Proceedings of the 5th Open Workshop on High-Speed
Networks, Paris, March 1996

A CORBA-Based Connection Management
Scheme for a Multimedia Platform with
Stream Configuration Support

Extended Abstract

Marcus Schmid and Christian Blum
Institut Eurécom
2229, route des Crétes
F-06904 Sophia Antipolis
{mschmid,blum}@eurecom.fr

1 Multimedia Service Provision

We present a multimedia platform that addresses the problem of how to provide multipoint
multimedia services to a large community of users, with these users being for instance private
households or the employees of an international enterprise. The design decisions taken for our
platform are based on the following three assumptions about future multimedia services:

 there are many services offered in parallel
* most of the services have short life-cycles
* there are many service providers

The amount of services offered on the Internet today gives a hint about the service diversity
that tomorrow’s multimedia networks will have to support. This does not only concern the
retrieval and other man-machine services that will be offered in first generation residential net-
works, but also the multipoint communication services that will come up as soon as the sub-
scriber lines become symmetric. The number of services will be enormous, and services will
have short life-cycles. They will be rapidly developed and deployed, and once deployed they
will be constantly improved up to the point where they become obsolete. Service diversity can
only be attained in a competitive environment where service provision is open to everybody.
The first service providers in residential cable networks will be the network providers them-
selves, but it can be foreseen that they open their networks to third parties in order to offer a
richer variety of services to their customers.

Service provision in a network requires the existence of standard terminal equipment at the
user’s premises. This is just as true for multimedia service provision as it is for comparatively
simple telephony. A crucial problem is the distribution of service intelligence between terminal
and network. One might be tempted to think that applications will reside and run on end-sys-
tems, and that the only service required from the network is connectivity. The problem with this
approach is that it limits service diversity simply because people would need to install on their
endsystem about every application they possibly want to use. Another possibility would be to
have application servers in the network from which user endsystems can download the executa-
bles they need to run a certain application. This approach has the problem that the application,
once developed, has to be ported to every possible endsystem architecture, and that the applica-
tion server would need to store all of these executables. The approach we chose is to distribute
application intelligence between the network and the endsystems, as will be explained in the
following section.

Application Pool

Application

' :

misc. || Connection &
Services || Configuration

Application Pool Manager

L5

Interface 1
Handler %&%%T L]

Terminal Control

Stream Graph

o Multimedia
gty Terminal]

Figure 1. The APMT architecture.

In order to support service diversity, networks must offer a standard framework for the inte-
gration of services. Services are implemented on top of high-level programming interfaces that
hide network complexities. One such interface would be a connection management support for
multi-user applications that typically exhibit complex and dynamically changing connection
structures.

The following section will give an introduction into our architecture. The rest of the paper
will concentrate on the connection management aspects of this architecture.

2 APMT: Application Pools and Multimedia Terminals

In our architecture [1][2], applications reside application pooldnside the network and are
accessed by means miultimedia terminalsAn application will download scripts into the ter-
minals that serve as intelligent sensors for the application and that deal with every issue that is
local to the terminal. Connections among the terminals that participate in a multipoint applica-
tion are established by a central connection manager within the application pool that acts on
behalf of the application.

The application pool must be considered as a center of control, and will rarely be the source or
sink of media data. Media acquisition, transmission, processing and presentation is performed
by standard hardware and software devices within the terminals. The application controls the
devices and receives the events that they generate. A terminal can activate a certain application
only if it has the devices that the application requires. The architecture of both the application
pool and the multimedia terminal is device independent, i.e., new devices can be introduced
without any modification of the major building blocks of the architecture.

The complete architecture is based on CORBA [3], and is thus defined as a set of IDL inter-
faces. There are roughly two kinds of interfaces: interfaces that define the interaction between
terminal and application pool, and interfaces that are internal to application pool or terminal.
The internal interfaces of the application pool must be known by application developers, the

UDP—IPmcast

/TCP
Transpor

Device

° VideoCodeip o 0 @

° AudioMixere e @ ®

. VideoDecodere e e o
Graph InterDevic .

