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Abstract—In this paper, we investigate the problem of multi-
user linearly decomposable function computation, where N
servers help compute functions for K users, and where each such
function can be expressed as a linear combination of L basis
subfunctions. The process begins with each server computing
some of the subfunctions, then broadcasting a linear combination
of its computed outputs to a selected group of users, and finally
having each user linearly combine its received data to recover its
function. As it has become recently known, this problem can be
translated into a matrix decomposition problem F = DE, where
F ∈ GF(q)K×L describes the coefficients that define the users’
demands, where E ∈ GF(q)N×L describes which subfunction
each server computes and how it combines the computed outputs,
and where D ∈ GF(q)K×N describes which servers each user
receives data from and how it combines this data.

Our interest here is in reducing the total number of subfunc-
tion computations across the servers (cumulative computational
cost), as well as the worst-case load which can be a measure of
computational delay. Our contribution consists of novel bounds
on the two computing costs, where these bounds are linked here
to the covering and packing radius of classical codes. One of
our findings is that in certain cases, our distributed computing
problem — and by extension our matrix decomposition problem
— is treated optimally when F is decomposed into a parity check
matrix D of a perfect code, and a matrix E which has columns
as the coset leaders of this same code.

Keywords—Distributed computing, Linearly decomposable
functions, Perfect codes, Distributed gradient coding, Coded
distributed computing.

I. INTRODUCTION

Distributed computing systems such as MapReduce [1] and
Spark [2] form the backbone for processing computationally
hard functions in a variety of real-life applications such as
scientific simulations, gaming, as well as training large-scale
machine learning algorithms and deep neural networks with
high data complexity (cf. [3]). For many such applications,
distributed parallel processing techniques become crucial for
offloading computations to a group of distributed servers in
order to reduce the computation time.

It is the case though that this desired parallelization to the
distributed servers, constantly presents new challenges that
inspire various works, within the disciplines of information
theory and coding theory, seeking to design algorithms and
fundamental performance limits. Such research can be found
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of computational accuracy [4]–[7], latency and straggler mit-
igation [8]–[11], scalability [12]–[15], security and privacy
[16]–[20], as well as in the context of communication and
computation complexity [21]–[30].

Motivated by the same need to efficiently parallelize mul-
tiple computational tasks, our work here studies the known
multi-user linearly decomposable scenario introduced in [32],
[33], which can be seen as a multi-user extension to [34],
and which entails a master node that acts as a total trusted
authority in managing N server nodes, serving K users
that each demand their function to be computed. Under the
linearly-decomposable assumption, where each function is
a linear combination of L basis subfunctions, it was re-
cently shown (cf. [32], [33]) that the multi-user distributed
computing problem is mathematically equivalent to a sparse
matrix factorization problem of the form F = DE, where
F ∈ GF(q)K×L describes the linear coefficients of the
demands of the users, where the so-called computation and
encoding matrix E ∈ GF(q)N×L describes which subfunc-
tions each server evaluates and how each server combines the
subfunctions’ outputs, while the so-called communication and
decoding matrix D ∈ GF(q)K×N describes the server-to-user
activated connectivity and the manner with which each user
combines its received data.

This work here studies the above scenario by jointly
considering both the cumulative computational cost across
the servers, as well as (under a uniformity assumption in
the computational delay of evaluating each subfunction) the
worst-case computational load which, as we will discuss
later, captures the concept of computational delay. Our
main contribution is to connect the above two metrics of
our distributed computing problem, to the coding-theoretic
concepts of the covering radius and the packing radius
respectively. Then, in terms of the construction of schemes
that efficiently resolve our distributed computing problem,
our work provides a never-before-seen connection between
distributed computing and the powerful structure of perfect
codes. Deviating from the approach in [32] which uses
covering codes to reduce the computation cost in asymptotic
settings, we here show how perfect codes — which optimize
both the covering radius and packing density of codes —
yield an improved solution to our distributed computing
problem, both in terms of cumulative as well as worst-case
costs, and do so for finite dimensions. To the best of our
understanding, this is the first time that perfect codes (and the
closely related quasi-perfect codes) have been associated with
distributed computing and the equivalent problem of matrix
factorization. The derived novel bounds on the cumulative



computational cost as well as on the computational delay
of a multi-user linearly-decomposable system capture the
importance of the packing density as well as the packing and
covering radius (defined in [35]) of a code whose parity-check
matrix is our communication-and-computing matrix D. .

