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Abstract—With the advancements of mobile communication
and autonomous driving technologies, user demand for mobile
multimedia services in the Internet of Vehicles (IoV) has been
gradually increasing, which has put a great deal of strain on
communication and computing. The high mobility of vehicles and
the complexity of network scenarios present significant hurdles to
the improvement of the quality of in-car entertainment services,
even while streaming media transmission technology helps to
reduce transmission latency. This paper investigates a video
content distribution strategy that combines edge leaning with
edge caching, given that video data makes up the great bulk of
makes up the great bulk of currently available entertainment
information. Specifically, an adaptive bitrate video distribution
technique is proposed for the multi-node video stream data
transmission problem, which is carefully formulated as Markov
decision process (MDP). Our suggested approach optimizes both
the selection of video contents with varying compression bitrates
and the allocation of vehicle-to-everything (V2X) communication
sub-channels based on the communication environment, users’
locations and buffering states, and each network node’s cache
information. The simulation results confirm that our suggested
approach is beneficial in terms of cache hit ratio and quality of
service (QoS).

Index Terms—Internet of Vehicles, video delivery, Markov
decision process, deep reinforcement learning, edge intelligence

I. INTRODUCTION

The popularity of in-vehicle touch screens and the rapid
advancement of intelligent driving technology have driven
the demand for mobile multimedia services in the Internet
of Vehicles (IoV) [1]. In 2023, global mobile data traffic
is expected to reach 49 exabytes, with 82% of that band-
width being video data, according to a report by Cisco [2].
Consequently, the most crucial aspect of data distribution
will be—or already is—the transmission of video streaming
data. Mobile communication networks are facing significant
challenges due to the rapid expansion of video data delivery
services. Therefore, supplying communication, storage, and
processing power to network edge nodes aids in lowering
transmission latency, backhaul link pressure, and enhancing
quality of service (QoS) [3].

Though content delivery has been extensively studied [4],
the user experience of watching video while driving is influ-
enced by a variety of circumstances, and video data trans-
mission differs significantly from file transfer [5]. The IoV
presents significant hurdles for video data delivery because of
the high mobility of vehicle users (VUs) and the intermittency

nature of information transmission [6], [7]. To solve this prob-
lem, deep reinforcement learning (DRL) has been introduced
in recent research to achieve edge intelligence empowered
video delivery. Essentially, interactions with dynamic environ-
ments allow the central server and edge servers to become
intelligent decision makers by learning better strategies for
transmission resource allocation and video bitrate selection
[8], [9]. In [8], the asynchronous advantage actor-critic al-
gorithm is applied to wireless network resource allocation and
video compression bitrate selection simultaneously. In [9], a
deterministic strategy gradient learning technique is applied
to optimize bandwidth allocation, content acquisition, and
service node scheduling simultaneously. However, because of
the highly mobile cars and time-varying content requests, it is
an extremely hard task to determine the best course of action
for video content delivery in the IoV.

To enhance the QoS for on-demand video streaming while
reducing the computational complexity, we propose a novel
adaptive bitrate video streaming delivery mechanism with
V2X communication and video transcoding techniques. The
main contributions in this paper are summarized as follows:
Firstly, we formulate the transmission scheduling problem as
Markov decision process (MDP), carefully accounting for the
locations of all VUs, their video-on-demand requests, and the
caching status and communication capabilities of all network
nodes; Secondly, we propose an algorithm for adaptive video
content distribution to enhance the viewing experience of
videos for those in moving vehicles; Additionally, we design
a distributed training distributed execution (DTDE) manner to
further reduce the computational complexity; Finally, we use
SUMO simulator to simulate real-world road configuration and
traffic data, and provide comprehensive experiments to verify
our suggested framework and methodology.

II. SYSTEM MODEL

Due to the high mobility of vehicles, the IoV features
a complicated and dynamic network topology structure. As
such, real-time video content distribution and user quality of
experience (QoE) enhancement based on ambient feedback
information is highly complex. This paper considers business
scenarios related to video-on-demand and urban traffic areas.



Fig. 1. System model of video delivery in the IoV.

