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Abstract. Combining multiple modalities carrying complementary in-
formation through multimodal learning (MML) has shown considerable
benefits for diagnosing multiple pathologies. However, the robustness of
multimodal models to missing modalities is often overlooked. Most works
assume modality completeness in the input data, while in clinical prac-
tice, it is common to have incomplete modalities. Existing solutions that
address this issue rely on modality imputation strategies before using su-
pervised learning models. These strategies, however, are complex, compu-
tationally costly and can strongly impact subsequent prediction models.
Hence, they should be used with parsimony in sensitive applications such
as healthcare. We propose HyperMM, an end-to-end framework designed
for learning with varying-sized inputs. Specifically, we focus on the task
of supervised MML with missing imaging modalities without using im-
putation before training. We introduce a novel strategy for training a
universal feature extractor using a conditional hypernetwork, and pro-
pose a permutation-invariant neural network that can handle inputs of
varying dimensions to process the extracted features, in a two-phase task-
agnostic framework. We experimentally demonstrate the advantages of
our method in two tasks: Alzheimer’s disease detection and breast cancer
classification. We demonstrate that our strategy is robust to high rates
of missing data and that its flexibility allows it to handle varying-sized
datasets beyond the scenario of missing modalities. We make all our code
and experiments available at github.com/robustml-eurecom/hyperMM.

Keywords: Multimodal learning · Missing modalities · Multi-resolution
data

1 Introduction

Multimodal imaging techniques are widely used both in clinical practice and
medical research. Simultaneous acquisition and analysis of multiple imaging
modalities, such as Emission Tomography (PET), Computed Tomography (CT),
or Magnetic Resonance Imaging (MRI), has shown to be beneficial in the diag-
nosis of Alzheimer’s disease [24], or detection of cancers [25], among others.
Accordingly, deep learning methods designed to learn from multimodal medical

https://github.com/robustml-eurecom/hyperMM
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images [4, 16], and more generally multimodal medical data [22], have seen rapid
growth. This development has been favored by the emergence of multimodal
learning (MML), a field of machine learning combining modalities from various
sources that depict a single subject from multiple views, thus providing both
shared and complementary information. MML has shown considerable advan-
tages in multiple domains [1, 29]. However, most current models [28, 6, 31, 26, 35]
assume completeness of the training and testing data, which is rare for real-world
datasets. In particular, in routine clinical practice obtaining several modalities
for the same subject is not a standard. Incomplete datasets can occur for mul-
titudes of reasons including databases fusion, unavailability of acquisition ma-
terial, or simply patient refusal to partake in specific examinations. As a result,
having varying numbers of modalities per patient is common, which results in
multimodal datasets where one or more modalities can be missing. This makes
MML challenging as it prevents the straightforward use of the existing meth-
ods. Moreso, multimodal models trained on complete datasets become unusable
(without complex additional processing steps) if modalities are missing at testing
time, which severely restricts their usage to complete samples only. Therefore,
the robustness of multimodal models to missing modalities is of paramount im-
portance for the use of MML in real-life applications.

1.1 Related work

MML aims to build models that process and combine information from multiple
sources [1], i.e. multiple modalities. The most prominent way to combine multi-
source information resides in fusion methods that can be classified in three cate-
gories: early fusion, mid-level fusion, and decision-level fusion of modalities [29].
In practice, summation and averaging are common and straightforward tech-
niques used for fusion. However, when modalities are missing, these operations
are impossible for early and mid-level fusion in classical multimodal architec-
tures. They are usually not designed to handle varying-sized inputs and fail to
account for missing data.

