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Abstract—Due to an ever-expansive network deployment, nu-
merous questions are being raised regarding the energy consump-
tion of the mobile network. Recently, Non-Terrestrial Networks
(NTNs) have proven to be a useful, and complementary solution
to Terrestrial Networks (TN) to provide ubiquitous coverage. In
this paper, we consider an integrated TN-NTN, and study how
to maximize its resource usage in a dynamic traffic scenario.
We introduce BLASTER, a framework designed to control User
Equipment (UE) association, Base Station (BS) transmit power
and activation, and bandwidth allocation between the terrestrial
and non-terrestrial tiers. Our proposal is able to adapt to
fluctuating daily traffic, focusing on reducing power consumption
throughout the network during low traffic and distributing the
load otherwise. Simulation results show an average daily decrease
of total power consumption by 45% compared to a network
model following 3GPP recommendation, as well as an average
throughput increase of roughly 250%. Our paper underlines the
central and dynamic role that the NTN plays in improving key
areas of concern for network flexibility.

I. INTRODUCTION

With the swift evolution of cellular communications in
recent years, there has been a significant upswing in the
demand for high-speed data connectivity. This has led to the
imposition of strict prerequisites to deliver high capacity and
ensure ubiquitous connectivity for the network. The use of
heterogeneous networks (HetNets) has been proposed as a
solution to address these requirements [1]. Indeed, the use
of HetNets creates a multi-layered network, allowing efficient
data offloading which improves both the capacity and the
coverage throughout the network. However, this dense deploy-
ment increases the overall energy consumption of the network,
which is not desirable given the current environmental and
economic context. Hence, one of the key objectives of deploy-
ing and operating mobile networks is to reduce power usage
while ensuring to meet Quality of Service (QoS) requirements
[2]. In the past few years, non-terrestrial networks (NTNs)
have arisen as a feasible approach to supplement the terrestrial
network (TN) and extend coverage to previously underserved
geographic regions [3]. An NTN is a network in which
airborne vehicles like drones (i.e. unmanned aerial vehicles),
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high-altitude platform stations (HAPS), or satellites function
as a relay node or base station (BS) to provide connectivity for
each user equipment (UE) within the network. The inherent
advantage of NTNs lies in their ability to offer extensive
coverage across vast regions, including remote geographical
areas where deploying terrestrial macro BSs (MBSs) would
be cost-prohibitive or logistically challenging. Among the
various deployment possibilities, it appears that low-earth orbit
(LEO) satellites will lead the way in achieving high-capacity
connectivity from space [4]. They orbit at altitudes ranging
from 200 to 2000 kilometers. Due to their closer proximity to
Earth, they offer superior signal strength and reduced latency
when compared to alternative satellite designs. This results in
lower energy requirements for launch and decreased power
consumption for signal transmission from/to the satellite.
Considering all of these factors, integrated TN-NTN may be
the path towards efficient service of both terrestrial and aerial
UEs [5]. Typically, each UE is connected to the BS with the
strongest recorded Reference Signal Received Power (RSRP)
within the network. However, this association strategy has its
limits as it does not consider the varying traffic demands of
UEs, potentially resulting in suboptimal load balancing and
subsequent performance issues. An improved UE association
policy should not only consider the strength and quality of
the UE’s signal but also factor in the load on each cell. Our
previous work in [6] addresses this specific problem in an
integrated TN-NTN. We were able to distribute the network
load with the help of satellites and enhance the maximum
network throughput as well as improve network coverage.
Regarding Energy Efficiency (EE), we acknowledge that uti-
lizing all MBSs during low-traffic scenarios (e.g. night) might
not be ideal. Indeed, most of them may be under-utilized
or not used at all, resulting in an inefficient allocation of
energy and communication resources. Hence, given the context
of an integrated TN-NTN, it may be appropriate to turn
off part of the terrestrial MBSs and offload the UEs to the
satellites to reduce energy consumption. To the extent of
our knowledge, most of the work related to BS activation
does not consider the NTNs as a solution to the problem of
maintaining coverage and capacity requirements while shutting
down MBSs. The authors of [7] implement a switching-on/off-
based energy-saving algorithm that shuts down the MBSs