Paper Organization and Notation: Section II introduces the
system model, Section III formulates the problem, Section IV
presents the main results, and finally, Section V concludes.
In terms of notation, for some n ∈ N, we define [n] ≜
{1, 2, . . . , n}, while for some vector x or matrix X, we will
use ω(x) (resp. ω(X)) to denote the corresponding Hamming
weight. Furthermore, we will use the short-hand notation F
to represent a finite field GF(q). For some vector x ∈ Fn

and some code C ⊆ Fn, we will use d(x, C) to represent the
Hamming distance of x to the nearest codeword in C. For some
matrix H, we will use CH to represent the linear code whose
parity-check matrix is H. Similarly, when we write HC , we
will refer to the parity-check matrix of a linear code C. For
some k ≤ n, k, n ∈ N, we will also use C(k, n) to represent
a linear code of message length k and codeword length n.
Finally, we will use supp(x) to represent the support of some
vector x ∈ Fn, corresponding to the set of indices of non-zero
elements of that vector.

II. SYSTEM MODEL

We consider the multi-user linearly-decomposable dis-
tributed computation setting (cf. Fig. 1), which consists of K
users/clients, N active (non-idle) servers, and a master node
that coordinates servers and users. The process starts with
each user asking for a (generally non-linear) function from
a space of linearly decomposable functions, where each such
function takes several subfunctions as input1. In particular,
each desired function can be decomposed into a different
linear combination of individual subfunctions fl(.), and thus
the demanded function Fk of each user k ∈ [K], takes the
general linearly-decomposable form

Fk(.) ≜ fk,1f1(.) + fk,2f2(.) + . . .+ fk,LfL(.), k ∈ [K]

= fk,1W1 + fk,2W2 + . . .+ fk,LWL, k ∈ [K] (1)

where Wl = fl(.) ∈ F, l ∈ [L] is a so-called ‘file’ output,
and fk,l ∈ F, k ∈ [K], l ∈ [L] are the corresponding linear
combination coefficients.

A. Three Phases of the Distributed Computing Problem

The model involves three phases, with the first being the
demand phase, followed by the computation and encoding
phase, and then the communication and decoding phase. In the
demand phase, each user k ∈ [K] sends the information of its
desired function Fk(.) to the master node, which then evaluates
the linear decomposition of each function as in (1). Then based
on these K desired functions, during the computation and
encoding phase, the master assigns some of the subfunctions

1We here implicitly emphasize on scenarios where the computation of these
subfunctions far outweighs and subsequent encoding and decoding operations
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Fig. 1. The K-user, N -server, linearly-decomposable computation setting.
After each user informs the master of its desired function Fk(.), each server
n ∈ [N ] computes a subfunction Wl = fl(.) in Sn ⊂ [L]. Afterwards, server
n broadcasts a linear combination zn (of the locally available computed files)
to all users in Tn ⊆ [K]. This combination is defined by the coefficients
en,l. Finally, based on some decoding-coefficient vectors (based on some
decoding-coefficient vectors, to be described later on), each user k ∈ [K]
linearly combines (based on decoding vectors dk) all the received signals.
Decoding must produce for each user its desired function Fk(.).

to each server, who then proceeds to compute these and
produce the corresponding files Wl = fl(.). In particular, each
subfunction fl(.), l ∈ Sn ⊆ [L] will be assigned to server n
to be computed, for some carefully selected subset Sn ⊆ [L].