[]
StrAgent Device °
VideoDecode
- ; Terminal S~
Object— APMTObject Resourc / WindowDecode!

Terminal CoBox VisibleDevice
Control

InfHandler ——TkInfhan

Figure 2. Terminal interface inheritance diagram.

ones in the terminal by device developers, and the interfaces between terminal and application
pool by both application and device developers. Internal interfaces may need to reflect hardware
and operating system patrticularities and are therefore system dependent. It is evident that exter-
nal interfaces must be unique.

Fig. 1 shows the major components of the application pool and multimedia terminal along
with control and media flows. For convenience, we will refer to our architecture as the APMT
(Application Pool - Multimedia Terminal) architecture.

3 Multimedia Terminal

The multimedia terminal is defined as a set of IDL interfaces. Any computing environment
that provides implementations of these interfaces and that is accessible via a CORBA compliant
object request broker may act as a multimedia terminal. The interface inheritance tree defining
the multimedia terminal is given in Fig. 2. The main interfaces of the interface inheritance tree
appear after the gener@PMTObject interface:

Terminal Control The central interface of a multimedia terminal is its terminal control. Its
object reference represents the address of the terminal. The terminal control receives invitations
from applications and accepts them on behalf of the user. It allows to launch or join applications
in the application pool. Every application access to the terminal is supervised by this central
control entity.

Stream Agent The stream agent interface provides methods for application-specific configura-
tion of media processing on a terminal. Media processing is dogeapis. The nodes of a

graph are media processing devices, whereas the edges of a graph represent the data flow in-
between these devices. When an application wants to create a graph, it passes a graph descrip-
tion to the stream agent which will instantiate and link the requested devices. The set of avail-
able devices reflects the media processing capabilities of a terminal.

Interface Handler The local representative of an application on a terminal is a script that gen-
erates a graphical user interface. An application accesses the interface handler to download its
specific script. The script interprets user input and either executes the desired actions locally or
forwards the user input to the application.

Terminal Resources Those interfaces whose implementation needs resources for transporting
or processing media streams are contained in the subtree starting at tHemoitalRe-

source. The basic media processing unit on a terminal isléwéce A device is a standard
abstraction for a hardware component or some processing functionality that is implemented in
software. The media stream enters or leaves a devicepatiss Connectorsink device ports,

and linked devices form a graph. Connectors may be unicast or muffioasector Boxeson-

tain a set of connectors that can be activated or deactivated. This allows to dynamically control
the flow of a medium stream into graph branches.

Each terminal resource interface must offer at least the me#totigiate() anddeac-
tivate() . These two methods control the acquisition of a terminal resource: a deactivated
terminal resource exists only as a computational object and does not allocate any media trans-
port or processing resources. As the terminal resource is activated, it tries to acquire the needed
hardware device, the CPU time, transport facility etc. Access to resources is granted by a termi-
nal resource manager. An active device processes the data streams entering at its input ports and
conveys the results to its output ports. An active connector transports the media stream in-
between the ports that it connects.

A graph as a whole offers an interface which is instantiated by the stream agent together with
the graph’s devices and connector boxes. This interface allows for run-time graph modification
and overall resource acquisition control. It is assumed that a graph is operational only if all of its
elements are operational. Resource acquisition on graph level is therefore atomic, i.e., the
start() method of the graph interface either activates all its terminal resources or none of
them.

The network to which a terminal is attached is reflected by the avaitabkport devices.
Together with the respective peer transport device, they perform media stream transmission in-
between terminals. To assure interoperability among terminals, a standard exchange format for
the transmission is defined for every medium type. Interdevice communication that is not of
interest for the application and that does not need a reliable transport service is done by attach-
ing stream attributeto a packet of the media stream. An arbitrary number of stream attributes
may be associated with a stream. The transport device is also in charge of merging this in-band
control information to the media stream at the sender side and extracting it at the receiver side,
respectively.