one by one while making sure that they do not overload the
neighbouring MBSs. To maintain the user experience, some of
the works have considered minimal QoS requirements. In [8],
the authors study the impact of traffic offloading in HetNets
on energy consumption and suggest a centralized Q-learning
approach for achieving a balance between conserving energy
and ensuring QoS satisfaction. The authors of [9] develop
an algorithm that allows each UE to associate with multiple
MBSs on different frequency bands, and optimize the MBS’s
transmit power simultaneously so that they can be shut down
during low traffic.
In this paper, we present a Bandwidth spLit, user ASsoci-
aTion and PowEr contRol framework (BLASTER). It is a
novel adaptive radio resource management framework, which
controls the bandwidth split, UE association, terrestrial MBS
transmit power and activation in an integrated TN-NTN. It is
able to trade-off between network capacity and network energy
consumption based on the traffic state. Our results show that
the proposed framework reduces the average network power
consumption by 45% compared to an integrated TN-NTN
model following 3GPP recommendations, while significantly
improving the mean throughput during high-traffic periods.

II. SYSTEM MODEL

We study a downlink (DL) cellular network comprising M
terrestrial MBSs and N MBSs mounted on LEO satellites,
totalling L, all of which can serve K UEs deployed in a
rural area. We denote the total system bandwidth as W , which
the mobile network operator allocates between the terrestrial
and non-terrestrial tiers. In our research, we assume that this
network operates in the S band at approximately 2 GHz, with
terrestrial and satellite MBSs utilizing orthogonal portions of
it. Throughout the remainder of this paper, we will use T (rep-
resenting terrestrial) and S (representing satellites) to denote
the sets of MBSs. Furthermore, let U = {1, · · · , i, · · · ,K} be
the set of UEs and B = T ∪S = {1, · · · , j, · · · , L} the set of all
MBSs. Concerning the channel model, the large-scale channel
gain between a terrestrial MBS j and a UE i is computed as
follows:

βij = GTX
· PLij · SFij , (1)

where GTX
is the transmit antenna gain, PLij is the path loss,

and SFij is the shadow fading. Note that the UE antenna gain
is 0 dBi. Conversely, when a satellite MBS j serves a UE i,
the large-scale channel gain is the following [10]:

βij = GTX
· PLij · SFij · CL · PLs. (2)

In (2), CL represents clutter loss, an attenuation due to
buildings and vegetation near the UE, while PLs accounts
for scintillation loss, which encompasses rapid fluctuations in
signal amplitude and phase caused by ionospheric conditions.
Given that each UE is exclusively served by either a terrestrial
or a satellite MBS, and both tiers operate without interference
due to their orthogonal bandwidth allocation, we can compute

the large-scale Signal-to-Interference-plus-Noise Ratio (SINR)
for each UE i as outlined below:

γij =
βijpj∑

j
′
∈Ij

βij′pj′ + σ2
, (3)

where pj is the transmit power allocated per resource element
(RE) at MBS j, Ij represents the set of MBSs causing
interference to the serving MBS j, and σ2 is the noise power
per RE. Subsequently, if we assume that MBS j evenly
allocates its available bandwidth Wj among the kj UEs it
serves, we can calculate the average throughput for UE i
connected to MBS j as follows:

Rij =
Wj

kj
log2(1 + γij). (4)

The power consumption model for a terrestrial MBS depends
on multiple parameters, such as bandwidth, number of anten-
nas, or power amplifier efficiency, as detailed in [11]. This
model can be compacted as:

Qj(pj) = P0 + pj + ψj ||pj ||0, (5)

where ψj and pj respectively include all the static (transmit
power independent) and dynamic (transmit power dependent)
components of the model, and ||·||0 is a binary-valued function
equal to 1 if the transmit power pj is greater than 0. P0 is
the power consumption of the components that stay active
in a shutdown terrestrial MBS. We suppose that the power
consumed by a satellite is harvested from solar panels. In
the following, please note that we will be referring to the
Hadamard product using the symbol ⊙.

