∆n+1,Θn+1) | (v̂n,∆n,Θn), βn

)
. (10)

According to (10), we can write:

• Pr((ν̂j ,min{∆n+1,∆max},
min{Θn+1,Θmax}) | (ν̂j ,∆n, ,Θn), βn) = 1− βn,

• Pr((ν̂j ,min{∆n + 1,∆max}, 1) | (ν̂j ,∆n,Θn), βn) =
βnpϵ,

• Pr((ν̂j′ , 1, 1) | (ν̂j ,∆n,Θn), βn) = βn(1−pϵ)qj′ ,
with ν̂j , ν̂j′ ∈ V̂ . For the rest of the transitions, we have
pβ(Sβ,n, βn, Sβ,n+1) = 0. As stated earlier, qj = pν̂(ν̂j) with
the pmf pν̂(·) derived in Section V-A.

Rewards – Arriving at the state Sβ,n+1 from the state Sβ,n

by taking the action βn, is rewarded based on the effectiveness

level provided at the future state such that

rβ(Sβ,n, βn, Sβ,n+1) = En+1 =

1
{
fg(g∆(v̂n+1,∆n+1), gΘ(Θn+1)) ≥ GoEtgt

}
× 1

{
Θn+1 < Θmax

}
(11)

by the use of (1) and (4).
3) Independence of the initial state: Before we delve

into the dual problem and solve it, we state and prove two
propositions to show that the expected discounted sum of
effectiveness in (6) is the same for all initial states.

Proposition 1. The CMDP modeled at the SA satisfies the
accessibility condition.

Proof. Given the transition probabilities defined in (7), every
state Sα,m ∈ Sα, m ≤ N , is accessible or reachable from the
state Sα,n in finite steps with a non-zero probability, following
the policy πα. Therefore, the accessibility condition holds for
the CMDP modeled at the SA [22, Definition 4.2.1].

Proposition 2. The modeled CMDP at the AA meets the weak
accessibility condition.

Proof. We divide the state space Sβ into two disjoint spaces of
Ta and Tb = Sβ−Ta, where Ta consists of all the states whose
∆n = 1, i.e., Ta = {Sβ,n |Sβ,n = (ν̂j , 1,Θn),∀ν̂j ∈ V̂,Θn =
1, 2, . . . ,Θmax}. Thus, Tb includes the rest of the states with
∆n ≥ 2. With regard to the transition probabilities derived in
(10), all states of Tb are transient under any policy, while every
state of an arbitrary pair of two states in Ta is accessible from
the other state. Accordingly, the weak accessibility condition
in the modeled CMDP at the AA is satisfied according to [22,
Definition 4.2.2].

Given Propositions 1 and 2, we can show that the expected
effectiveness obtained by P1 in (6) is the same for all initial
states [22, Proposition 4.2.3]. In this regard, En, ∀n, is
independent of E0 for either model, thus we arrive at the
following decision problem:

P2 : max
πγ

lim sup
N→∞

1

N
E
[N∑
n=1

λnEn

]

s.t. lim sup
N→∞

1

N
E
[N∑
n=1

λncγ(γn)

]
≤ Cγ,max (12)

for γ = {α, β}. Applying Propositions 1 and 2 confirms that
there exist stationary optimal policies π∗

α and π∗
β for P2 solved

at the SA and the AA, respectively, where both policies are
unichain [22, Proposition 4.2.6].

C. Dual Problem

To solve the decision problem P2 given in (12), we first
define an unconstrained form for the problem via dualizing
the constraint. Then, we propose an algorithm to compute the
decision policies for both agents.

The unconstrained form of the problem is derived by writing
the Lagrange function L(µ;πγ) as below

L(µ;πγ) = lim sup
N→∞

1

N
E
[N∑
n=1

λn
(
En − µcγ(γn)

)]
+ µCγ,max (13)

with µ ≥ 0 being the Lagrange multiplier. According to (13),
we arrive at the following dual problem to be solved:

P3 : inf
µ≥0

max
πγ

L(µ;πγ)︸ ︷︷ ︸
:=hγ(µ)

(14)

where hγ(µ) = L(µ;π∗
γ,µ) is the Lagrange dual function with

π∗
γ,µ : Sγ → Aγ denoting a stationary µ-optimal policy, which

is obtained as

π∗
γ,µ = argmax

πγ

L(µ;πγ) (15)

for µ derived in the dual problem P3. As the dimension of the
state space Sγ is finite for both defined models, the growth
condition is met [23]. Furthermore, the immediate reward and
the induced cost are bounded according to Section IV. Given
these satisfied conditions, from [23, Corollary 12.2], we can
assert that P2 and P3 converge to the same expected values
such that we can write

inf
µ≥0

max
πγ

L(µ;πγ) = inf
µ≥0
L(µ;π∗

γ) = max
πγ

L(µ∗;πγ) (16)

for some policy class π∗
γ . Given the conditions satisfied, there

exist non-negative optimal values for the Lagrange multiplier
µ∗ under Slater’s condition such that (16) holds [23, Theo-
rem 12.8], establishing the strong duality between P2 and P3.

We can now proceed to derive the optimal policies at the
SA and the AA from the decision problem P3 by applying
an iterative algorithm in line with the dynamic programming
approach based on (13)–(15) [14].