A. Network Model

As shown in fig:system model, the video delivery network
consists of one video source server, one macro base sta-
tion (MBS), R roadside units (RSUs) and U mobile VUs.
Let N denote the set of all network nodes, B = {b0},
R = {r1, . . . , rR}, and U = {u1, . . . , uU} denote the index
sets of the MBS, RSUs and VUs, respectively, and we have
N = B ∪ R ∪ U. The MBS is connected to the baseband
unit (BBU) pool through the backhaul links, and all RSUs
are connected to the BBU pool through the fronthaul links.
The RSU not only has the communication capability, but also
has the capability of edge cache, computing and resource
management.

For the sake of this work, we assume that VUs can request
video content while in motion and share the content they
receive with other users in the vehicles’ coverage area. Thus,
in this study, VUs who share received contents are included
in the distribution nodes together with all RSUs and the MBS.
For the purpose of transcoding and caching video streaming
data, each distribution node is equipped with computing and
caching resources. VUs can employ vehicle-to-network (V2N),
vehicle-to-infrastructure (V2I), and vehicle-to-vehicle (V2V)
links, respectively, to obtain video streaming data with the
MBS, the closest RSU, and nearby users.

Taking into account that the duration of the cache content
update is significantly longer than the duration of the cus-
tomers’ video-on-demand requests, this study employs a dou-
ble timescale model, akin to [9], [10], to optimize the delivery
decision depending on buffer circumstances. There are T brief
time slots for every long time slot. Each RSU will refresh
the data in its cache area at the beginning of each long time
slot. The video delivery system will assign the communication
resource and choose the appropriate compression bitrate for
the requested video content for the network at the start of
each brief time slot.

B. Video Transcoding Technology

This effort uses video transcoding technologies to increase
the video content delivery efficiency. To fulfill the require-
ments of both the receiving terminal and the communication
environment, video content can be converted using this tech-
nology to a new version with a different compression bitrate
[6]. Let F = {f1, . . . , fF } denote the index set of all available
video files. Each video file is divided into multiple chunks with
an equal playing duration τ , and the chunk index set of the
f -th video file is defined as Xf = {1, . . . , xf , . . . , Xf}. Let
I = {1, . . . , i, . . . , I} denote the set of I versions of video
bitrate, b(i) denote the video bitrate of the i-th version. The
smaller the value of i, the higher the bitrate version, the higher
the video resolution, and the larger the video file size.

1) Video Transcoding Delay: In this work, all of the user-
required video files are stored on the video source server.
For storage and transmission, every video file is split up into
several chunks, and each chunk has I versions with various
compression bitrates. Users within the MBS’s service area
could receive different bitrate versions of all video files via
V2N links because the MBS has access to the remote video
source server over backhaul networks. An edge server and
cache storage capable of caching a restricted quantity of video
chunks in the highest bitrate versions are installed in each
RSU. Before sending the cached video chunks to the intended
user, each RSU can employ video transcoding technologies to
convert them to the proper bitrate version [11]. The quantity
of brief time slots of transcoding delay can be expressed as
follows:

tTC(icu,f,x, i
t
u,f,x) =

⌈
(b(itu,f,x)− b(icu,f,x))τ

ξδϵ

⌉
, (1)

where ⌈·⌉ is a ceiling function, ξ denotes the amount of
data that can be be handled in a CPU cycle, δ denotes the
CPU frequency, icu,f,x(t) and itu,f,x(t) denote the indexes of
the cached and the target bitrate versions for transmission,
respectively, b(icu,f,x) and b(itu,f,x) denote the bitrates of the
corresponding icu,f,x and itu,f,x variants, respectively, τ denotes
the playing duration of each chunk, ϵ denotes the duration of
each brief time slot. In this study, ϵ ≪ τ , the playing duration
of each video chunk, is substantially longer than the duration
of each brief time slot.

2) Video Playing Duration: The user keeps receiving new
video chunks while playing the video that has been cached
in the buffer at a steady pace after receiving one entire
video chunk. Assume that the video chunk xf begins to
be transmitted at the t-th time slot, the video lag duration
experienced by user u can be expressed as:

TB
u,f,x(t) =

tpu,f,x−1∑
k=tsu,f,x

max {ϵ− Γu(k), 0} , (2)

where Γu(k) denotes the total amount of time that all cached
video chunks in user u’s buffer can be played at the beginning
of the k-th brief time slot, tsu,f,x and tpu,f,x denote the indexes
of brief time slot of receiving the request of video chunk xf



from user u and that of finishing the transmission of video
chunk xf to user u. The expression of tpu,f,x is as follows:

tpu,f,x = tsu,f,x +

⌈
T p
u,f,x(t)