III. PROBLEM FORMULATION

We aim to design a mechanism that jointly optimizes
network capacity and TN energy consumption by dynamically
adapting the resource allocation to the network load. By
maximizing the sum of the log-throughput (SLT) perceived by
each UE, we want to ensure proportional fairness as the nature
of the logarithm prevents excessive use of resources for a par-
ticular UE, promoting a proportional allocation of resources.
We define ε as the portion of the bandwidth allocated for the
LEO satellites. Consequently, we can calculate the bandwidth
Wj for MBS j as Wε when it is a satellite, or as W (1 − ε)
when it is a terrestrial MBS. Let us also introduce a binary
variable, denoted as xij , which takes the value of 1 when UE
i is connected to MBS j and 0 otherwise. We can then write
the perceived throughput for UE i as:

Ri =
∑
j∈B

xijRij. (6)

Our target is to optimize the UE-BS association, the transmit
power at each MBS, and the allocation of bandwidth to
each tier to find the right trade-off between maximizing the
network SLT and minimizing the terrestrial network power



consumption, by shutting down as many terrestrial MBSs as
possible. This can be written as follows:

max
X,ε,p

∑
i∈U

log(Ri)− λ
∑
j∈B

Qj(pj) (7a)

s.t. xij ∈ {0, 1}, i ∈ U , j ∈ B, (7b)

β̃ · p ≥ RSRPmin · 1K , ∀i ∈ U , (7c)

pj ≤ pMAX
j , ∀j ∈ B, (7d)

ε ∈ [0, 1] , (7e)

where X = [xij ] is the binary association matrix, p =

[p1, . . . , pL]
T is the vector representing the transmit power

at each MBS and β̃ = X ⊙ β. Also, λ is a scaling param-
eter used to manage the trade-off between SLT and power
consumption, and fixed prior to the optimization, accordingly
to the expected user traffic. Constraint (7c) guarantees that
the minimum RSRP for each UE must exceed a predefined
threshold RSRPmin. Additionally, constraint (7d) limits the
maximum transmit power allocated per RE in each MBS j
to pMAX

j . Since one of our aims is to reduce the terrestrial
network power consumption, a sparse solution for the power
vector p would be ideal. However, since the power consump-
tion model (5) contains a non-continuous term, it may be hard
to optimize. With this in mind, we approximate the utility
function (7a) by introducing a mixed L1-L2 penalty function
which promotes group sparsity, as done in [12]. We then have
the following:

max
X,ε,p

∑
i∈U

log(Ri)− λ

||p||1+
L∑

j=1

ψjwj ||p||2

 (8a)

s.t. (7b) − (7e), (8b)

where ||·||1, ||·||2 represent the L1 and L2 norm and wj

represents the power weight of MBS j. Those weights are
inversely proportional to the transmit power of each MBS,
hence pushing those with low transmit power to be shut down.

IV. FULL BREAKDOWN OF BLASTER

In this section, we study BLASTER, the framework pro-
posed to solve the optimization problem (8a)-(8b). We use the
block coordinate gradient ascent (BCGA) algorithm, meaning
that we first optimize the UE-BS association and bandwidth
allocation considering fixed transmit power, similarly to [6].
Thereafter, we optimize the transmit power level considering
the first two parameters fixed.