D. Iterative Algorithm

The iterative algorithm is given in Algorithm 1 and consists
of two inner and outer loops. The inner loop is for computing
the µ-optimal policy, i.e., π∗

γ,µ, using the value iteration
method. Over the outer loop, the optimal Lagrange multiplier
µ∗ is derived via the bisection search method.

1) Computing π∗
γ,µ: Applying the value iteration method,

the decision policy is iteratively improved given µ from the
outer loop (bisection search). Thus, πγ,µ(s) ∈ Aγ , ∀s ∈ Sγ ,
is updated such that it maximizes the expected utility (value)
V

πγ,µ

k (s) at the k-th, ∀k ∈ N, iteration, which is obtained as

V
πγ,µ

k (s) = E
[
rk + λrk+1 + λ2rk+2 + · · · | sk = s

]
≈ E

[
rk + λV

πγ,µ

k−1 | sk = s
]

(17)

where sk denotes the state at the k-th iteration, and rk is the
corresponding reward at that state. The approximation in (17)
appears after bootstrapping the rest of the discounted sum of
the rewards by the value estimate V

πγ,µ

k−1 . Under the form of the

Algorithm 1: Solution for deriving π∗
γ and µ∗

Input: Given parameters N ≫ 1, Cγ,max, η, εµ,
CMDP’s state space, i.e., Sγ , and action space,
i.e., Aγ . The form of the cost function cγ(·).
Initial values l← 0, µ(0) ← 0, µ(0)

− ← 0,
µ
(0)
+ > 0, π

γ,µ
(0)
−
← 0, and π

γ,µ
(0)
+
← 0.

1 Derive π∗
γ,µ(s), ∀s ∈ Sγ , via running policy(µ(0)).

2 if E
[∑N

n=1 cγ(γn)
]
≤ NCγ,max then goto 11.

3 while |µ(l)
+ − µ

(l)
− | ≥ εµ do

Step l: ▷ Outer loop (Bisection search)
4 set l← l + 1, µ(l)

− ← µ
(l−1)
− , and µ

(l)
+ ← µ

(l−1)
+ .

5 Update µ(l) ← µ
(l)
− +µ

(l)
+

2
.

6 Improve π∗
γ,µ ← policy(µ(l)).

7 if E
[∑N

n=1 cγ(γn)
]
≥ NCγ,max then

8 µ
(l)
− ← µ(l), and π

γ,µ
(l)
−
← policy(µ(l)

−).

9 else µ
(l)
+ ← µ(l), and π

γ,µ
(l)
+

← policy(µ(l)
+).

10 if E
[∑N

n=1 cγ(γn)
]
< NCγ,max then

π∗
γ,µ(s)← ηπ

γ,µ
(l)
−
(s) + (1− η)π

γ,µ
(l)
+
(s), ∀s ∈ Sγ .

11 return µ∗ = µ(l) and π∗
γ(s) = π∗

γ,µ(s), ∀s ∈ Sγ .

Function policy(µ):
Input: Known parameters from the outer loop.

Initial values k ← 1, πγ,µ(s)← 0, and
V

πγ,µ

k (s)← 0, ∀s ∈ Sγ .
Iteration k: ▷ Inner loop (Value iteration)

12 for state s ∈ Sγ do
13 compute V

πγ,µ

k (s) from (18).
14 Improve πγ,µ(s) according to (19) and (20).

15 if sp
(
V

πγ,µ

k − V
πγ,µ

k−1

)
≥ επ as in (22) then

16 step up k ← k + 1, and goto 12.

17 return π∗
γ,µ(s) = πγ,µ(s), ∀s ∈ Sγ .

value iteration for the unichain policy MDPs [24], the optimal
value function is derived from Bellman’s equation [25], as

V
πγ,µ

k (s) =

max
γ∈Aγ

∑
s′∈Sγ

pγ(s, γ, s
′)
[
rγ,µ(s, γ, s

′) + λV
πγ,µ

k−1 (s′)
]

(18)

for the state s ∈ Sγ . Consequently, the decision policy in that
state is improved by

πγ,µ(s) ∈

argmax
γ∈Aγ

∑
s′∈Sγ

pγ(s, γ, s
′)
[
rγ,µ(s, γ, s

′) + λV
πγ,µ

k−1 (s′)
]
. (19)

In (18) and (19), we define a net reward function as

rγ,µ(s, γ, s
′) = rγ(s, γ, s

′)− µcγ(γ), (20)

which takes into account the cost caused by the action taken.
The value iteration stops running at the k-th iteration once

the following convergence criterion is met [24]:

sp
(
V

πγ,µ

k − V
πγ,µ

k−1

)
< επ (21)

where επ > 0 is the desired convergence accuracy, and sp(·)
indicates a span function R+

0 → R+
0 given as

sp
(
V

πγ,µ

k′

)
= max

s∈S
V

πγ,µ

k′ (s)−min
s∈S

V
πγ,µ

k′ (s) (22)

by using the span seminorm for the arbitrary k′-th iteration
[24, Section 6.6.1]. As the decision policies are unichain and
have aperiodic transition matrices, the criterion in (21) is
satisfied after finite iterations for any value of λ ∈ [0, 1] [24,
Theorem 8.5.4].