During the communication and decoding phase, each server
n ∈ [N ] broadcasts in one shot, its own linear combination
of the locally computed output files, to a specific2 subset of
users Tn. In particular, each server n transmits

zn ≜
∑
l∈[L]

en,lWl, n ∈ [N ] (2)

where the so-called encoding coefficients en,l ∈ F are deter-
mined by the master. Finally during the decoding part, each
user k linearly combines the received signals as follows

F ′
k ≜

∑
n∈[N ]

dk,nzn (3)

for some decoding coefficients dk,n ∈ F, n ∈ [N ], determined
by the master node. Naturally dk,n = 0, ∀k /∈ Tn. The
functions are successfully evaluated when F ′

k = Fk,∀k ∈ [K].

B. Cumulative Computation Cost and Computational Delay

Recalling that |Sn| indicates the number of subfunctions that
server n computes, we consider the Cumulative Computation
Cost to take the form

Γ ≜
N∑

n=1

|Sn| (4)

2We here emphasize that the activated topology is not fixed before the
demand phase, and that indeed the choice of receiving users for each server
a function of the demanded jobs.



representing the cumulative number of sub-function computa-
tions across all servers.

Furthermore, assuming that the jobs at each server are
computed sequentially — and under a uniformity assumption
that evaluating each file Wl, l ∈ [L] from the subfunction
fl(.) requires a normalized unit of time — we may consider
a server’s computational delay Tn = |Sn|

and thus, under some basic synchronization assumptions,
we may consider an overall computational delay that takes
the form

Λ ≜ max |Sn|. (5)

We wish to provide schemes that correctly compute the desired
functions, with reduced costs Γ and Λ.

III. PROBLEM FORMULATION: ONE-SHOT SETTING

To formulate the problem, we use

f ≜ [F1, F2, . . . , FK ]⊺, (6)

fk ≜ [fk,1, fk,2, . . . , fk,L]
⊺, k ∈ [K], (7)

w ≜ [W1,W2, . . . ,WL]
⊺ (8)

where f represents the vector of the output demanded functions
(cf. (1)), fk the vector of function coefficients for user k
(cf. (1)), and w the vector of output files. We also have

en ≜ [en,1, en,2, . . . , en,L]
⊺, n ∈ [N ], (9)

z ≜ [z1, z2, . . . , zN ]⊺ (10)

respectively representing the encoding vector at server n, and
the overall transmitted vector across all the servers (cf. (2)).
Furthermore, we have

dk ≜ [dk,1, dk,2, . . . , dk,N ]⊺, k ∈ [K], (11)

f ′ ≜ [F ′
1, F

′
2, . . . , F

′
K ]⊺ (12)

respectively representing the decoding vector at user k, and
the vector of the decoded functions across all the users. In
addition, we have

F ≜ [f1, f2, . . . , fK ]⊺ ∈ FK×L, (13)

E ≜ [e1, e2, . . . , eN ]⊺ ∈ FN×L, (14)

D ≜ [d1,d2, . . . ,dK ]⊺ ∈ FK×N (15)

where F represents the K × L matrix of all function coef-
ficients across all the users, where E represents the N × L
computation and encoding matrix across all the servers, and
where D represents the K ×N communication and decoding
matrix across all the users. We will henceforth assume that
the columns of F are different from each other.

Directly from (1), we have that

f = [f1, f2, . . . , fK ]⊺w (16)

and from (2) we have the overall transmitted vector to be

z = [e1, e2, . . . , eN ]⊺w = Ew. (17)

Furthermore, directly from (3) we have that

F ′
k = dT

k z (18)

and thus we have

f ′ = [d1,d2, . . . ,dK ]⊺z = Dz. (19)

Recall that we must guarantee that

f ′ = f . (20)

After substituting (16), (17) and (19) into (20), we see that
the feasibility condition in (20) is satisfied if and only if

DEw = Fw. (21)

For this to hold for any w, we must thus guarantee

DE = F. (22)

At this point, we note that Sn = supp(E(n, :)) and |Sn| =
ω(E(n, :)), which gives

Λ = max
n∈[N ]

|Sn| = max
n∈[N ]

ω(E(n, :)) (23)

revealing how the computational delay Λ of our system is
captured by the maximum number of non-zero elements of
any row of E. This is one of the two sparsity constraints
that interest us. The other sparsity constraint can be seen by
recalling that |Sn| = ω(E(n, :)) which gives

Γ =

N∑
n=1

|Sn| = ω(E) (24)

representing the total number of non-zero elements of E, and
which relates naturally to the cumulative computational cost
across all servers. Thus, being able to decompose F as F =
DE where E corresponds to a reduced Λ and Γ, allows us
indeed to reduce the two computation costs. To do this, we
will turn to perfect codes, as well as to quasi-perfect codes.