A vast majority of existing solutions to missing modalities in supervised
learning consists of first training a generative model on a complete dataset, and
using it to impute missing modalities before learning a discriminative model for
prediction [2, 10, 21, 32]. This approach has considerable limitations in prac-
tice. First, an unreasonable number of samples may be needed for training a
good missing-modality imputation model. For instance, generative adversarial
networks (GANs) [8, 34], often used for image generation and imputation, can
typically require up to 106 samples for efficient training [9]. This considerably
limits their uses in medical applications where data is often scarce. Second, the
complexity of the prediction model strongly depends on the choice of the impu-
tation model. The imputer and predictor networks need to be adapted to each
other [11, 13], which can be difficult to ensure in practice. Some studies [23, 27]
address this limitation by focusing on jointly learning the modality imputation
and prediction tasks, but these models rely on complex and computationally



HyperMM : Robust Multimodal Learning with Varying-sized Inputs 3

costly training strategies. Lastly, poorly imputed data can compromise the in-
terpretability of subsequent predictors [18], which is a crucial aspect to consider
in sensitive applications, such as healthcare, where it can lead to incorrect con-
clusions about the impact of a feature on the outcome.

Some recent works have proposed handling missing data without using im-
putation [17, 33, 3]. Instead of directly imputing the missing modalities, they
replace them with dummy inputs, such as a constant or generated data (e.g.,
zeros or Gaussian noise), and then learn to ignore these during training. In con-
trast, we propose to learn with varying-sized inputs to avoid model degradation
caused by poor imputations or the presence of dummy data.

1.2 Contributions

In this work, we address the limitations of existing methods by proposing an end-
to-end imputation-free strategy for multimodal supervised learning with missing
imaging modalities. Building on conditional hypernetworks [5], we formulate a
novel strategy for training a universal modality-agnostic feature extractor using
a large pre-trained network. We then reformulate the problem of predicting mul-
timodal observations with missing modalities as one of predicting sets of obser-
vations of varying size, thus relaxing the requirement of fixed-dimensional data
inputs of most machine learning models. We implement this approach through
a permutation-invariant neural network [30], allowing the mid-level fusion of
varying-sized multimodal inputs, hence eliminating the need to impute [2, 21, 32]
or mask missing modalities using dummy data [17, 33, 3] as done in previous
works. By combining these elements into a two-step training framework, we
formulate HyperMM, a novel task and model agnostic strategy for MML from
incomplete datasets, without the use of imputation or dummy data in the train-
ing process. To the best of our knowledge, our work is the first proposing such
an approach for multimodal learning with missing modalities.

2 Methodology

2.1 Overview of the method

We consider a dataset D of n ∈ N independent input and output pairs such that
D := {(X1, Y2), . . . , (Xn, Yn)}, and for which the goal is to predict Y given X.
Each X := {x1, . . . , xd} corresponds to a d-modal observation, where each xi

represents one of the available modalities. Let us now introduce the indicator
vector v ∈ {0, 1}d to denote the positions of missing modalities in X, such that
vi = 1 if xi is missing, and 0 otherwise. The observed data of X can be expressed
as Xobs = (1 − v) ⊙X + v ⊙ na, where ⊙ is the term-by-term product. In this
setting, the learning goal becomes the prediction of Y given Xobs.

We intend on learning without the use of any form of imputation of missing
modalities, and therefore, with entries of different dimensions. However, standard
machine learning models, including MML models, are built to handle data inputs
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Fig. 1: Overview of our HyperMM framework. A network φ is trained to extract
features from any modality in D by jointly optimizing feature reconstruction and
unimodal prediction (step 1). The learned φ is frozen, and used to process mul-
timodal inputs, the latent features are then aggregated and processed through
a network ρ for prediction (step 2).

of a fixed size. In contrast, we aim to learn a sum-decomposable function f of
the form f = ρ(

∑
φ(xi)), operating on sets and thus relaxing the requirement of

fixed-dimensional data. We propose a two-step framework that we call HyperMM
to implement our method. Figure 1 presents an overview of our strategy. In a first
step, we learn a neural network φ that can extract features from any modality
present in D. Then in a second step, we freeze the learned φ, use it to encode each
element of Xobs, and feed the combination of the encoded inputs to a classifier
ρ through a permutation-invariant architecture.