2) Computing µ∗: We leverage the bisection search
method to compute the optimal Lagrange multiplier over
multiple steps in the outer loop based on the derived π∗

γ,µ

from the inner loop. Starting with an initial interval [µ(0)
− , µ

(0)
+]

such that hγ(µ
(0)
−)hγ(µ

(0)
+) < 0, the value of the multiplier at

the l-th, ∀l ∈ N, step is improved by µ(l) =
µ
(l)
− +µ

(l)
+

2 . As
shown in Algorithm 1, at each step, the value of either µ(l)

− or
µ
(l)
+ and the corresponding decision policy π

γ,µ
(l)
−

or π
γ,µ

(l)
+

,
respectively, are updated according to the cost constraint in
(12) until a stopping criterion |µ(l)

+ − µ
(l)
− | < εµ is reached

with the accuracy εµ. Considering (13) and (14), hγ(µ) is
a non-increasing function of µ in the unsettled region where
the cost constraint has not yet been met. In this regard, the
bisection method searches for the smallest Lagrange multiplier
that guarantees the constraint. Also, one can show that hγ(µ)
denotes a Lipschitz continuous function with the Lipschitz
constant as below∣∣∣∣Cγ,max − lim sup

N→∞

1

N
E
[N∑
n=1

λncγ(γn)

]∣∣∣∣.
Therefore, the bisection search converges to the optimal value
of µ within finite steps [26, pp. 294].

After the outer loop stops running, we obtain a stationary
deterministic decision policy as π∗

γ = πγ,µ if the following
condition holds:

lim sup
N→∞

1

N
E
[N∑
n=1

λncγ(γn)

]
= Cγ,max. (23)

Otherwise, the derived policy becomes randomized stationary
in the shape of mixing two deterministic policies π

γ,µ
(l)
−

and
π
γ,µ

(l)
+

with probability η ∈ [0, 1] [27], where

π
γ,µ

(l)
−

= lim
µ→µ

(l)
−

πγ,µ, π
γ,µ

(l)
+

= lim
µ→µ

(l)
+

πγ,µ

in the l-th step, after which the bisection search terminates.
Hence, we can write

π∗
γ ← ηπ

γ,µ
(l)
−

+ (1− η)π
γ,µ

(l)
+
, (24)

which implies that the decision policy is randomly chosen as
π∗
γ = π

γ,µ
(l)
−

and π∗
γ = π

γ,µ
(l)
+

with probabilities η and 1− η,
respectively. In (24), η is computed such that the condition in
(23) is maintained.

3) Complexity analysis: The value iteration approach in
the inner loop is polynomial with O(|Aγ ||Sγ |2) arithmetic
operations at each iteration. Besides, the bisection search takes

Fig. 3. Time partitioning of the estimation and decision horizons.

⌈log2(
µ
(0)
+

ϵµ
)⌉ steps to reach the optimal Lagrange multiplier

within the tolerance of εµ, given the derived policy. Here, µ(0)
+

is the upper bound of the initial interval for the multiplier, with
the lower bound fixed at zero. Thereby, the overall complexity
of Algorithm 1, in terms of the number of arithmetic opera-
tions across both loops, can be calculated as follows

O

(
2|Sγ |2

1− λ
log

(
1

1− λ

)
log

(
µ
(0)
+

εµ

))
based on the fixed λ < 1 (see [28] and [29]). The algorithm’s
complexity increases as the state space expands, the initial
interval for the multiplier widens, λ→ 1, and εµ → 0.

V. MONTE CARLO PROBABILITY DISTRIBUTION
ESTIMATION

In this section, we leverage the Monte Carlo estimation
method to statistically compute the estimated pmfs of the
received updates’ usefulness from the endpoint’s perspective
at the AA, and the mapped target usefulness at the SA.
To this end, we consider a time interval in the format of
an estimation horizon (E-horizon), followed by a decision
horizon (D-horizon), as illustrated in Fig. 3. The E-horizon
is exclusively reserved for the estimation processes and has a
length of M time slots, which is sufficiently large to enable
an accurate estimation. The D-horizon represents the long-
term time horizon with a sufficiently large length of N ≫ 1
slots, as defined in Section IV, during which the agents find
and apply their (model) CMDP-based decision policies.

Within the E-horizon, the SA does not make any decisions.
Instead, it focuses on communicating updates at the highest
possible rate while adhering to cost constraints. Once receiving
these updates, the AA measures their usefulness, stores them in
memory, and sends E-ACK signals for effective updates. The
SA logs whether the E-ACK has been successfully received or
not at every slot of the E-horizon. Finally, both agents perform
their estimations by employing the received E-ACK signals at
the SA and the measured updates’ usefulness at the AA.