ϵ

⌉
, (3)

where T p
u,f,x(t) denotes the total amount of time that user u

spent receiving video chunk xf . Considering link switching,
a video chunk will be destroyed rather than being cached in
the users’ buffer if it is not fully sent when the user exits
the distribution node’s communication range. Since the video
chunk is only available in the player buffer if it has been
completely received by user u, the increment of video playing
duration cached in user u’s player buffer can be expressed as
follows:

∆Γu(t) =

{
τ, t = tpu,f,x,

0, otherwise.
(4)

The change of playing duration of all cached video chunks in
user u’s buffer can be regarded as the evolution of a queue,
which can be expressed as follows:

Γu(t+ 1) = ∆Γu (t) + max {Γu(t)− ϵ, 0} . (5)

C. Communication Model

In this work, the V2N, V2I, and V2V communication links
are assigned distinct frequency bands, and the technique of
orthogonal frequency division multiplexing (OFDM) is used
to prevent interference between the various sub-channels.
Assume that the coverage of each RSU does not overlap,
several RSUs may employ the same communication spectrum.
The signal-to-noise ratio (SNR) that user u received from
distribution node n can be expressed as follows:

SNRn,u(t) =
pngn,u(t)

σ2
n,u(t)

, n ∈ N, (6)

where pn denotes the transmitting power of distribution node
n, gn,u(t) and σ2

n,u(t) denote the channel gain and the power
spectrum density of additive white Gaussian noise (AWGN)
from nodes n to user u, respectively. The data rate of fetching
video chunk from distribution node n to user u is given by:

rn,u(t) = Bn,u log2 (1 + SNRn,u(t)) , n ∈ N, (7)

where Bn,u denotes the bandwidth of the sub-channel between
user u and node n.

D. Delivery Model

At the beginning of each brief time slot, the video delivery
system determines the distribution node and bitrate version
of the requested video chunks according to the target user’s
playing buffer status, the communication environment, and
the contents of all MBS, RSU, and VUs’ caches. There are
three kinds of distribution nodes, namely, the MBS, the RSU
nearest to the target user, and the users in the target user’s
communication range who has also cached the requested video
chunks. Channel allocation comes in four flavors: no link, V2N
link, V2I link, and V2V link. Let ϕu,f,x(t) denote the indicator
of transmission links allocated for transmitting video chunk

xf to user u at the t-th brief time slot. Let φn,u(t) denote the
indicator of whether the distribution node n responds to user u
at the t-th brief time slot. The details of different transmission
decisions are as follows.

• No Responding: If no link is allocated for transmitting
video chunk xf to user u at the t-th brief time slot, we
have ϕu,f,x(t) = 0 or φn,u(t) = 0,∀n ∈ N.

• Responding by the MBS: If the V2N link is allocated,
we have ϕu,f,x(t) = 1 and φb,u(t) = 1, b ∈ B. The
transmission delay of user u receiving the video chunk
xf via V2N link can be expressed as follows:

T p,V 2N
u,f,x (t) =

b(itu,f,x)τ

rb,u(t)
+

b(itu,f,x)τ

rbh
, (8)

where b(itu,f,x) denotes the target bitrate, rbh denotes the
transmission data rate of the backhual link between the
MBS and the remote video source server, rb,u(t) denotes
the transmission data rate of the V2N link between the
MBS and user u.

• Responding by the RSUs in the edge layer: If the
requested video chunk is cached in the edge layer and
the V2I link is allocated, we have ϕu,f,x(t) = 2 and
φr,u(t) = 1, r ∈ R. The nearest RSU within the V2I
communication range is referred to as the local RSU
for a target vehicle. Let cr,f,x(t) denote the indicator of
whether the video chunk xf is cached at RSU r at the
t-th time slot. If it is cached, we have cr,f,x(t) = 1,
otherwise, cr,f,x(t) = 0. The local RSU r will distribute
the requested video chunk to the target user directly if it
has already cached the requested video chunk and the
target bitrate equals to that of cached version; if not,
the local RSU must convert the cached bitrate version
to the target bitrate version before transmission. Thus, if
cr,f,x(t) = 1, the transmission delay can be expressed as:

