
Fine-grained Attention in Hierarchical Transformers
for Tabular Time-series

Raphael Azorin
EURECOM, Huawei Technologies

last@eurecom.fr

Zied Ben Houidi
Huawei Technologies
first.last@huawei.com

Massimo Gallo
Huawei Technologies
first.last@huawei.com

Alessandro Finamore
Huawei Technologies
first.last@huawei.com

Pietro Michiardi
EURECOM

last@eurecom.fr

ABSTRACT
Tabular data is ubiquitous in many real-life systems. In particu-
lar, time-dependent tabular data, where rows are chronologically
related, is typically used for recording historical events, e.g., fi-
nancial transactions, healthcare records, or stock history. Recently,
hierarchical variants of the attention mechanism of transformer
architectures have been used to model tabular time-series data. At
first, rows (or columns) are encoded separately by computing atten-
tion between their fields. Subsequently, encoded rows (or columns)
are attended to one another to model the entire tabular time-series.
While efficient, this approach constrains the attention granular-
ity and limits its ability to learn patterns at the field-level across
separate rows, or columns. We take a first step to address this gap
by proposing Fieldy, a fine-grained hierarchical model that con-
textualizes fields at both the row and column levels. We compare
our proposal against state of the art models on regression and
classification tasks using public tabular time-series datasets. Our
results show that combining row-wise and column-wise attention
improves performance without increasing model size. Code and
data are available at https://github.com/raphaaal/fieldy.

ACM Reference Format:
Raphael Azorin, Zied Ben Houidi, Massimo Gallo, Alessandro Finamore,
and Pietro Michiardi. 2024. Fine-grained Attention in Hierarchical Trans-
formers for Tabular Time-series. In ACM SIGKDD’24 – 10th Mining and
Learning from Time Series Workshop (MiLeTS), August 26, 2024, Barcelona,
Spain. ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION
Sequential tabular data is widely used in the industry to represent
financial transactions recorded in a bank database [11], medical
records stored by a hospital [20] or customers purchase history
maintained in a CRM system [22], to name a few examples. Such
tabular data are composed of rows and columns, each row corre-
sponding to a record which collects values for each column. Dif-
ferent from traditional multivariate time-series, tabular time-series
often present categorical variables. Unlike classic tabular data which
considers separate rows as distinct input samples for a given down-
stream task, records in sequential tabular data span multiple rows, a
property that can be exploited when time-related fields are present
(see Table 1). Common examples of tabular time-series tasks take
multiple rows in input and provide some prediction, e.g., detect-
ing fraud from sequences of financial transactions [13], predicting
click-through rate from past online behavior [12] or forecasting
pollution from historical data [13].

Figure 1: Hierarchical transformers schematic view.

As tabular time-series tasks are intrinsically sequential, the re-
search community started to investigate how to leverage the success
of transformer architectures [16] from Natural Language Process-
ing (NLP) within the tabular domain [11, 13, 21]. In a nutshell, by
exploiting the attention mechanism, a transformer can relate the
tokens that compose a sequence to one another, hence learning
relationship patterns between time-steps. This mechanism led to
significant improvements in NLP tasks, such as sequence classi-
fication (e.g., sentiment analysis), token classification (e.g., entity
recognition) or sequence regression (e.g., emotion level prediction).
Just as transformers extract rich features from sequences of words,
the sequence of records in a table is crucial for extracting meaning-
ful patterns in tabular data modeling.

As tabular data is bi-dimensional, and both rows and columns
carry semantics, the transformer architectures available in literature
for tabular time-series often present a hierarchical design. In a first
stage, each row (or column) is encoded separately by aggregating
the outputs of a transformer computing attention across its fields,
as shown in Figure 1 – left and center. In the second stage, these
encoded rows (or columns) are then passed to another transformer.
The result of the second stage is the final encoding of the entire
tabular time-series, which is typically processed by additional fully
connected layers that specialize the model for solving a given down-
stream task, e.g., sequence classification. From a tabular perspective,
this two-stage process first captures interactions between fields
within a given dimension (row or column), and then interactions
among those representations.

https://github.com/raphaaal/fieldy

KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain Raphael Azorin et al.

Table 1: A tabular dataset. Records may be grouped by
Patient to produce tabular time-series.