A. Utility optimization under fixed transmit power

Denoting by f the utility function that we want to maximize
in (8a), we notice that we have a convex optimization problem
with respect to X (ε and p being fixed). We can then use
the iterative gradient projection method to solve the problem,
as it is particularly well-suited for constrained optimization
problems. It consists of computing the gradient and projecting

it onto the feasible region defined by the constraints. Embrac-
ing the gradient projection method, we compute the gradient
update at time-step s as:

X̃(s) = X(s) + α∇Xf (X, p, ε) , (9)

where α ∈ RK×L is a step-size chosen appropriately and ∇
is the gradient operator. Then, we write the projection step in
the following form:

min
X(s)

1

2
||X(s)− X̃(s)||2F (10a)

s.t. β̃ · p ≥ RSRPmin · 1K , (10b)

where ||·||F represents the Frobenius norm. For the following,
we simplify the notation by omitting time-step indices. To
solve (10a)-(10b), we use the Lagrange multipliers method.
Therefore, we compute the Lagrangian function associated
with the problem:

L (X,µ) =
1

2
||X − X̃||2F+

(
β̃ · p−RSRPmin · 1K

)T
µ

=
1

2
||X||2F−Tr

(
XT X̃

)
+

1

2
||X̃||2F+

(
β̃ · p

)T
µ

− (RSRPmin · 1K)
T
µ,

(11)

where µ ∈ RK is the Lagrange multiplier associated with
constraint (7c). Computing the gradient of (11) with respect
to X , we get:

∇XL (X,µ) = X − X̃ + β ⊙
(
1K · pT

)︸ ︷︷ ︸
:=pPAD

⊙
(
µ · 1T

L

)︸ ︷︷ ︸
:=µPAD

.
(12)

Then, we know that the optimal value to minimize (11) with
a fixed dual variable is:

X⋆ = max{X̃ − β ⊙ pPAD ⊙ µPAD, 0}. (13)

Having computed X⋆, we thereby introduce the Lagrangian
dual function, which can be written as:

D (µ) = max
X

L (X,µ) . (14)

Hence, after injecting (13) into the formula above, we get:

D (µ) = L (X⋆, µ)

=
1

2
||X⋆||2F−Tr

(
X⋆T X̃

)
+

1

2
||X̃||2F

+
[
(X⋆ ⊙ β) · p

]T
µ− (RSRPmin · 1K)

T
µ.

(15)

By noticing that[
(X⋆ ⊙ β) · p

]T
µ = Tr

(
X⋆
(
β ⊙ pPAD ⊙ µPAD

)T)
,

we can rewrite (15) as:

D (µ) =
1

2
||X⋆||2F−Tr

(
X⋆
[
X̃ − β ⊙ pPAD ⊙ µPAD

]T)
− (RSRPmin · 1K)

T
µ.

(16)



Also, as the authors of [9] demonstrated, we know that

1

2

∣∣∣∣∣∣max{A, 0}
∣∣∣∣∣∣2
F
−Tr

(
max{A, 0}AT

)
= −1

2

∣∣∣∣∣∣max{A, 0}
∣∣∣∣∣∣2
F

for a given matrix A.
Therefore, we can write the dual problem associated with (10a)
as the following:

min
µ

1

2
||X⋆||2F + (RSRPmin · 1K)

T
µ (17a)

s.t. µ ≤ 0 (17b)

Since this problem has a sole constraint, and we know that the
projection onto the non-positive orthant is a straightforward
task, we can use the gradient projection method to solve it.
After obtaining the solution to the problem above, we obtain
µ∗ and can retrieve the optimal solution to our projection
problem (10a)-(10b):

X(s+1) ≜ X⋆ = max{X̃(s)−β⊙pPAD⊙µ∗PAD, 0}. (18)

After the convergence of this method, we are able to find
the optimal association X∗. Afterwards, we need to split the
bandwidth between both tiers in an optimal way. To drive the
process, we introduce rij as:

rij =
W

kj
log2 (1 + γij)

such that:

Rij =

{
εrij if j ∈ S,
(1− ε) rij otherwise.