T p,V 2V,DT
u,f,x (t) =

b(itu,f,x)τ

rr,u(t)
+ tTC(iru,f,x, i

t
u,f,x), (9)

where rr,u(t) denotes the transmission data rate of the
V2I link between RSU r and user u, tTC(iru,f,x, i

t
u,f,x)

denotes the transcoding delay needed to convert the
bitrate version that RSU r caches to the desired bitrate
version. The local RSU r should prefetch this chunk from
the r′-th RSU in the BBU pool over the front-haul link
if the requested chunk is cached by another RSU r′. This
will result in a transmission latency as follows:

T p,V 2V,TC
u,f,x (t) =

b(itu,f,x)τ

rr,u(t)
+ tTC(ir

′
u,f,x, i

t
u,f,x) +

b(itu,f,x)τ

rfh
,

(10)
where rfh is the fronthual link transmission data rate.

• Responding by the content sharing VUs: Let Nu

denotes the set of content sharing VUs that are located
within the target user u’s V2V communication range and
that store the requested chunk at a bitrate that is equal to
or greater than the target one. If the V2V link is allocated,
we have ϕu,f,x(t) = 3 and φv,u(t) = 1,∀v ∈ Nu.
Similar to the RSU nodes, user v has the option to



transcode before transmitting or send straight. Thus, the
transmission delay can be expressed as follows:

T p,V 2V
u,f,x (t) =

b(itu,f,x)τ

rv,u(t)
+ tTC(ivu,f,x, i

t
u,f,x), (11)

where rv,u(t) denotes the transmission data rate of the
V2V link between user v and user u, tTC(ivu,f,x, i

t
u,f,x)

denotes the transcoding delay of converting the bitrate
version cached by user v to the target bitrate version,
itu,f,x denotes the bitrate version cached by user v.

E. Problem Formulation

This study selects three essential indicators—video bitrate,
video lag duration and video bitrate switching amplitude—to
assess users’ QoE. Among them, the amplitude difference
between the bitrates of two successive video chunks is referred
to as the video bitrate switching amplitude. Specifically, for
the first received video chunk, the video bitrate switching
amplitude value is zero. The QoE metric can be defined as:

QoEu,f,x(t) =ξ1
b(itu,f,x)

b(1)
− ξ2

TB
u,f,x(t)

τ

− ξ3

∣∣∣b(itu,f,x)− b(itu,f,x−1)
∣∣∣

b(1)− b(I)
,

(12)

where ξ1, ξ2 and ξ3 are weight coefficients of video bitrate,
lag duration, and bitrate switching amplitude, respectively.
This QoE metric is widely used in classical Model Prediction
Control (MPC) algorithm [12] and adaptive bitrate Pensieve
algorithm [13].

Enhancing the typical user’s QoE is the aim of our video
delivery strategy. Thus, the objective function is defined as:

max
itu,f,x,ϕu,f,x(t),φn,u(t)

1

U

T∑
t=1

∑
u∈U

∑
f∈F

∑
x∈Xf

QoEu,f,x(t)

s.t.
∑
u∈U

φb,u(t)Bb,u ≤ BM ,∑
u∈U

φr,u(t)Br,u ≤ BR,∀r,∑
v∈Nu

φv,u(t)Bv,u ≤ BU ,∀u,

iu,f,x(t) ∈ {1, . . . , I},
ϕu,f,x(t) ∈ {0, 1, 2, 3},
φn,u(t) ∈ {0, 1}.

(13)

where BM , BR and BU denote the entire bandwidths of V2N,
V2I and V2V communications, respectively.

III. DRL-BASED ADAPTIVE DELIVERY ALGORITHM

To solve (13), we formulate the optimization problem as
Markov Decision Process (MDP) and propose an adaptive
video transmission algorithm based on DRL. Through a se-
ries of trials, the agent can use the DRL-based algorithm
to optimize the strategy for choosing the video bitrate and
communication link, making it a workable solution to the

video streaming transmission issue. A fundamental algorithm
for reinforcement learning, the DQN algorithm chooses ac-
tions by making updates to the Q-table. Nevertheless, the
DQN algorithm cannot be used to solve the multi-node video
content distribution issue in (13) due to the excessively huge
dimensions of the action space and state space. We therefore
use distributed learning to create a unique DRL method.