Timestamp Patient Disease Therapy Temperature
2024-06-01 012 Tuberculosis A 38.2
2024-01-15 012 Flu B 38.3
2023-12-28 456 Hemophilia C 37.5
2023-07-26 012 Angina B 37.9
2023-01-28 456 Sinusite B 37.3
2022-02-11 789 Flu D 38.1

While hierarchical architectures capture all table dimensions,
they don’t do that simultaneously, hence limiting visibility on more
subtle cross-field relationships important for the downstream task.
In Appendix A, we empirically demonstrate that this shortcoming
hinders learning interactions between fields across separate rows,
due to the coarse-grained aggregation performed in the second
stage. This suggests that a field-wise attention mechanism can be
an appealing alternative to capture the intricate relationships be-
tween all the fields across the full tabular time-series, as illustrated
in Figure 1 – right. In this paper, we implement this mechanism,
introducing Fieldy, a novel architecture that combines row-wise
and column-wise transformers in the first stage to learn field rep-
resentations. These contextualized field representations are then
merged, reshaped and passed to the second-stage transformer to
produce the final encoding of the entire tabular time-series. Conse-
quently, Fieldy enables fine-grained attention across all the fields
composing a tabular time-series, while incorporating row-level and
column-level information. We compare our solution against both
state of the art transformer architectures and Machine Learning
(ML) tree-based ensemble algorithms using two popular tabular
datasets and show that Fieldy outperforms alternative methods.

The remainder of this paper is structured as follows. First, we
review prior work on transformers for standard tabular data and
tabular time-series (Section 2). Then, we present Fieldy and high-
light its differences with row-based and column-based hierarchical
transformers (Section 3) before presenting our evaluation protocol
and results (Section 4). Last, we discuss our findings and identify
areas for future work (Section 5).

2 RELATEDWORK
In this section, we first review prior work on Deep Learning (DL) for
standard tabular data. We then focus on the specific case of tabular
time-series, using Table 1 as toy example. Finally, we discuss how
our contribution fits within the existing literature.

Transformers for tabular data. In traditional tabular data mod-
eling, each row is treated as a distinct input sample for which a
prediction or a classification needs to be made. A variety of pro-
posals address this type of data using both DL and ML methods.
For instance, a recent study [8] explores DL approaches, including
CNNs and transformers, as well as ML tree-based models like XG-
Boost and Random Forests, applied to tabular data. Although the
study shows that gradient-boosted trees outperform deep learn-
ing algorithms on most datasets, FT-Transformer [7] emerges as a
promising architecture. In particular, FT-Transformer encodes each
row by computing attention between its fields and then processes it,

with a final fully connected layer. FT-Transformer relies on feature
tokenizers to embed both categorical and numerical features that
may appear in tabular data, which is an uncommon and challenging
scenario for ML approaches. Note that this method is row-based but
not hierarchical as each record is encoded separately. Alternatively,
Tabbie [9] proposes to encode each table field by averaging repre-
sentations of its row and its column. To do so, two transformers are
tasked to encode each row and each column separately, in order
to form “contextualized” fields representations by averaging their
intersections. Once the full table has been encoded, each row is
processed by a final fully connected layer. Note that Tabbie is not a
hierarchical architecture, as it only operates at the field-level gran-
ularity, either contextualized by row or by column. While Tabbie is
not adapted to tabular time-series, as it does not consider subsets
of time-dependent rows, it is the closest to our proposal in the way
it attends to row and column contexts.

Transformers for tabular time-series. In their most prevalent form,
tabular time-series are a specific family of tabular data where
records are interdependent and ordered or timestamped (e.g., with
an explicit Timestamp field as in Table 1), often presenting an “en-
tity” identifier used for grouping records into samples of interest.
For example, Table 1 yields three distinct tabular time-series cor-
responding to three patients’ history, each of which could be the
input to a machine learning model. In this case, a classic ML algo-
rithm would simply take as input the concatenation of multiple
records, hence returning to the traditional tabular data scenario.
Conversely, more recent sequence models open the way for using
hierarchical approaches to tabular time-series modeling. In this
context, TabBERT [13] is composed of a first-stage transformer
that encodes each row in a tabular time-series, and a second-stage
transformer that processes the encoded rows to generate a full
sequence representation. This final representation is then passed
to a fully connected layer, e.g., a classification head, to perform the
downstream task. Given its design, we refer to this architecture
as “row-based”. Alternatively, instead of encoding rows in the first
stage, a variation of TabBERT may encode each column separately,
and process these encoded columns in a second stage to generate
the full tabular time-series representation. We refer to this inver-
sion of TabBERT as “column-based”. Several works have extended
this hierarchical approach to model tabular time-series, such as
[11] that extends it to heterogeneous tabular time-series, i.e., with
different number of columns, and [21] that exploits time-deltas to
better model time differences in the context of tabular time-series.
Our work builds on hierarchical tabular time-series modeling, ex-
tending it with the ability to integrate field interactions across both
rows and columns simultaneously.