2.2 Universal Feature Extractor

A single network φ that can encode all observed modalities in D is a require-
ment for learning a set function as described in Sec. 2.1. We propose to achieve
this by first learning such a universal feature extractor φ using a conditional
hypernetwork [5]. In this first step, we train a network on all available images
x in the dataset, without any modality pairing. As illustrated in Figure 1, we
introduce an auxiliary network h that takes as input m, the modality identifier
corresponding to the image x, and generates conditional weights for the last layer
of the encoder φ. By doing so, the last feature extraction step is different for
each modality but still performed by the same network. Specifically, modality-
specific layers are generated through a common hypernetwork, which facilitates
information sharing across modality-specific layers.
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In practice, our universal feature extractor φ can be implemented using trans-
fer learning and networks pre-trained on natural images such as VGGs [19]. First,
we use the pre-trained encoding layers of a VGG to extract features from our
dataset. Then, we adapt the obtained general features into medical ones by train-
ing an additional layer on top of the VGG extractor, that is conditioned using
the auxiliary network h. By stacking these elements together, we obtain our
universal feature extractor φ that is adapted to the modalities of our dataset.

To ensure that the features learned by φ are relevant, the network is trained
to both predict y from the single modality images, and reconstruct z, the features
outputed by the second-to-last layer of φ. This is achieved by optimising a loss
function of the form L = LMSE +LCE , where LMSE denotes the mean squared
error between z and zrec, and LCE the cross-entropy loss between y and ypred.
This optimisation loss has been chosen by cross-validation, as it yielded better
performances than optimising on the classification or reconstruction only.

2.3 Permutation Invariant Architecture

Once we have learned φ, we freeze it, and use it to implement a permutation
invariant network for supervised MML with missing modalities. To do so, we de-
fine S, the set representation of the q = |S| observed elements of Xobs, such that
S := {s1, . . . , sq}, with q ≤ d. Each element sj is represented as a tuple (xi,mi)
consisting of an observed modality xi, and the corresponding modality identi-
fier mi. This reformulation allows observations of varying dimensions. Thereby,
it does not require nor expects all observations to have the same number of
elements and it fully allows observations with missing modalities. A d-modal
observation Xobs containing na values can simply be expressed as a set S of size
q ≤ d where the na values are not represented anymore.

Using this definition, we leverage on the findings of [30], who proposed a
learning framework that considers permutation invariant functions operating
over sets. We reformulate our learning goal as one of learning a set function f
of the form

f(Xobs) = ρ

(∑
sk∈S

φ(sk)

)
, (1)

where the function φ : R × {r × r}d → Rdl corresponds the encoder obtained
from the pre-training phase, the function ρ : Rdl → R is implemented as neural
network, r is the size of each image and dl ∈ N+ is the dimensionality of the
latent space of φ.

As illustrated in Figure 1, a given observation Xobs with missing modalities
is encoded as a set S. Each element sk ∈ S is then transformed into a repre-
sentation φ(sk) := φ(xi|mi) through the frozen network φ conditioned by the
modality identifier m. The representations φ(sk) are aggregated using a per-
mutation invariant operation such as the sum, the mean or the maximum. The
aggregation is processed through the network ρ, which allows to predict the tar-
get Y corresponding to the input Xobs. The proposed architecture interprets
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each observation S of a dataset as a set of unordered modalities, where all infor-
mation available in Xobs is conserved and no new information, such as imputed
images, is added. By transforming individual elements sk of S at a time and then
aggregating the transformations, our network encodes sets of arbitrary sizes into
a fixed representation

∑
φ(sk). This aspect is particularly relevant and further

justifies handling our dataset with missing modalities as unordered sets.
Our permutation invariant model is learned by optimising the loss function

L(θ) := E(S,Y )∈D

[
ℓ
(
Y, ρθ

(∑
sk∈S

φ(sk)
))]

, (2)

where ρ is parametrised by θ, and ℓ is the cross-entropy loss. As φ is optimised
in the pre-training step, its weights are not updated in this step.