A. Usefulness Probability of Received Updates

Picking the j-th, ∀j ∈ J , outcome from the set V̂ (defined
in Section III-A) that corresponds to the received update’s
usefulness from the endpoint’s perspective at the m-th slot
of the E-horizon, i.e., v̂m, the relevant estimated probability
of that outcome is given by

qj = pν̂(ν̂j) =
1

M

M∑
m=1

1
{
v̂m = ν̂j

}
. (25)

B. Probability of the Mapped Target Usefulness

We assume that the mapped target usefulness, i.e., v̂tgt,
is a member of the set V̂tgt = {ϑj | j ∈ Jtgt} with i.i.d.
elements, where Jtgt = {1, 2, . . . , |V̂tgt|}, and the probability
of the j-th element is equal to pv̂tgt

(v̂tgt = ϑj). Herein, as
mentioned earlier, pv̂tgt

(·) is the estimated pmf of the mapped
target usefulness and obtained by

pv̂tgt(ϑj) =
∑

e∈{0,1}

pv̂tgt

(
ϑj | Ê = e

)
Pr
(
Ê = e

)
(26)

where we find the probability of successfully receiving E-
ACK, i.e., e = 1, or not, i.e., e = 0, as follows

Pr
(
Ê = e

)
=

1

M

M∑
m=1

1
{
Êm = e

}
(27)

where Êm indicates the E-ACK arrival status at the m-th
slot of the E-horizon. Furthermore, to derive the conditional
probability in (26), we first consider the successful arrivals of
E-ACK signals such that

pv̂tgt

(
ϑj | Ê = 1

)
=

∑
i∈I pν|Ê=1

(
νi | νi ≥ ϑj

)∑
j∈Jtgt

∑
i∈I pν|Ê=1

(
νi | νi ≥ ϑj

) .
(28)

Then, we have

pv̂tgt

(
ϑj | Ê = 0

)
=

∑
i∈I pν|Ê=0

(
νi | νi < ϑj

)∑
j∈Jtgt

∑
i∈I pν|Ê=0

(
νi | νi < ϑj

) .
(29)

The pmfs pν|Ê=1(·) and pν|Ê=0(·) in (28) and (29) are
associated with an observation’s importance rank given the
successful and unsuccessful communication of the E-ACK,
respectively. In this regard, by applying Bayes’ theorem, we
can derive the following formula:

pν|Ê=e

(
νi
)
=

1
M

∑M
m=1 1

{
vm = νi ∧ Êm = e

}
Pr(Ê = e)

. (30)

VI. SIMULATION RESULTS

In this section, we present simulation results that corroborate
our analysis and assess the performance gains in terms of
effectiveness achieved by applying different update models and
agent decision policies in end-to-end status update systems.

A. Setup and Assumptions

We study the performance over 5 × 105 time slots, which
includes the E-horizon and the D-horizon with 1 × 105 and
4 × 105 slots, respectively. To model the Markovian effect-
agnostic policy, we consider a Markov chain with two states,
0 and 1. We assume that the self-transition probability of state
0 is 0.9, while the one for state 1 relies on the controlled update
transmission or query rate. Without loss of generality, we
assume that the outcome spaces for the usefulness of generated
updates, i.e., V , the usefulness of received updates, i.e., V̂ , and
the mapped target usefulness, i.e., V̂tgt, are bounded within the
span [0, 1]. For simplicity, we divide each space into discrete
levels based on the number of its elements in ascending order,

TABLE I
PARAMETERS FOR SIMULATION RESULTS

Name Symbol Value

E-horizon length – 1×105 [slot]

D-horizon length N 4×105 [slot]

Erasure probability in update channel pϵ 0.2

Erasure probability in acknowledgment link p′ϵ 0.1

Length of generated update usefulness space |V| 10

Length of received update usefulness space |V̂| 11

Length of mapped target usefulness space |V̂tgt| 11

Shape parameters for usefulness distribution
a 0.3

b 0.3

Maximum truncated AoI ∆max 10 [slot]

Action window width in pull-based model
Θmax

1 [slot]
Action window width in push-and-pull model 5 [slot]
Action window width in push-based model 10 [slot]

Update transmission cost at n-th slot Cn,1 0.1

Query initiation cost at n-th slot Cn,2 0.1

Actuation availability cost at n-th slot Cn,3 0.01

Maximum discounted cost in decision problem Cγ,max 0.08

Target effectiveness grade GoEtgt 0.6

Discount factor in CMDP λ 0.75

Convergence accuracy in Algorithm 1
εµ 10−4

επ 10−4

Mixing probability in bisection method η 0.5

Controlled transmission rate (effect-agnostic) – 0.8

Controlled query rate (effect-agnostic) – 0.8

where every level shows a randomized value. We also consider
that the i-th outcome of the set V notated as νi, i ∈ I, occurs
following a beta-binomial distribution with pmf

pν(νi) =

(
|V| − 1

i− 1

)
Beta(i− 1 + a, |V| − i+ b)

Beta(a, b)
(31)

where Beta(·, ·) is the beta function, and a = 0.3 and b = 0.3
are shape parameters.
Moreover, we plot the figures based on the following form of

the GoE metric5, which comes from the general formulation
proposed in (1):

GoEn =
v̂n

∆nΘn
− αnCn,1 − βnCn,2 − Cn,3 (32)

for the n-th time slot. Herein, Cn,1 is the communication cost,
Cn,2 denotes the query cost, and Cn,3 indicates the actuation
availability cost at the AA which depends on the update com-
munication model. However, the cost function in the decision
problem’s constraint is assumed to be cγ(γn) = γn, ∀n ∈ N.
The parameters used in the simulations are summarized in
Table I. In the legends of the plotted figures, we depict the
policies at the agents in the form of a tuple, with the first and
second elements referring to the policy applied in the SA and
the AA, respectively. For an effect-aware policy, we use the
notation “E-aware,” while for an effect-agnostic policy, only

5The analysis can be easily extended to any other form of the GoE metric.