Table 2: Transformer-based models comparison.

Model Architecture Attention axis

FT-Transformer [7] Single-stage Horizontal
Tabbie [9] Single-stage Horizontal & vertical

TabBERT (row-based) [13] Two-stage Horizontal→ Vertical
TabBERT (column-based) Two-stage Vertical → Horizontal
Fieldy (ours) Two-stage Horizontal & vertical → Fields

Fine-grained Attention in Hierarchical Transformers for Tabular Time-series KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain

Figure 2: Detailed view of transformer architectures for tabular time-series. The +○ operator denotes concatenation.

Our contribution. In this paper we set out to evaluate whether a
hierarchical model with a finer cross-field attention provides more
appropriate representations of tabular time-series, as opposed to a
coarse aggregation of row or column embeddings. In a nutshell, we
propose an architecture that simultaneously captures row-wise and
column-wise interactions in a first stage, to learn contextualized
field representations that are related to one another in a second
stage. To properly isolate this effect and focus the comparison on
this particular design choice, we compare this field-based attention
approach to its row-based and column-based counterparts in similar
conditions. In other terms, in this paper, we do not aim to introduce
novel tokenizers or novel pre-training tasks which are orthogonal
directions of research. Additionally, since our approach relates any
field to any other during the second stage, unlike row-based and
column-based, we compare it also to a single-stage baseline where
all the rows of interest are flattened and fed to a unique transformer.
This approach can be seen as an adaptation of FT-Transformer
for tabular time-series, effectively resulting in a comparison point
that links any field to any other. Finally, to complete the design
space, another interesting comparison point we consider consists
in constructing contextualized field embeddings that incorporate
both rows and columns and then feeding the flattened sequence
to a linear layer. This approach could be seen as a straightforward
adaptation of Tabbie to the context of tabular time series.

3 METHODOLOGY
In this section, we first dive into the details of current approaches
and their limitations. We then present our field-based hierarchical
approach that integrates both row-wise and column-wise interac-
tions. We finally introduce the positional embeddings schemes used
to encode table structure.

State of the art limitations. Tabular time-series modeling ap-
proaches considered in this paper are summarized in Table 2. Non-
hierarchical baselines such as FT-Transformer and Tabbie are single-
stage architectures designed for traditional (i.e., non sequential)
tabular data. When adapting FT-Transformer to tabular time-series,
the input sequence is flattened to form a single long row of repeated
features at various time-steps, as depicted in Figure 2 (a). As this
model computes attention across all the fields composing a single
row, it captures relationships between all the fields across all rows
and columns as a result of the input flattening. However, the down-
side of this flattening is that this adaptation of the FT-Transformer
model is oblivious to the table structure. We consider this as a
baseline transformer attending to all fields. Alternatively, when
adapting Tabbie to ingest tabular time-series, we limit its row-wise
contextualization to a subset of the table: the rows composing the
input sequence. As it relates each field to other fields present in the
same row and column, Tabbie is able to capture relationships along
both table axes. However, as depicted in Figure 2 (b), this approach
is not equipped with a second-stage to relate all the fields outside
of their original row and column.

Regarding hierarchical models, recall that two-stage architec-
tures from the literature are either “row-based” or “column-based”.
Thus, they condition the attention mechanism between distinct
fields along a particular table axis in the first stage, as illustrated
in Figure 2 (c). While these approaches enforce the tabular time-
series row (or column) structure, they fail to capture relationships
between fields across separate rows (or columns). For instance, con-
sidering Table 1, a row-based architecture cannot explicitly relate,
i.e., by means of attention, a Disease field to a Therapy field if they
belong to different rows, nor can it directly relate two Disease
fields that belong to two different rows. As shown empirically in

KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain Raphael Azorin et al.