3 Experiments

3.1 Alzheimer’s Disease Detection

In a first application, we illustrate the performances of HyperMM and its ro-
bustness to missing modalities on the task of binary classification of Alzheimer’s
disease (AD) using multimodal images from the ADNI dataset [15]. We select a
subset of 300 patients for which both T1-weighted MRIs and FDG-PET images
are available, resulting in 165 cognitively normal (CN) and 135 AD observations.
Before learning, all the samples are skull stripped using HD-BET [7], resampled
through bicubic interpolation to set an uniform voxel size, standardised, and
normalised using min-max scaling.

Baselines. We first evaluate the advantages of our strategy for MML with com-
plete data. We compare the performances of HyperMM against: Uni-CNN, an
unimodal CNN as implemented by [12]; Multi-CNN, a multimodal CNN as
proposed by [26]; and Multi-VAE, a multimodal VAE [28] that we adapt for
classification. Then, we compare our method against state-of-the-art techniques
for MML with missing modalities in two scenarios: complete MRIs +50% of PETs
available for training and testing, and complete PETs +50% of MRIs available.
Specifically we compare to: pix2pix, a strategy where an image-to-image trans-
lation model [8] is trained on the subset of the training data containing only
modality-complete samples, is then used to impute the missing modality of the
incomplete data, and once imputed the data is classified using a Multi-CNN;
and cycleGAN, the same strategy, only using a cycleGAN [34] for imputation.

Implementation details. We randomly split the data into train, validation
and test sets with a 6:1:3 ratio on the patient-level, and repeat all experiments
3 times. For simplicity and fairness, we use the same feature extraction strategy
(Figure 2) in all baselines, following [12]. Specifically, 3D MRI and PET images
are processed as batches of 2D slices that are each fed to a pre-trained frozen
VGG11 [19] feature extractor. We feed all 2D slices of a 3D volume to the VGG,
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VGG11

Fig. 5: An illustration of different architectures that are used in this study.

two different locations: 1) early fusion and 2) late fusion.
Figure 4 shows the illustrates the ideas of both strategies.

In early or late fusing strategies, the words “early” and
“late” are respective to a CNN feature extractor. An early
fusion strategy converts a 3D image to 2D before feeding the
image to the feature extractor. A temporal pooling operation
is usually applied on the pixel-level.

Oppositely, a late fusion strategy converts a 3D image to
2D after feeding it to a feature extractor. More specifically,
each imaging slice of a 3D image is feeding into a 2D CNN
feature extractor one after another. Multiple blocks of feature
maps are generated at this step. Then, a temporal pooling
method is applied to all the blocks of feature maps and
converts them to a single block of feature maps. Finally,
the fused block of feature maps is feed into the classifier for
final prediction.

C. Network Architectures and Implementation

We implement the proposed method using three different
architectures with different combinations of fusion strategies
and temporal pooling methods. More specifically, we have
one for early fusion strategy with dynamic image pooling and
two for late fusion strategies with max-pooling and dynamic
image pooling, respectively.

Each architecture contains an ImageNet pre-trained CNN
feature extractor and a classifier. The pre-trained feature
extractor is frozen during the training stage, while the
classifier is fully optimizable. The classifier contains a 1⇥ 1

TABLE I: Detailed Architecture

Model Feature Extractor Fusion Strategy Pooling Method

Alex Early-Dyn AlexNet Early Dynamic Image
Alex Late-Max AlexNet Late Max-Pooling
Alex Late-Dyn AlexNet Late Dynamic Image
Res Early-Dyn ResNet-18 Early Dynamic Image
Res Late-Max ResNet-18 Late Max-Pooling
Res Late-Dyn ResNet-18 Late Dynamic Image

Conv layer and two FC layer with 512 neurons and 2
neurons, respectively. The Conv layer aims to convert the
ImageNet pre-trained features to AD-specific classification
feature (Figure 5).

For each architecture, we use two different backbone
feature extractors, AlexNet and ResNe-18, separately. All the
Conv layers of the AlexNet and ResNet-18 models are used
as the feature extractors. In total, six models with different
architectures are trained in this work (Table I). We implement
the networks in Pytorch [24]. Weighted cross-entropy is used
as the loss function. Adam [25] optimizer with learning rate
of 0.0001 is used for all the models.