Fig. 4. Evolution of the average effectiveness accumulated over time in the
push-and-pull model.

the modeling process is mentioned in the legend.

B. Results and Discussion

Fig. 4 illustrates the evolution of the average cumulative
effectiveness over time for the push-and-pull model and dif-
ferent agent decision policies. As shown, applying the effect-
aware policy in both agents offers the highest effectiveness,
where the gap between its performance and the other policies’
performance increases gradually as time passes. Nevertheless,
using the other effect-agnostic policies at either or both agents
diminishes the effectiveness performance of the system by at
least 12% or 36%, respectively. Suppose the SA and the AA
apply the effect-aware and Markovian effect-agnostic policies
sequentially. In that case, the offered effectiveness is even
lower than the scenario in which both agents use periodic
effect-agnostic policies. One of the reasons is that the Marko-
vian query initiation misleads the SA in estimating the mapped
target usefulness of updates. It is also worth mentioning that
throughout the E-horizon from slot 1 to 1×105, the scenarios
where the AA initiates effect-aware queries demonstrate the
same performance and are better than the other scenarios.
However, in the D-horizon, a performance gap appears and
evolves depending on the applied policy at the SA. Therefore,
by making effect-aware decisions at both agents based on
estimations in the E-horizon and CMDP-based policies in the
D-horizon, performance can be significantly improved.

The bar chart in Fig. 5 shows the average rate of update
transmissions from the SA and the consequent actions per-
formed at the AA based on the initiated queries that result in
the system’s effectiveness, as depicted in Fig. 4. Interestingly,
the scenario where both agents apply the effect-aware policy
has lower transmission and action rates compared to the other
scenarios, except the ones with Markovian effect-agnostic
query policies. However, the number of actions that can be
taken for those scenarios with Markovian queries is limited
since most updates are received outside the action windows.
Figs. 4 and 5 show that using effect-aware policies at both
the SA and the AA not only brings the highest effectiveness
but also needs lower update transmissions by an average of
11%, saving resources compared to the scenarios that have

Fig. 5. Average update transmission and query rates for different decision
policies in the push-and-pull model.

comparable performances. We also note that although effect-
aware and periodic query decisions with effect-aware update
transmission have almost the same action rate, the effect-aware
case leads to more desirable effects or appropriate actions
at the endpoint. This results in around 16% higher average
cumulative effectiveness, referring to Fig. 4.

Figs. 6 (a), 6 (b), and 6 (c) present the average cumulative
GoE provided in the system over 5 × 105 time slots for the
push-and-pull, push- and pull-based communication models,
respectively. The corresponding effectiveness at the endpoint
for the primary model can be found in Fig. 4. The plots
demonstrate that when both agents decide based on effect-
aware policies, regardless of the update communication model,
the highest offered GoE of the system is reached. However, in
other scenarios, the performance of some policies exceeds that
of others, depending on the update model. For instance, hav-
ing effect-aware update transmission and Markovian queries
shows a 2.52 times higher average GoE for the push-based
model than the push-and-pull one. This is because the push-
based model has a larger action window.

Besides, comparing Figs. 6 (a) and 6 (b), the reason that the
provided GoE by the effect-aware decisions at both agents is
28% lower for the push-based model compared to the push-
and-pull is that the AA has to be available longer, which causes
a higher cost. Also, with the pull-based model as in Fig. 6 (c),
the average GoE within a period is less than the average
cost since the AA is only available to act at query instants,
significantly reducing the average GoE despite the high update
transmission rate. In the pull-based model, however, applying
the CMDP-based update transmission decisions at the SA can
address this issue with a 16% higher average GoE.

The trade-off between the average effectiveness and the
width of the action window, i.e., Θmax, is shown in Fig. 7
for different decision policies. We see that the system cannot
offer notable effectiveness with Θmax = 1, i.e., under the pull-
based model. However, by expanding the action window width
from Θmax = 1 to 10 [slot], the average effectiveness boosts
from its lowest to the highest possible value. Since all policies
already reach their best performance before Θmax = 10, which

(a)

(b)

(c)

Fig. 6. Temporal evolution of the average cumulative GoE for the (a) push-
and-pull, (b) push-based, and (c) pull-based models.

indicates the push-based model, we can conclude that the
push-and-pull model with a flexible action window is more
advantageous than the push-based one with a very large fixed
window. In addition, the scenario where both agents use effect-
aware policies outperforms the others for Θmax > 1. It is
worth mentioning that performance converges to the highest
level for sufficiently large widths in the scenarios where the
AA initiates Markovian queries. As depicted in Fig. 4, the
average cumulative effectiveness of these scenarios visibly
rises for Θmax ≥ 9.

The interplay between the average effectiveness and the

Fig. 7. Average effectiveness versus the action window width in the push-
and-pull communication model.