A. MDP Problem Formulation

The MBS is treated as an agent, and the details of quintuple
(S,A,P,R, Q) of this MDP problem are defined as follows.

• State Space S: At time slot t, the state space is defined
as S(t) = {C(t), B(t), H(t),Γ(t), T (t)}, where C(t)
denotes the caching information of video chunks stored
in all RSUs and VUs, B(t) and H(t) denote the usage
status and channel gains of all sub-channels, respectively,
Γ(t) denotes the buffer status of users, T (t) denotes the
residence time status of users maintaining connection
with the local RSU and surrounding content sharing VUs.

• Action Space A: The action space is defined as A(t) =
{I(t),Φ(t)}, where I(t) denotes all possible video bitrate
versions, Φ(t) all possible sub-channel assignments.

• State Transition Probability P: After selecting the
actions A(t), the probability of turning to status S(t+1)
from state S(t) is defined as P(S(t+ 1) | S(t),A(t)).

• Reward Function R: The agent will receive an immedi-
ate reward after performing action A(t), which is defined
as R(S(t),A(t)) =

∑
u∈U

∑
f∈F

∑
x∈X℧

QoEu,f,x(t)
. In order to maximize a long-term reward, the agent
seeks to determine the best course of action. The T -
step cumulative discounted reward function is defined
as G(t) = E{

∑∞
k=0 γ

kR(S(t + k),A(t + k))},where
γ ∈ [0, 1] is the discounted factor.

• Value Function and Q table: the state-action value func-
tion is defined as Qπ(S(t),A(t)) = E{

∑∞
k=0 γ

kR(S(t+
k),A(t+k))|S(t),A(t)}, which is the expectation of ac-
cumulated reward of adopting the policy π from the state
S(t). The optimal policy can be obtained by minimizing
the value function, which can be expressed as follows:
π∗ = argmax

π∈Π
Qπ(S(t),A(t)), where Π denotes the set

of all policies.

B. DRL-based Algorithm Design

Using deep neural networks, the Actor-Critic (AC) model is
a novel technique for estimating value functions and strategies
[8]. A large nonlinear policy optimization technique based on
AC architecture is called Trust Region Policy Optimization
(TRPO) [14]. The TRPO method guarantees the stability of
policy development by reducing the Kullback-Leiblere (KL)
divergence between the past and current policies, hence pre-
venting destructive large-scale policy modifications. While the
TRPO-based method can provide successful rules, its extreme
computational complexity prevents it from functioning well in
time-sensitive scenarios.

To further reduce the computational complexity, we train
a DRL-based algorithm in a Distributed Training Distributed



Fig. 2. Illustration of adaptive video delivery strategy in a DTDE manner.

execution (DTDE) manner. In our proposed strategy, the agent
will go through the following two phases: the offline training
phase and online decision-making phase. As exemplified in
fig:dtde, during the offline training phase, the agent uses a
number of sample data from the experience pool to calculate
the value function; subsequently, it uses an optimizer, like
ADAM, to update the learning strategies’ parameters; finally,
after a predefined period of time, the agent copies the param-
eters of the main network to the target network. Based on the
knowledge gained from the offline training phase, the agent
will choose the course of action in the online decision-making
phase based on the environment’s present observable status.
Specifically, the main steps of our proposed DRL algorithm
can be described as follows.

• Initialization: As shown in Fig. 2, the target network is in
charge of assessing the reward function, whereas the main
neural network chooses the action. A uniform distribution
function that has been predefined can be used to create
the initialization main neural network parameters.

• Model Training: During each training, the agent will
select K experience quadruples from the experience pool
to optimize the policy by minimizing the training loss
function. Let θ and w denote the model parameters of
the main network and the target network, respectively,
The main network will calculate the policy gradient to
update θ. The training loss function can be expressed as:

L(w) =
1

2K

K∑
n=1

(
R(S(t),A(t)) + γQθ

(
S(t+ 1),

max
A(t+1)

Qw(S(t+ 1),A(t+ 1))

)
−Qw(S(t),A(t))

)2

,

(14)
• Parameter Update in Experience Pool: The quadruple

< s(n), a(n), r(s(n), a(n), s(n + 1) > generated during
each encounter will be saved in the experience pool.