Appendix A, this limits the ability of hierarchical models from the
literature to learn fine-grained relationships at the field level that
might be relevant for a given downstream task.

Field-wise attention. Two-stage approaches rely on the assump-
tion that the Field transformer in the first stage is sufficiently pow-
erful to extract expressive row/column representations for the Final
transformer, rather than fostering the learning of fine-grained field
relationships in the second stage. To capture relevant fields in-
terations that may be beneficial to tabular time-series tasks, we
introduce Fieldy: a novel hierarchical transformer that combines
both in-row and in-column attention, as well as cross-field attention.
As depicted in Figure 2 (d), we propose a two-stage architecture in
which the first stage consists of two Field transformers that oper-
ate simultaneously: one is responsible to contextualize each field
row-wise, and the other is responsible to contextualize each field
column-wise. The resulting encoded rows and columns are then
concatenated to constitute field representations. These contextual-
ized cell representations are then passed through a fully connected
layer to produce rich representations before being processed by
a Final transformer, which would attend to all fields. Note that
our first stage resembles Tabbie; yet, it differs for two key design
choices. First, while Tabbie creates a field embedding through a
deterministic simple average of the field’s row and column embed-
dings, Fieldy learns how to combine the two embeddings in the
first stage. Second, unlike Tabbie which passes the embedded fields
to the final fully connected layer (e.g., a classifier head), we adopt a
second-stage transformer that relates all the field representations
to each other. At last, the entire encoded tabular time-series coming
from the Final transformer is processed by a fully connected layer,
fine-tuned on a specific downstream task (e.g., sequence classifi-
cation). In order to fairly compare Fieldy against row-based and
column-based architectures, we reduce the size of its Field trans-
formers to reach the same model size. Nonetheless, we note that
Fieldy requires increased computational effort, an aspect which we
discuss in Section 5.

Positional encoding to capture table structure. Compared to row-
based or column-based hierarchical approaches that model the table
structure by design, Fieldy requires additional information. In the
row-based architecture, the Field transformer implicitly establishes
the table’s horizontal structure by computing attention horizontally
across all the fields of the same row. The Final transformer then en-
forces the table vertical structure as it ingests a sequence of per-row
representations. Conversely, in the column-based architecture, the
Field transformer is provided with the table’s vertical structure, as
its input is a sequence of fields from distinct rows. Then, the Final
transformer enforces the table horizontal structure by attending
between per-column representations. For these two approaches,
it is only the position of the rows (or columns) that is unknown
from the model, but their delimitation is apparent by design. On
the other hand, the design of Fieldy does not incorporate the ta-
ble structure by default, as the Final transformer ingests a long
sequence composed of all the contextualized fields. Thus, without
additional information, the Final transformer can only access a
bag of fields, being oblivious to the original rows or columns they
come from. Therefore, we incorporate row and column positional
embeddings [4]. Before being passed to the Final transformer, each

contextualized field is augmented (by means of element-wise addi-
tion) with two embeddings: one carrying its original row position
and one carrying its original column index. To ensure a fair com-
parison between architectures, we also add these row position and
column index embeddings to all the other models. We discuss the
effect of these additions in Section 4.

4 EVALUATION
In this section, we first detail the datasets andmodels configurations
considered to compare transformers architectures on tabular time-
series. Then, we present the results of our evaluation and expand
our analysis with an ablation study.

4.1 Datasets
Pollution – Regression. The UCI Beijing Pollution Dataset [2]

consists in predicting air pollution particles from 12 sites located
in Beijing. This dataset has been used to evaluate row-based hi-
erarchical transformers in [11, 13]. It is a multi-regression task
taking as input 10 features (such as temperature, pressure, etc.)
measured on an hourly basis during 10 time-steps. The labels to
predict correspond to the PM2.5 and PM10 concentrations for each
time-step, i.e., 20 labels for each input sequence. We replicate the
pre-processing described in [13], i.e., we discretize numerical vari-
ables using 50 quantiles and normalize the targets. After data ex-
ploration, we choose to include 6 additional features not present in
the pre-processing from related work. These engineered features
correspond to the measurement site name, the hour of the mea-
surement, the day of the month, the weekday, the month, and the
year. Finally, we remove 4% of outliers when PM10 > PM2.5 as men-
tioned in [18]. As in prior work, the evaluation metric is defined as
the RMSE averaged across the concentration targets. In total, this
dataset contains 67K tabular time-series. The pre-training dataset
consists of the same dataset excluding the labels (more details on
data splits in Appendix C).