Fig. 8. Average effectiveness as a function of the target effectiveness grade
in the push-and-pull model.

target effectiveness grade, i.e., GoEtgt from Section III-C, is
depicted in Fig. 8 for the push-and-pull model and different
agent decision policies. Evidently, the average effectiveness
under all policies decreases gradually with the increase of the
target effectiveness grade and converges to zero for GoEtgt ≥
0.9. Using effect-aware policies at both agents offers the
highest effectiveness for medium-to-large target grades, i.e.,
GoEtgt ≥ 0.52 here. However, for lower target grades, the
effect-aware and periodic effect-agnostic decisions at the SA
and the AA, respectively, result in better performance. This
comes at the cost of higher transmission and action rates. Thus,
a trade-off emerges between incurred cost and offered effec-
tiveness, where different policies can be applied depending on
the chosen cost criterion and the target effectiveness grade.

Fig. 9 depicts the average effectiveness obtained in the
system through 5×105 time slots versus the controlled update
transmission rate for the push-and-pull model and various
agent decision policies. Concerning Section II-B, this con-
trolled rate is related to the effect-agnostic update transmission
policies at the SA and denotes the expected number of updates
to be communicated within the specified period. Therefore,
the performance of the other policies should remain fixed
for different controlled transmission rates. Fig. 9 reveals that
increasing the controlled update rate increases the offered

Fig. 9. Comparison between different policies with variable update transmis-
sion rates but fixed query rates for effect-agnostic policies.

Fig. 10. Comparison between different policies with variable query rates but
fixed update transmission rates for effect-agnostic policies.

effectiveness when the SA applies the effect-agnostic policies.
However, even at the highest possible rate, subject to the
maximum discounted cost, using effect-aware policies at both
agents is necessary to ensure the highest average effectiveness,
regardless of the controlled transmission rate. As an illustrative
example, when the AA initiates effect-aware queries, the
effectiveness drops by an average of 38% (43%) if the SA
transmits updates based on the periodic (Markovian) effect-
agnostic policy instead of using the effect-aware one.

In Fig. 10, the plot shows the same trend as Fig. 9, but this
time it focuses on the changes in the average effectiveness
versus the controlled query rate. Herein, the controlled query
rate is dedicated to the scenarios where the AA operates under
effect-agnostic policies. The results indicate that the average
effectiveness rises with the increase of the controlled query
rate for the periodic and Markovian policies. However, the
increase in effectiveness is not significant for the latter one.
Despite this, even with the highest rates, the effectiveness
offered in the course of effect-aware queries is still higher
than that of initiating effect-agnostic queries. Therefore, the
highest average effectiveness is achieved when both agents
make effect-aware decisions, as depicted in Figs. 9 and 10.

In the context of the decision-making problem P2 in (12),
altering the maximum discounted cost, i.e., Cγ,max, can impact

Fig. 11. Average effectiveness achieved through different policies versus the
maximum discounted cost in the push-and-pull model.

the decisions made by each agent. To study this, we have
plotted Fig. 11 for the push-and-pull model under different
decision policies. The figure shows that the stricter the cost
constraint, the lower the average effectiveness, irrespective of
the decision policy. Also, for all cost constraints, the scenario
in which both agents use effect-aware policy yields the best
performance, whereas the other policies outperform each other
under different cost constraints. Due to CMDP-based deci-
sions, the gap between the effectiveness performance of the
best scenario and that of the others increases as the constraint
decreases until Cγ,max = 0.1, where the SA can transmit all
updates, and the AA can initiate queries without restrictions.

According to the CMDP modeled at either agent, model-
based effect-aware policies heavily rely on the conditions of
the update and/or E-ACK channels. To evaluate this impact,
Fig. 12 illustrates the average effectiveness as a function
of the channel erasure probability. For clarity, we assume
pϵ = p′ϵ, where pϵ and p′ϵ denote the erasure probabilities
in the forward communication and the acknowledgment links,
respectively. At lower erasure probabilities, particularly when
pϵ ≤ 0.52, employing effect-aware policies at both agents
yields the highest average effectiveness. However, as channel
conditions worsen, the performance of effect-aware decision-
making gradually declines. Notably, when pϵ ≥ 0.66, the
effectiveness of pulling updates using effect-aware policies
drops to its lowest levels.

Afterward, we compare the performance provided by
model-based agent decisions discussed in Section IV with that
of model-free decisions. The latter is based on reinforcement
learning (RL), where each agent separately learns to make
decisions through direct interaction with the environment. This
learning process is modeled under the state (here, observation)
spaces, action sets, and rewards according to Section IV-B,
without relying on the construction of a predefined model.
To derive model-free decisions, we employ a deep Q-network
(DQN) and parameterize an approximate value function for
every agent within the E-horizon through a multilayer percep-
tron (MLP), assisted with the experience replay mechanism.
The neural network consists of two hidden layers, each with 64
neurons, and is trained using the adaptive moment estimation

Fig. 12. Interplay between average effectiveness and erasure probability for
both the update and E-ACK channels in the push-and-pull model.

Fig. 13. Temporal evolution of average cumulative effectiveness under model-
based and model-free (RL-based) policies in the push-and-pull model.

(Adam) optimizer. The default values for the RL setting are
taken from [30], except for the learning rate that is 10−4, and
the discount factor is assumed to be 0.75, as aligned with
Table I. In this regard, Fig. 13 depicts the evolution of the
average cumulative effectiveness over time for the push-and-
pull model. The graph compares the performance achieved
by model-based agent decisions with that of model-free (RL-
based) ones. As shown, the model-based approach outperforms
the model-free approach across all decision policies. However,
the performance gap is less significant when both agents apply
effect-aware policies. Considering the CMDP modeled at both
agents, several factors may contribute to the higher effective-
ness of the model-based approach, such as the relatively small
state space, especially for the modeling at the SA.