Note that whenever we say the multi-user linearly-
decomposable is implemented based on the decomposition
DE = F, it means that based on the dimensionality K,N ,
we pick a code and choose its parity-check matrix as our D,
and then perform a syndrome decoding algorithm by regarding
each column of F as a syndrome and each column of E as its
corresponding error vector.

Before doing so, let us here provide a simple example to
help clarify the setting and the notation.

A. Example

We consider the example of a system with a master node,
N = 11 servers, K = 5 users, L = 12 subfunctions, and
a field of size q = 3. In our example, the jobs are defined
(cf. (13)) by a demand matrix that here takes the form

F =


2 1 1 1 1 1 1 1 2 1 2 0
1 0 0 2 2 2 0 1 1 1 0 1
1 2 1 0 1 0 2 1 2 0 1 1
0 2 0 2 0 1 2 1 0 1 2 1
0 0 0 1 1 2 2 0 1 1 1 2

 .



In the computation and encoding phase, the master al-
locates the computation of the different subfunctions
f1(.), f2(.), . . . , f12(.) across the 11 servers according to

S1 = {1, 8, 10}, S2 = {2, 6}, S3 = {5, 9},
S4 = {4}, S5 = {7, 11}, S6 = {1, 6, 12}, S7 = {3},
S8 = {2}, S9 = {3, 10}, S10 = {7, 12}, S11 = {5, 8}

forcing the two costs to be Γ =
∑N

n=1 |Sn| = 21 and Λ =
maxn∈[N ] |Sn| = 3.

After computing their designated output files, each server
n transmits zn corresponding to a computation and encoding
matrix (cf. (17)) which here takes the value

E =



2 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 1 0
1 0 0 0 0 2 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0 0 0 0 2
0 0 0 0 2 0 0 2 0 0 0 0


and which indeed abides by the constraint max

n∈[N ]
ω(E(n, :)) =

Λ = 3 (cf. (23)) and the constraint ω(E) = Γ = 21 (cf. (24)).
Subsequently, the master asks each server n to send its

generated zn to its designated receiving users, where for each
server these user-sets are

T1 = {1, 2, . . . , 5}, T2 = {1, 2, . . . , 4},
T3 = {1, 2, 3, 5}, T4 = {1, 2, 4, 5},
T5 = {1, 3, 4, 5}, T6 = {2, 3, 4, 5}, T7 = {1}, T8 = {2},
T9 = {3}, T10 = {4}, T11 = {5}

which simply says that, for example, server 2 will broadcast
z2 to users 1, 2, 3, 4. Subsequently, the decoding procedure is
executed, adhering to a decoding matrix which takes the value

D =


1 1 1 2 2 0 1 0 0 0 0
1 1 2 1 0 2 0 1 0 0 0
1 2 1 0 1 2 0 0 1 0 0
1 2 0 1 2 1 0 0 0 1 0
1 0 2 2 1 1 0 0 0 0 1

 . (25)

In the next section, we will show that the decoding matrix D,
is drawn from a class of perfect codes whose properties — as
we show below — allow for an improved performance.

IV. MAIN RESULTS

We proceed with the main results of our work.

Theorem 1. The optimal computational delay Λ of the (K,N)
multi-user linearly decomposable problem implemented based
on the decomposition DE = F, is bounded as

Λ ≤ min{L,
τ∑

i=1

(
N − 1

i− 1

)
(q − 1)i + (1− µτ )q

K} (26)

where τ and µτ are respectively the packing radius and the
corresponding packing density of CD.