(19)

As both the transmit power allocated by the cells and the
noise power linearly increase with the bandwidth, γij does
not depend on it. Therefore, we can compute the gradient of
our utility function f with respect to ε:

∇εf (X, p, ε) =
∂

∂ε

(
K∑
i=1

log (Ri)

)
=

K∑
i=1

∂

∂ε
log (Ri)

=

K∑
i=1

∑
j∈S

∂
∂ε [εxijrij ] +

∑
j∈T

∂
∂ε [(1− ε)xijrij ]

Ri

⇔ ∇εf (X, p, ε) =

K∑
i=1


∑
j∈S

xijrij −
∑
j∈T

xijrij

Ri


(20)

By noticing that U = US ∪ UT , where US and UT represent
the set of UEs served by the satellites and terrestrial MBSs
respectively, we are able to find the optimal split by forcing
(20) to 0:

∇εf (X, p, ε) = 0 ⇔
∑
i∈US

1

ε
+
∑
i∈UT

−1

1− ε
= 0

⇔ KS

ε
− K −KS

1− ε
= 0 ⇔ ε∗ =

KS

K

(21)

where KS represents the number of UEs associated to a

satellite in the network. From eq. (21), we notice that the share
of allocated bandwidth for the non-terrestrial tier correlates
intuitively with the number of UEs associated to a satellite.

B. Transmit power optimization under fixed association

After addressing the UE-BS association and bandwidth
allocation challenges, we fix X and ε to fine-tune the transmit
power at each terrestrial MBS and ultimately, maximize the
utility function. The transmit power optimization problem can
then be expressed as:

max
p

∑
i∈U

log(Ri)− λ

||p||1+
L∑

j=1

ψjwj ||p||2

 (22a)

s.t. (7c) − (7d) (22b)

Due to the non-smoothness of the L1 norm, we have to resort
to the iterative proximal gradient method [13] to solve (22a)-
(22b). The gradient update at time-step s is computed as such:

p̃(s) = p(s) + η∇pf (X, p, ε) (23)

where η ∈ RL is a step-size chosen appropriately. As demon-
strated in [13], the proximal gradient method updates p by
solving the following problem:

min
p

1

2
||p̃(s)− p(s)||22+t||p(s)||2 (24a)

where
t = λ · η · wTψ. (25)

This problem has a closed-form solution, referred to as block
soft thresholding [13, Sec. 6.5.1]:

p̂(s) = max{1− t

||p̃(s)||2
, 0}p̃(s). (26)

Once we have updated the transmit power vector, we must
project it into a feasibility region which would ensure that
constraints (7c) and (7d) are respected.
Naturally, the upper bound of our feasible region is the
maximum transmit power per RE. To establish the lower limit,
we use the minimal coverage constraint. In fact, from (7c)
we know that each UE associated with a MBS j should
experience a signal power level exceeding the threshold value
of RSRPmin. This can be rewritten as:

∀i ∈ Uj , pj ≥ RSRPmin

βij
, (27)

with Uj being the set of UEs associated to the MBS j. We are
therefore able to establish the lower bound of the feasibility
region for each MBS j as:

τj = max
i∈Uj

(
RSRPmin

βij

)
. (28)

Finally, the transmit power update done at the end of step s
is written as such:

p(s+ 1) =
[
p̂(s)

]pMAX

τj
. (29)

Once the algorithm has converged and we obtain p∗, we



update the power weights wj according to the re-weighting
algorithm detailed in [9]. The full optimization framework is
summarized below in Algorithm 1.

Algorithm 1: BLASTER Framework
Data: K UEs and L MBs.
Initialization;
s = 0;
X: Association done through max-RSRP;
p: Transmit power set to maximum;
ε = 0.5; // Equal bandwidth split
Compute: f (X, ε, p) // Initial point
w = [1, . . . , 1] ∈ RL;
Initialize α ∈ RK×L, µ ∈ RK ;
Initialize η ∈ RL;
while Utility function f has not converged do

// UE Association and bandwidth
split

Compute: X̃(s) = X(s) + α∇Xf (X, p, ε) (9);
Solve (17a) using gradient projection to obtain µ∗;
Compute:
X(s+1) = max{X̃(s)−β⊙pPAD⊙µ∗PAD, 0}(18);
ε∗ = KS

K (21);
// Power control step
Compute: p̃(s) = p(s) + η∇pf (X, p, ε) (23);
Compute: t = λ · η · wTψ (25);
Compute: p̂(s) = max{1− t

||p̃(s)||2 , 0}p̃(s) (26);
Compute: τ based on (28);