Additionally, the length of the E-horizon potentially in-
fluences the performance and complexity of both decision-
making approaches. To analyze this impact, Fig. 14 demon-
strates how the E-horizon length affects the average effective-
ness of effect-agnostic and effect-aware policies under both
model-based and model-free approaches for the push-and-pull
model. The results show that increasing the E-horizon length
enhances performance, reaching its peak at an optimal E-
horizon length. This optimal length value varies depending on
the policy and approach employed. For instance, when both

Fig. 14. Impact of E-horizon length on the effectiveness of model-based and
model-free (RL-based) policies in the push-and-pull model.

agents employ effect-aware policies, achieving the highest
effectiveness requires approximately 102.9 and 103.7 slots for
the model-based and model-free approaches, respectively, with
convergence accuracy specified in Table I. In this context, the
required E-horizon length serves as a measure of the com-
plexity of the corresponding algorithm for each approach. For
the above example, the model-based algorithm (Algorithm 1)
achieves a complexity that is 6.31 times lower compared to
the model-free DQN algorithm.

C. Lookup Maps for Agent Decisions

As the modeled CMDPs in Section IV-B have finite states,
we can depict optimal mode-based decisions derived in Algo-
rithm 1 via a multi-dimensional lookup map for each decision-
making agent. Figs. 15 and 16 illustrate the maps for the SA
and the AA, respectively, under different maximum discounted
costs. The number of dimensions in a map relies on the number
of elements constructing every state of the relevant CMDP,
with each dimension assigned to one element. With the lookup
map in hand, an agent can make optimal decisions at each slot
based on its current state. When comparing the same maps for
different maximum discounted costs, the observation emerges
that the more stringent the cost constraint is, the narrower the
agent decision boundaries become. Thus, the maps could vary
by changes in the parameters’ values or goals with different
target effectiveness grades. It is noteworthy that in Fig. 16, the
maps with Θn = 1 represent the pull-based model, while the
push-and-pull model converges to the push-based model with
Θn ≥ 3 and Θn ≥ 2 in Figs. 16 (a) and 16 (b), respectively.

We compute an optimal threshold for each element of the
state as a decision criterion, given the values of the other
elements. Let us consider Ωα and Ωβ as the decision criteria
at the SA and AA, respectively. To derive the optimal decision
α∗
n at the n-th slot, there are two alternative ways to define

the criterion:
Ωα is a threshold for the index of the update’s importance
rank, i.e., i ∈ I, for vn = νi,∀νi ∈ V , given the E-ACK,
i.e., Ên. Thus, we have

α∗
n = 1

{
i ≥ Ωα(Ên) | Ên

}
. (33)

(a) (b)

Fig. 15. Lookup maps for decision-making at the SA with (a) Cα,max = 0.06
and (b) Cα,max = 0.08.

(a)

(b)

Fig. 16. Lookup maps for decision-making at the AA with (a) Cβ,max =
0.06 and (b) Cβ,max = 0.08.

Ωα shows a threshold for the E-ACK given the impor-
tance rank of the update, such that

α∗
n = 1

{
Ên ≥ Ωα(vn) | vn

}
. (34)

For instance in Fig. 15 (a), Ωα(Ên = 0) = Ωα(Ên = 1) = 7,
∀n. Also, Ωα(vn = νi) > 1 for i ≤ 6, while Ωα(vn = νi) = 0
for i > 6. Applying the same approach, we find the decision
criterion Ωβ to obtain β∗

n from three different viewpoints.

VII. CONCLUSION

We investigated decision-making for enhancing the effec-
tiveness of updates communicated in the end-to-end sta-
tus update system based on a push-and-pull communication
model. To this end, we considered that the SA observes an
information source and generates updates, and its transmission
controller decides whether to send them to the AA or not.
On the other hand, the AA is responsible for acting based
on the updates that are successfully received and the queries
initiated to accomplish a subscribed goal at the endpoint. After
defining the GoE metric, we formulated the decision problem
of finding optimal effect-aware policies that maximize the
expected discounted sum of the update’s effectiveness subject

to cost constraints. Using the dual problem, we cast it to a
CMDP solved separately for each agent based on different
model components and proposed an iterative algorithm to
obtain the decision policies. Our results established that the
push-and-pull model, on average, outperforms the push- and
pull-based models in terms of energy efficiency and effective-
ness, respectively. Furthermore, effect-aware policies at both
agents significantly enhance the effectiveness of updates with
a considerable difference in comparison to that of periodic
and probabilistic effect-agnostic policies used at either or both
agents. Finally, we proposed a threshold-based decision policy
complemented by a tailored lookup map for each agent that
employs effect-aware policies. Future works could explore
multi-SA scenarios with varying sensing abilities and the
realizations’ time-dependent importance.

REFERENCES

[1] P. Agheli, N. Pappas, P. Popovski, and M. Kountouris, “Effective
communication: When to pull updates?” in Proc. IEEE Int. Conf.
Commun. (ICC), 2024, pp. 183–188.