Proof. Let us rewrite (22) as

DE(:, l) = F(:, l), ∀l ∈ [L] (27)

and let us note that given a certain D, we ask that for every
column F(:, l) ∈ FK , the resulting E(:, l) has a reduced
number of non-zero elements. To achieve this, after regarding
D to be a parity-check matrix of a linear code, we employ a
syndrome decoder, rendering the ‘error pattern’ E(:, l) to be a
coset leader associated to syndrome F(:, l). Now let’s define
the following set

S ≜ {l : ω(E(:, l)) ≤ τ} (28)

which represents the syndromes F(:, l) for which the weight
of their associated coset leader is below the packing radius
τ . From the basic error-correcting argument, we know that
all the error patterns having no more than than τ non-zero
elements are indeed present in S, and thus we have that
|S| ≤

∑τ
i=1

(
N
i

)
(q−1)i. Let us now focus on a row subvector

E(n,S), and let us count the number of its non-zero elements.
Since we know that for all l ∈ S it is indeed the case that
ω(E(:, l)) ≤ τ , and since the collection of all such columns
E(:, l) contains all possible error patterns of weight up to τ ,
we can conclude that

ω(E(n,S)) ≤
τ∑

i=1

(
N − 1

i− 1

)
(q − 1)i, ∀n ∈ [N ] (29)

because i) each element E(n, l) ̸= 0, l ∈ S can take any one of
(q−1) possible values, because ii) such a column vector E(:, l)
(where again l ∈ S) has at most τ such non-zero elements, and
because iii) there exist at most

(
N−1
i−1

)
(q − 1)i−1 vectors E(:

, l) ̸= 0, l ∈ S whose nth entry E(n, l) is non-zero and whose
total weight is i ≤ τ . Summing across all i = 1, 2, ..., τ yields
the first term in our bound in (29). To conclude the proof, we
proceed to count the number of syndromes (columns F(:, l) of
F) whose coset leaders (referring to the corresponding column
E(:, l) of E) have weight strictly bigger than τ . To do so, we
first note that the number of points that are not covered by the
ball B(c, τ), c ∈ CD, is (1−µτ )q

N . Recalling that each coset
corresponds to qN−K points (vectors) in GF(q)N , we can
conclude that the number of cosets in question is (1−µτ )q

K .
These are the cosets corresponding to syndromes with indices
from S ′ ≜ {l : ω(E(:, l)) > τ}. Thus, for the worst-case
scenario of interest, we can consider that for all l for which
ω(E(:, l)) > τ , it is the case that we will encounter a non-zero
E(n, l) for any n ∈ [N ], which is reflected in the addition of
the second term (1 − µτ )q

K in our bound. Naturally, L is
a trivial upper bound on Λ. This concludes the proof of the
theorem.

We now proceed with the second result, this time regarding
the cumulative computation cost.



Theorem 2. The optimal cumulative computation cost Γ of
the (K,N) multi-user linearly decomposable problem imple-
mented based on the decomposition DE = F, is bounded as

Γ ≤ min{NL,
τ∑

i=1

(
N

i

)
(q − 1)ii+ (1− µτ )q

Kρ} (30)

where τ, ρ and µτ are respectively the packing radius, cover-
ing radius, and packing density of CD.

Proof. The proof follows the steps of the proof of Theorem 1,
up until the definition in (28), where similarly we now know
that all the error patterns having no more than τ non-zero
elements are present in the set of all possible F(:, l), l ∈ S,
and thus we know that the sum of the Hamming weights of the
coset leaders corresponding to the syndromes F(:, l), l ∈ S ,
takes the form

∑τ
i=1

(
N
i

)
i(q − 1)i which matches the first

term of our bound. Regarding the second term, we know that
for any l /∈ S , the number of non-zero elements in E(:, l) is
— by definition of the covering radius — no greater than ρ.
We also see, following the ball arguments in the proof of the
previous theorem, that the set S ′ ≜ {l : ω(E(:, l)) > τ} has
size |S ′| = (1−µτ )q

K . Hence, we can now conclude that the
sum of the weights of the coset leaders of the vectors (seen
as syndromes) in S ′, is upper bounded by ρ|S ′|.