Compute: p(s+ 1) =
[
p̂(s)

]pMAX

τ
(29);

w =
[

1
p1+δ , . . . ,

1
pL+δ

]
;

// δ small constant to avoid
numerical instability

Compute: f (X(s), ε, p(s)) ;
s = s+ 1;

end
return X,ε,p;

V. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of our frame-
work within the context of an integrated TN-NTN for a
duration of 24 hours, with a varying number of UEs at each
hour, as illustrated in [14]. We consider a rural scenario where
the terrestrial MBSs are deployed in a hexagonal grid pattern
[15]. We focus our study on an area of roughly 2500 km2,
which corresponds to the coverage range of an LEO satellite
beam [16]. Moreover, we assume that the LEO constellation
employs earth-fixed beams [10] and that the beam serving our
scenario originates from a satellite with a 90 degree elevation
angle. All of the UEs are distributed uniformly throughout the
grid. We provide two settings as benchmarks: The 3GPP-TN
setting in which there is no satellite tier and the terrestrial
tier gets a total bandwidth of 10 MHz, and the 3GPP-NTN
setting, where the bandwidth is split according to the 3GPP

specifications [16], meaning that 30 MHz is allocated to
the satellite tier and 10 MHz to the terrestrial tier. In both
settings, the UEs associate with the BSs following the max-
RSRP rule and there is no DL transmit power optimization
or MBS shutdown. Note that λ is set such that it is inversely
proportional to the number of UEs in the network. Most of
the relevant simulation parameters can be found in Table I, set
accordingly to [10], [16]–[20].

Parameter Value
Total Bandwidth W 40 MHz
Carrier frequency fc 2 GHz
Subcarrier Spacing 15 kHz
Urban/Rural Inter-Site Distance 500/1732 m
Number of Macro BSs 1067
Satellite Altitude [16] 600 km
Terrestrial Max Tx Power per RE pMAX

j [19] 17.7 dBm

Satellite Max Tx Power per RE pMAX
j [16] 15.8 dBm

Antenna gain (Terrestrial) GTX
[20] 14 dBi

Antenna gain (Satellite) GTX
[16] 30 dBi

Shadowing Loss (Terrestrial) SF [18] 4 − 8 dB
Shadowing Loss (Satellite) SF [10] 0 − 12 dB
Line-of-Sight Probability (Satellite / Terrestrial) Refer to [10] / [18]
White Noise Power Density −174 dBm/Hz
Coverage threshold RSRPmin −120 dBm

Table I: Simulation parameters.

A. Sum Throughput Analysis

In this section, we analyze the sum throughput of the
network, to better understand how our framework adapts the
offered capacity to the actual load of the network. In this
regard, Fig. 1 shows the evolution of the sum throughput
(ST) during an entire day and for different traffic states. On
top of the two benchmarks, we plot the hourly ST for 1)
BLASTER (presented in Sec. IV) and 2) a setting where the
association and power control are based on our algorithm,
but bandwidth is shared equally among both tiers (Fixed
bandwidth split). Firstly, we notice that although the
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Figure 1: Network Sum Throughput throughout the day for different scenarios.

network ST gain provided by our framework is limited during
low and average traffic periods (e.g. early morning), we
see a clear improvement during high-traffic hours. This is



explained by the fact that when the traffic load is low, the
algorithm favours energy saving since the value of λ has
been set to a greater value, to penalize power consumption
and drive the terrestrial MBSs to shut down at the expense
of the ST. Inversely, when traffic is high, our framework
distributes the load and redistributes the bandwidth resources
so that the network ST improves notably. Indeed, compared
to the 3GPP-NTN benchmark, we see a growth of the sum
throughput which can go up to as much as 270% during peak
traffic. As expected, the 3GPP-TN setting provides the worst
performance amongst the compared solutions. This is due to
the fact that, without satellites, roughly 7% of the UEs are out
of coverage [6] and the overall available total bandwidth is
limited. 3GPP-NTN improves the ST due to the addition of
a satellite tier, which provides coverage for the entire grid, as
well as a solution for UEs who are associated to overloaded
terrestrial MBSs and perceiving a low throughput. Moreover,
considering the settings with our power optimization and UE-
BS association, we see that the ST further improves. This
results from reduced interference from neighbouring terrestrial
MBSs due to the power control step, leading to a throughput
increase. Furthermore, we notice that the dynamic allocation
of the bandwidth benefits the network ST, as we can see
it double compared to Fixed Bandwidth split during
high traffic. Finally, we observe an average increase of 249%
in terms of mean throughput during high traffic compared
to 3GPP-NTN, which underlines the effectiveness of our
framework.