IV. EXPERIMENT AND DISCUSSION
A. Experimental Setting

In this work, we consider one 1 MBS, 7 RSUs and 20 users
in an urban area. The real-world map in Shenzhen city used in

TABLE I
IMPACT OF AVERAGE VEHICLE SPEED ON RESPONSE RATIO OF VARIOUS

COMMUNICATION MODES

Strategy Responder 0 km/h 30km/h 60km/h 90km/h
Ours None 11.02% 9.83% 10.27% 11.27%

MBS 38.45% 39.06% 42.29% 49.89%
RSUs 42.01% 43.04% 40.08% 34.68%
VUs 8.47% 8.07% 7.36% 4.19%

DQN None 11.06% 10.98% 11.33% 11.60%
MBS 45.10% 47.63% 48.77% 51.75%
RSUs 38.62% 34.60% 33.51% 33.01%
VUs 5.26% 6.79% 6.39% 3.64%

this work has a size of roughly 1 km by 1 km, with (22.52N,
113.94W) as its center point. We use the SUMO simulator to
generate the starting position and the moving trajectory of the
vehicles over this area. We model user requests for various
movies using the MovieLens 1M dataset 1. This dataset has
3952 movies in total. And we assume each movie can be
split up into 100 segments; an RSU can hold up to 6000
video chunks, whereas a user can only save up to 30 video
chunks. The AWGN’s power spectral density is set as -174
dBm/Hz. The transmitting powers of the MBS, RSUs, and
users are set as 35dBm, 22dBm and 20dBm, respectively. The
overall bandwidths and corresponding sub-channel bandwidths
for V2N, V2I, and V2V communications are set as 300MHz,
200MHz, 50MHz, 30MHz, 20MHz, and 10MHz, respectively.
Furthermore, the maximum communication distances for V2N,
V2I and V2V communications are set as 1000m, 300m and
100m, respectively. Furthermore, the maximum communica-
tion distances for V2N, V2I and V2V communications are set
as 1000m, 300m and 100m, respectively. All the experiments
were conducted on an Ubuntu 20.04.1 server with an A100
GPU and the PyTorch platform.

B. Performance Comparisons

1) Impact of User Number: Fig. 3 depicts the impact of
user number on different performance metrics. First of all, our
proposed scheme outperforms conventional DQN-based algo-
rithms in all Settings. Second, when the user number rises, the
average video bitrate that each user receives drops. This makes
sense because the entire bandwidth of V2X communications
is limited. When there are only 10 users in the system, the
resources are sufficient for all users to receive high-quality
video chunks and experience short video lag latency and low
bitrate version switching amplitude. Transmission resources
become scarce as user numbers rise, leading to a sharp decline
in all performance metrics.

2) Impact of User Mobility: Fig. 4 shows the impact of
average vehicle speed on various performance metrics. First,
it is evident that while the video bitrate switching amplitude
and duration grow, the average bitrate of both techniques falls
as average vehicle speed rises. This is due to the fact that the
connection time of V2I and V2V links will be shortened as
the vehicle speed increases. The residence duration of users

1https://grouplens.org/datasets/movielens/1M/



(a) Average video bitrate (b) Average video lag duration (c) Average video bitrate switching amplitude

Fig. 3. Average video bitrate, video lag duration, and video bitrate switching amplitude with different user numbers and different video delivery strategies,
when the speed of users is set as 30 km/h.

(a) Average video bitrate (b) Average video lag duration (c) Average video bitrate switching amplitude

Fig. 4. Average video bitrate, video lag duration, and video bitrate switching amplitude with different vehicle speeds and different video delivery strategies,
when the user number is set as 20.

remaining within the local RSU’s coverage range falls as
average vehicle speed rises, link switching frequency gradually
rises, and users’ QoE gradually deteriorates. Additionally,
Table I demonstrates that, depending on the vehicle speed,
our suggested approach offers a greater response probability.
Second, Fig. 3 demonstrates how our proposed strategy can
provide users with a more fluid and high-quality visual expe-
rience when watching videos.

V. CONCLUSION

A video streaming data distribution strategy for video-on-
demand services in the IoV is proposed in this study. We
develop a DTDE-based algorithm to adaptively allocate trans-
mission resources and choose video bitrate versions based on
our framework. The experimental results show that compared
with the existing DQN algorithm, our proposed computation-
efficient algorithm performs better in terms of average video
bitrate, average video lag duration, and the average video
bitrate switching amplitude.
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