A. The Connection to Perfect and Quasi-Perfect Codes

At this point, we note that the above bound on Γ is reduced
when the covering radius ρ is reduced, while the bound on
Λ is reduced when, for any given τ , the packing density µτ

is increased. For this reason we are looking for codes (whose
parity check matrix will be used as the decoding matrix D)
that indeed minimize ρ and increase µτ for a fixed τ . This
special and rare property sought in CD is indeed attributed to
the well-known class of perfect codes [35].

It is though known (cf. [36]) that there exist few such perfect
codes, for a few select dimensions. Thus, for other dimensions,
we will resort to the use of quasi-perfect codes which indeed
ensure a similar performance, by guaranteeing optimal ρ and
near-optimal µτ . We elaborate on this later on.

Remark 1. Looking back to our previous example corre-
sponding to N = 11,K = 5, L = 12 and q = 3, the
distributed computing solutions employed an E matrix that
resulted from an optimal syndrome decoding process of a code
whose parity check matrix D is indeed that of a ternary Golay
code, which is a known perfect code.

B. The Special Case of Maximal Basis Set

We here consider also the case where L = qK . This partic-
ular case of having a maximum number of basis subfunctions
presents interesting advantages. In essence, under the same
assumptions as before, we are now able to set the decoding
matrix D once, well before the desired functions are declared.
This allows us to have a fixed network connectivity, where —
under the assumption of knowing in advance K,N — we can
fix D, and we can then account for each F simply by altering
E. For this setting, we have the following propositions.

Proposition 1. The optimal computational delay Λ and cu-
mulative computation cost Γ of the (K,N) multi-user linearly
decomposable problem with maximal basis, are lower bounded
as

Λ ≥
τ∑

i=1

(
N − 1

i− 1

)
(q − 1)i, Γ ≥

τ∑
i=1

(
N

i

)
(q − 1)ii (31)

where τ is the packing radius of CD.

Proof. Regarding the bound on Λ, we follow all the steps
of the proof in Theorem 1, with the only differences being
firstly that the used inequality |S| ≤

∑τ
i=1

(
N
i

)
(q−1)i is now

automatically forced into an equality, and secondly that we
consider, by choice, a lower bound |S ′| ≥ 0. Exactly the same
approach applies for the bound on Γ.

Regarding optimality, we have the following proposition.

Proposition 2. The optimal computational costs Λ and Γ for
the cases (K,N) for which a perfect code exists, take the form

Λ =
τ∑

i=1

(
N − 1

i− 1

)
(q − 1)i, Γ =

τ∑
i=1

(
N

i

)
(q − 1)ii (32)

where τ is the packing radius of the used perfect code CD.

Proof. For the case where (K,N) accepts a perfect code, we
know (cf. [35]) that µτ = 1 for which the upper bounds in (26)
and (30) match the corresponding upper bounds in (31).

We also have the following proposition for a much broader
range of dimensionalities.

Proposition 3. For all cases (K,N) for which there exists
a quasi-perfect code CD, the optimal performance is upper
bounded as Λ <

∑τ
i=1

(
N−1
i−1

)
(q− 1)i +

(
N

τ+1

)
(q− 1)τ+1 and

Γ <
∑τ+1

i=1

(
N
i

)
(q− 1)ii, where τ is the packing radius of the

corresponding quasi-perfect code CD.

Proof. The proof is direct by noting that quasi-perfect codes
have µτ > 1−

(
N

τ+1

)
(q− 1)τ+1q−K and τ = ρ− 1 [35].

Remark 2. Given the non-existence results in [36], it is in
fact not difficult to show that quasi-perfect codes minimize
the gaps between the upper bounds in (26) and (30) and the
corresponding lower bounds in (31).

V. CONCLUSION

We have explored the computational cost of the multi-
user distributed computing setting of linearly decomposable
functions, which nicely captures various problems such as the
distributed gradient coding problem [11], the distributed linear
transform problem [37], the distributed matrix multiplication
problem, and the distributed multivariate polynomial compu-
tation problems [38], [39], among others. The work estab-
lished various upper and lower bounds on the computational
delay Λ and the cumulative computation cost Γ ∈ [0, NL],
and revealed new connections to the packing and covering
capabilities of codes thus revealing for the first time powerful
connections with the class of perfect codes.
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