III. EVALUATION

A. Dataset

We use a subset from the ADNI dataset for our work.
In total, 100 cases are used in this study, 51 cognitively
normal (CN) samples and 49 AD samples. The dataset size
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Fig. 2: Feature extraction strategy used in the ADNI baselines (see [12]). All
2D slices of one 3D volume are fed to a VGG11. A 1D max pooling on the
slice dimension is applied to the resulting feature blocks to obtain a single block
per 3D image. The latter is passed through a 1 × 1 convolution layer to obtain
AD-specific features that can then be fed to a classifier.

and apply a 1D max pooling on the slice dimension to the resulting feature blocks
to obtain a single block per 3D image. The resulting block is passed through a
1× 1 convolution layer after the pre-trained VGG encoder, allowing us to adapt
the pre-trained features into AD-specific ones. This corresponds to the training
of the φ network in the step 1 of our framework, where we simply make the
last 1× 1 convolution layer conditional. In step 2, the ρ network is implemented
by 3 linears layers separated by ReLU activations. All models are implemented
with PyTorch, and trained on an Nvidia TITAN Xp GPU for a maximum of 100
epochs using an early stopping strategy, where training stops after 10 iterations
without a decrease in the validation loss. We use a batch size of 1 and an Adam
optimiser with an initial learning rate of 1e−4.

Results. Performances of all models are reported in Table 1. Several obser-
vations can be drawn from these results. First, MML shows considerable im-
provements over unimodal baselines. In particular, HyperMM achieves the best
performances for binary classification of AD using complete multimodal data and
considerably improves the F1-score, recall metric, and precision/recall balance.
Second, MML with missing modalities still achieves better results than unimodal
models. Notably, HyperMM trained on MRIs available even for only 50% of the
patients performs better than an unimodal model trained on PETs only. In-
versely, having access to PETs for 50% of the patients improves the F1-score
and recall of learning from MRIs only. Third, HyperMM outperforms state-of-
the-art strategies on MML with missing modalities. While GAN-based strategies
can handle missing PETs in the input data, they are considerably less efficient
in terms of precision/recall balance when the missing modality is MRI. In this
scenario, the missing high-resolution MRIs need to be translated from the avail-
able low-resolution PETs before learning. This limitation is further illustrated in
Figure 3. While PET imputation yields realistic images, the imputed MRIs are
of poor quality: they suffer from important structural deformations and a great
loss of information (as highlighted by the SSIM and PSNR scores between the
imputations and the original images). In contrast, as HyperMM does not rely
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Table 1: Performances (mean±std) on the ADNI dataset. Bold means best.

Acc. (↑) AUC (↑) F1 (↑) Prec. (↑) Rec. (↑) Time (↓)
Complete unimodal

Uni-CNN PET 0.61±.05 0.58 ±.05 0.58±.06 0.65±.06 0.31±.05 < 20 min
Uni-CNN MRI 0.71±.02 0.69±.02 0.58±.02 0.85±.03 0.43±.05 < 20 min

Complete multimodal
Multi-VAE classifier 0.66±.03 0.65±.03 0.54±.04 0.74±.04 0.41 ±.03 < 30 min

Multi-CNN 0.70±.02 0.70±.01 0.67±.01 0.67±.02 0.68±.02 < 30 min
HyperMM w/o 2-steps (ours) 0.62±.03 0.61±.02 0.53±.02 0.61±.03 0.46±.03 < 20 min
HyperMM w/ 2-steps (ours) 0.74±.02 0.73±.02 0.70±.01 0.70±.02 0.70±.02 < 1 h
100% MRI + 50% PET

pix2pix 0.65±.02 0.64±.02 0.62±.02 0.62±.03 0.61±.02 > 14+1 h
cycleGAN 0.62±.09 0.60±.07 0.57±.07 0.61±.08 0.54±.08 > 30+1 h

HyperMM (ours) 0.67±.02 0.66±.02 0.61±.03 0.61±.03 0.61±.03 < 1 h
100% PET + 50% MRI

pix2pix 0.62±.04 0.62±.03 0.53±.03 0.61±.05 0.48±.05 > 14+1 h
cycleGAN 0.62±.09 0.59±.1 0.47±.07 0.60±.07 0.39±.07 > 30+1 h

HyperMM (ours) 0.64±.02 0.63±.02 0.61±.02 0.61±.03 0.61±.03 < 1 h

on any imputation, it performs well in both scenarios, and trains in significantly
less time than competitors. Lastly, these results highlight the importance of the
pre-training and conditioning step of the HyperMM framework.