[2] M. Kountouris and N. Pappas, “Semantics-empowered communication
for networked intelligent systems,” IEEE Commun. Mag., vol. 59, no. 6,
pp. 96–102, 2021.

[3] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin,
“Semantic-effectiveness filtering and control for post-5G wireless con-
nectivity,” J. Indian Inst. Sci., vol. 100, no. 2, pp. 435–443, 2020.

[4] B. Yin, S. Zhang, Y. Cheng, L. X. Cai, Z. Jiang, S. Zhou, and
Z. Niu, “Only those requested count: Proactive scheduling policies
for minimizing effective age-of-information,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2019, pp. 109–117.

[5] F. Li, Y. Sang, Z. Liu, B. Li, H. Wu, and B. Ji, “Waiting but not aging:
Optimizing information freshness under the pull model,” IEEE/ACM
Trans. Netw., vol. 29, no. 1, pp. 465–478, 2021.

[6] J. Holm, A. E. Kalør, F. Chiariotti, B. Soret, S. K. Jensen, T. B. Pedersen,
and P. Popovski, “Freshness on demand: Optimizing age of information
for the query process,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021.

[7] O. T. Yavascan, E. T. Ceran, Z. Cakir, E. Uysal, and O. Kaya, “When
to pull data for minimum age penalty,” in Proc. IEEE Int. Symp. Model.
Optim. Mobile Ad Hoc Wireless Netw. (WiOpt), 2021, pp. 1–8.

[8] F. Chiariotti, J. Holm, A. E. Kalør, B. Soret, S. K. Jensen, T. B. Pedersen,
and P. Popovski, “Query age of information: Freshness in pull-based
communication,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1606–1622,
2022.

[9] M. E. Ildiz, O. T. Yavascan, E. Uysal, and O. T. Kartal, “Query age of
information: Optimizing AoI at the right time,” in Proc. IEEE Int. Sym.
Inf. Theory (ISIT), 2022, pp. 144–149.

[10] M. Hatami, M. Leinonen, and M. Codreanu, “AoI minimization in status
update control with energy harvesting sensors,” IEEE Trans. Commun.,
vol. 69, no. 12, pp. 8335–8351, 2021.

[11] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,” Found. Trends Netw., vol. 12, no. 3, 2017.

[12] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE J.
Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, 2021.

[13] N. Pappas, M. A. Abd-Elmagid, B. Zhou, W. Saad, and H. S. Dhillon,
Age of Information: Foundations and Applications. Cambr. Univ. Press,
2023.

[14] M. Hatami, M. Leinonen, Z. Chen, N. Pappas, and M. Codreanu,
“On-demand AoI minimization in resource-constrained cache-enabled
IoT networks with energy harvesting sensors,” IEEE Trans. Commun.,
vol. 70, no. 11, pp. 7446–7463, 2022.

[15] G. Stamatakis, N. Pappas, A. Fragkiadakis, N. Petroulakis, and A. Tra-
ganitis, “Semantics-aware active fault detection in status updating sys-
tems,” IEEE Open J. Commun. Soc., vol. 5, pp. 1182–1196, 2024.

[16] A. Maatouk, M. Assaad, and A. Ephremides, “The age of incorrect in-
formation: An enabler of semantics-empowered communication,” IEEE
Trans. Wireless Commun., vol. 22, no. 4, pp. 2621–2635, 2022.

[17] R. L. Stratonovich, “On the value of information,” Izv. USSR Acad. Sci.
Tech. Cybern., no. 5, 1965.

[18] R. A. Howard, “Information value theory,” IEEE Trans. Syst. Cybern.,
vol. 2, no. 1, 1966.

[19] P. Agheli, N. Pappas, and M. Kountouris, “Semantic filtering and
source coding in distributed wireless monitoring systems,” IEEE Trans.
Commun., vol. 72, no. 6, pp. 3290–3304, 2024.

[20] N. Pappas and M. Kountouris, “Goal-oriented communication for real-
time tracking in autonomous systems,” in Proc. IEEE Int. Conf. Au-
tonomous Syst. (ICAS), 2021, pp. 1–5.

[21] J. Luo and N. Pappas, “Semantic-aware remote estimation of multiple
Markov sources under constraints,” IEEE Trans. Commun. (Early Ac-
cess), 2025.

[22] D. Bertsekas, Dynamic programming and optimal control. Athena Sci.,
2007, vol. 2.

[23] E. Altman, Constrained Markov decision processes. CRC press, 1999.
[24] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming. J. Wiley & Sons, 2014.
[25] R. Bellman, “On the theory of dynamic programming,” Proc. Natl. Acad.

Sci., vol. 38, no. 8, pp. 716–719, 1952.
[26] G. Wood, Bisection global optimization methods, C. A. Floudas and

P. M. Pardalos, Eds. Springer Sci. Bus. Media, 2009.
[27] F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov

chains with a constraint,” J. Math. Analy. Appl., vol. 112, no. 1, pp.
236–252, 1985.

[28] P. Tseng, “Solving H-horizon, stationary markov decision problems in
time proportional to log(H),” Oper. Res. Lett., vol. 9, no. 5, pp. 287–
297, 1990.

[29] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity
of solving Markov decision problems,” Proc. Conf. Uncertainty Artif.
Intell. (UAI), pp. 394–402, 1995.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