B. Satellite Offloading Analysis

In this section, we study the critical role that the satellite
plays in our framework by analyzing the proportion (see Fig.
2) of UEs associated to a satellite throughout the day.
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Figure 2: Proportion of UEs associated to the satellite throughout the day.

The load of the traffic is represented by the background colour,
i.e. green, yellow, and red are low, average, and high-traffic
hours respectively. We know that during low traffic, the onus
is on reducing the TN power consumption. Therefore, the
satellite becomes an attractive means to serve UEs. Thanks to
our method, this results in an increased proportion (more than
a 200% increase) of UEs associated to a satellite compared

to the benchmark 3GPP-NTN. As a result, we are able to
shut down more terrestrial MBSs during low-traffic hours. On
the contrary, we see that the satellite associates with fewer
UEs during high-traffic hours. Indeed, the proportion of UEs
associated to it is lesser than in the 3GPP-NTN scenario. This
can be explained by the fact that when the traffic is high, the
satellite will act more as a coverage layer. Most of the satellite
bandwidth is allocated to the terrestrial MBSs, as the TN can
support higher throughputs due to the large spectrum reuse.
Therefore, we notice how the algorithm is able to adapt the
overall TN-NTN resources according to traffic variations.

C. Power Consumption Analysis

In this section, we investigate the performance of our
framework in terms of power consumption. As mentioned
above, terrestrial MBSs transmit power and activation control
plays an important role in our proposed framework. In Fig.
3, we show the network power consumption throughout the
day for the various solutions analyzed in this paper. The
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Figure 3: Network Power consumption throughout the day.

dotted red line represents the power consumption level for
both 3GPP benchmarks. As explained before, since there
is no power optimization or terrestrial MBS shutdown in
those settings, the transmit power levels are at the maximum
throughout the day. We observe an average decrease of the
network power consumption by 65.4% during low traffic for
our framework, compared to both 3GPP benchmarks. This is
because, as we discussed in Sec. V-B, the satellites take a
prominent role at this period of the day, associating with more
UEs than in the 3GPP-NTN network setting. This allows the
shutdown of many terrestrial MBSs and saves a lot of energy
in the process. Also, during high traffic, we notice that the
average network power consumption decreases by 33%. As
the shutdown of MBSs is not the priority during this period,
the energy saved is mostly due to some BSs decreasing their
transmit power without negatively impacting the QoS. The
noticeable improvement in ST observed in Fig. 1 during high
traffic corroborates this statement. Once again, this highlights
the ability of our network to adapt to the demands imposed
by the traffic state, with the satellite playing an eminent role
throughout.



VI. CONCLUSION

In this paper, we have introduced BLASTER, a framework
that operates in an integrated TN-NTN, and is able to man-
age UE association, regulate power, and allocate bandwidth
between the terrestrial and non-terrestrial tiers of the network.
Our proposal is to adapt the network behaviour according to
the traffic demand, i.e. focus on energy saving during low-
traffic hours and offer large throughput otherwise. Simulation
results show that BLASTER can greatly improve the network,
enhancing the mean throughput during high-traffic hours, and
scaling down the power consumption during low-traffic hours.
We also underline the crucial and evolving role that the
NTNs play in the success of our framework, emphasizing the
decisive part they are poised to play in ensuring ubiquitous
and sustainable mobile services in the coming years.
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