Discussion. The results illustrate how HyperMM tackles the main limitations
of existing methods. First, as our model does not require training an imputation
model prior to prediction, it does not call for the large amounts of data typically
required for training GANs efficiently. The results observed in Table 1 highlight
the poor performances of cycleGAN for translating PETs into MRIs, which could
be due to insufficient training data. Second, our model is agnostic to the missing
modality, whereas the prediction and imputation quality in other approaches
strongly depends on it, as highlighted by our experiments. Indeed, because Hy-
perMM bypasses the imputation step altogether, our approaches eliminates the
need to ensure that the imputer and predictor are adapted to each other. This,
in turn, leads to drastically reduced computing time and learning complexity.
Lastly, as our method does not employ any imputed or dummy data, it avoids
model degradation caused by poor imputations or noisy data.

3.2 Breast Cancer Classification

In a second application, we demonstrate the flexibility of HyperMM and its
benefits for learning with varying-sized datasets, beyond the scenario of miss-
ing modalities. We investigate the usage of HyperMM for the slightly different
task of analysing multi-resolution histopathological images. Because potential
tumors are typically acquired at multiple magnification levels, the numbers of
samples per patients in histopathology datasets are often highly varying. We per-
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Fig. 3: Examples of real and imputed slices of MRI and PET images for one
patient. While the PET reconstructions (bottom right) translated from the cor-
responding MRI (top left) are reasonably similar to the original PET image (bot-
tom left), the MRI reconstructions (top right) translated from the low-resolution
PET (bottom left) are much less consistent with reality (top left).

form binary classification of breast cancer using histopathological images from
the BreaKHis dataset [20]. BreaKHis contains multiple images per sample (i.e.
patient) of benign or malignant tumors observed through different microscopic
magnifications: 40×, 110×, 200×, and 400×. We select a balanced subset of the
data composed of samples of 24 benign and 29 malignant tumors, resulting in
5,575 images in total. We use the images as they are for learning, and do not
perform any pre-processing or data augmentation.

In clinical practice, pathologists combine the complimentary information
present in images captured under different magnifications in order to make a
patient-level decision. Nonetheless, most current learning approaches consist of
magnification-specific models, due to the difficulty of processing images of dif-
ferent natures with a single model. Moreover, because the number of available
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Fig. 4: Comparison of decision strategies for patient-level tumor classification.
Our method (left) enables the combination of a subject’s available images during
training, regardless of the magnification level to obtain a patient-level decision. In
opposition, traditionnal approaches (right) make prediction on the image-level,
and combine the final predictions to obtain a patient-level decision.

images can vary a lot from one patient to another, traditional algorithms cannot
be applied at the patient-level. Existing methods rather predict from individual
images, and later combine the predictions in order to form a global decision.
Instead, we propose to tackle this problem using HyperMM, conditioning the
universal feature extractor on the different magnification levels. We classify tu-
mors at patient-level by combining all available images during training directly.

Baselines. We evaluate the benefits of HyperMM for learning from histopathol-
ogy data, and compare its performances with: CNN, where a magnification-
specific CNN is trained to classify tumor types from individual images, and
patient-level prediction is obtained by averaging the classification scores of indi-
vidual images [20]; and Incremental-CNN, in which a magnification-agnostic
CNN is trained by incrementally updating its weights on successive batches of
40×, 100×, 200× then 400× magnifications, as proposed in [14]. The patient-level
decision is obtained similarly to the previous baseline. The differences between
our approach and traditional ones are further illustrated in Figure 4.