4 Connection and Configuration Module

The connection and configuration module (CCM) is an auxiliary application in the application
pool. It was designed to assist multi-user applications in establishing and maintaining complex,
dynamic connection structures among terminals. An example for such a multi-user application
is the teleconference: a teleconference features a small set of audio and video sender and
receiver graphs that are instantiated on every implicated terminal and that are interconnected via
numerous network connections that have to be established and reconfigured as participants join
or leave the conference. The CCM API aims at shielding this application class from directly
dealing with the network and with terminal configuration. In the following we introduce the
main abstractions of the CCM API.

Graph Model Instantiated Graph

Speak Speak
Device — —
Audio Audio
- ConnectorBox
Audio Audio
concentrate — %
Audio Audio Audio Audio

IPmca IPmca UDP

Figure 3. Relationship graph model and instantiated graph

Terminals are grouped insubsetsAmong the members of a subset, an arbitrary number of
bridgesmay be established. Bridges are fundamental connection structures whose vertices are
graphs. The CCM supporsmplex duplex multicast all-to-all and all-to-one bridges. A
bridge creation request must speafgph modeldor the graphs that are to be created at the
vertices of the bridge. Three points have to be considered when transforming the model to a
graph:

1. The sink vertices of all-to-all and all-to-one bridges receive media streams from all source
vertices and must know how to concentrate them. A receiver graph model must indicate
which device performs this concentration. The subgraph that is attached in up-stream direc-
tion to the concentrating device represents the device network that copes with one incoming
stream. Therefore, the entire graph has as many of these subgraphs attached to the input
ports of its concentrating device as there are incoming streams. If a receiver graph model
does not indicate a concentrating device, the graph consists of as many copies of the graph
model as there are incoming streams.

2. Graph models do not contain transport devices, but they indicate an open device port to
which the transport device is to be attachite choice of the transport device is up to the
CCM. The central CCM knows which transport devices are available at each terminal. Fur-
thermore, it is aware of the network structure and of the transport services that this network
offers. Based on this knowledge, it attaches appropriate transport devices.

3. Media streams are typed and ports know about the medium type flowing through them.
When an application registers a graph model with the CCM, it sets the medium type only at
a subset of the ports within the graph. The medium type of the remaining ports has to be
determined by the CCM. Of particular interest is the medium type at the network port of a
graph model. Since the QoS requirements of a media stream can be deduced from its type,
the CCM may reserve network resources for the transmission of a stream.

Fig. 3 shows on the left side a graph model for audio reception and on the right side the graph
that will be instantiated when this graph model is a sink vertex in an all-to-all or all-to-one
bridge over four terminals.

The CCM API is specified in IDL and accessed via the omnipresent object request broker.
Usage of the API will mostly occur in two phases. In the initialization phase, graph models are
registered and terminal subsets are formed. During the operational phase, bridges are created,
modified and removed. In this phase, the CCM changes connections structures by creating,
deactivating and reactivating graphs.

5 Prototype

A prototype of the APMT platform including the CCM has been implemented at Eurécom.
The prototype uses Sun Sparcl0 workstations as multimedia terminals and application pools.
The ORB is Orbixdfrom lona Technologies. Media transport is based on UDP and IP multicast
over an ATM-LAN. On the top of the CCM, a videoconference application has been imple-
mented that highlights the most important features of the architecture.

References

[1] C. Blum, R. Molva and E. Ruetsche,"A Terminal-Based Approach to Multimedia Service ProvisiBrd; in
ceedings of the 1st International Workshop on Community NetwofkamgFrancisco, July 1994.

[2] C. Blum and R. Molva,"A Software Platform for Distributed Multimedia Applications", to appdmoceed-
ings of the 1st International Workshop on Multimedia Software DevelopBertih, March 1995.

[3] Object Management Group,"The Common Object Request Broker: Architecture and Specification”, John
Wiley & Sons, Inc., 1992.

The articles [1] and [2] can be retrieved from our web server: http://www.cica.fr~blum