Implementation details. We randomly split the data into train and test sets
with a 8:2 ratio at the patient-level, and repeated all experiments 5 times. We
use a pre-trained VGG11 [19] feature extractor for all baselines, and adapted
the features to our application by adding a 1×1 convolution block on top of the
frozen VGG encoder. All models are trained for a maximum of 50 epochs using
an early stopping strategy such that training stops after 10 iterations without
a decrease in the validation loss. We train the model with an Adam optimiser
with an initial learning rate of 1e−4. We use a batch size of 16 for image-level
baselines (i.e. CNN and Incremental-CNN) and 1 for HyperMM.

Results. All performances averaged over 5 repetitions are reported in Table 2.
They underline the clear benefits of HyperMM for cancer classification from
histopathological images. In particular, our method outperforms magnification-
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Table 2: Performances (mean ± std) on the BreaKHis dataset. Bold means best.

Acc. (↑) AUC (↑) F1 (↑) Prec. (↑) Rec. (↑)
Magnification-specific

CNN 40× 0.83±0.07 0.81±0.07 0.83±0.06 0.85±0.08 0.83±0.08
CNN 100× 0.85±0.08 0.85±0.08 0.87±0.06 0.85±0.07 0.90±0.07
CNN 200× 0.84±0.07 0.84±0.09 0.84±0.05 0.80± 0.11 0.90± 0.09
CNN 400× 0.83±0.09 0.83±0.09 0.85±0.10 0.88±0.11 0.83±0.15

Magnification-agnostic
Incremental-CNN 0.89±0.11 0.88±0.12 0.90±0.10 0.88±0.12 0.93±0.09
HyperMM (ours) 0.92±0.06 0.91±0.07 0.90±0.08 0.94±0.09 0.88±0.10

specific models, and is closely followed by Incremental-CNN, which highlights
the benefits of combining the information carried by different magnifications.
Moreover, while Incremental-CNN maximises the recall score of the task, Hy-
perMM maximises precision, and overall improves upon Incremental-CNN. This
shows that learning to predict an early latent combination of features (i.e. com-
bining multiple images of a same patient during model training directly) yields
better performances than combining predictions made on individual images.

Discussion. While the analysis of multi-resolution images is not a multimodal
application by definition, our method is designed to enable mid-level fusion of
latent features of varying-sized inputs, and is therefore adapted for this use case.
Because of the varying number of images per patient in histopathology datasets,
traditional approaches are not equiped to combine multiple resolutions directly
during training to make patient-level decisions, and instead rely on the late fusion
of image-level decisions. In contrast, HyperMM offers this possibility. It opens
a new and different way to classify cancer patients. Moreso, our experiments
suggest that mid-level fusion even considerably improves the performances of
existing late fusion models.

4 Conclusion

We have demonstrated the advantages of HyperMM for robust MML with miss-
ing modalities: our method eliminates the need to use complex and computa-
tionally costly imputation strategies, thus significantly decreasing model train-
ing time; and unlike competitors, its performances are not dependant on which
modality is missing in the data. In particular, unlike imputation-based methods,
our approach is end-to-end: HyperMM eliminates the time-consuming steps of
manually imputing the missing modalities using a previously trained imputation
model, before finally training a prediction model. On the contrary, our two-step
model is trained without interruption or human intervention. Moreover, by only
utilising the observed images of the incomplete dataset, HyperMM avoids pre-
diction bias caused by poor imputation or the presence or generated dummy
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data. In addition, we have shown that the flexibility of HyperMM alleviates the
constraints usually met in applications with varying-sized datasets and opens
up a whole new range of possible learning strategies. Our framework is task-
agnostic, and can be easily used beyond the two applications we have presented.
For instance, it could be extended to multivariate time series analysis, where in-
complete data is common (e.g. damaged channels in EEG recordings). Moreover,
while we used pre-trained feature extractors in all our experiments for simplicity,
HyperMM is model-agnostic and adaptable to any neural network-based feature
extractor or predictor.
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