Loan default – Classification. The PKDD’99 Bank transactions
dataset [1] contains real transaction records for 4,500 clients of a
Czech bank. It has been used in [11] to evaluate hierarchical trans-
formers. The considered task consists in predicting if a client will
default its loan based on his prior transactions. Six input features
describe each transaction (amount, type, etc.) and the label is bi-
nary, i.e., one for each clients’ input sequence. As for the pollution
dataset, we pre-process the data similarly to prior work [11], i.e.,
using 50 quantiles to discretize each numerical feature and split-
ting the timestamp into three fields: day, month and year. Note
that we include an additional weekday feature that proved mean-
ingful during data exploration. As in [11], we segregate the data
into 3,818 clients with unlabeled transactions for pre-training, and
682 clients with labeled transactions for fine-tuning. In order to in-
crease the dataset size, we consider any sequence of 10 consecutive
transactions for each client, while [11] considered only his last 150
transactions. We thus obtain 5K tabular time-series for fine-tuning,
instead of only 682. The evaluation metric is defined as the Average
Precision (AP) score to take into account the class imbalance of this
dataset (more details on data splits in Appendix C).

Fine-grained Attention in Hierarchical Transformers for Tabular Time-series KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain

4.2 Models
Architectures. For each dataset, we consider three hierarchical

transformers: row-based, column-based and our field-based pro-
posal Fieldy. We use the official code from TabBERT [13] to im-
plement row-based and column-based baselines. Additionally, we
evaluate two single-stage baselines: FT-Transformer and Tabbie,
using our own implementation to adapt them to tabular time-series.
We size all models to amount to the same total number of parame-
ters. As Fieldy requires two Field transformers in its first stage, we
reduce their number of layers to make the comparison fair. We keep
all the other hyper-parameters related to model capacity (hidden
dimensions, number of attention heads, etc.) the same across all
models, similar to prior work [11, 13, 21]. Models are pre-trained
for 24 epochs (Pollution) or 60 epochs (Loan default), and fine-tuned
for 20 epochs. The best models are selected based on their score on
a validation set and evaluated on a held-out test set. Additionally,
we include two non-deep learning baselines: XGBoost [3] and a
linear model (linear or logistic regression). Note that these two
baselines use exactly the same pre-processed input features and
labels as the hierarchical transformers, which means that all nu-
merical features are quantized. Both of these baselines take as input
a flattened version of the tabular time-series. We select the best
linear models after a cross-validated random search of 50 iterations
to select their hyper-parameters. Also, regarding the Loan default
prediction task, note that only the fine-tuning portion of the Loan
dataset is considered for these non-deep learning baselines. More
details on hyper-parameters can be found in Appendix B.

Comparability. To ensure a fair comparison across all models,
we implement the same pre-training and fine-tuning strategy for
all of them. While self-supervised pre-training has proved useful on
tabular data [14], we emphasize that our objective is not to design
novel pre-training techniques. Thus, we consider a simple field
masking pretext task for all models, as from previous literature [13].
In detail, we guide pre-training with a BERT-like token masking
pretext task [4], randomly selecting 15% of the tokens, out of which
80% are replaced by a [MASK] token, 10% by a random token and 10%
left unchanged. Last, as our objective is not to introduce novel fine-
tuning mechanisms, we resort to a standard fine-tuning technique
popularized in NLP. During fine-tuning, we prepend a [CLS] token
to the tabular time-series before encoding it with the model (i.e.,
before the Final transformer for two-stage models). Once the full
time-series is encoded, this special token is extracted and passed to a
final fully connected layer trained on a specific downstream task as
in [4]. We implement this fine-tuning methodology for all models,
with a variation for Tabbie. Indeed, in [9], the authors suggest
to prepend [CLS] tokens to each row and column processed by
Tabbie, based on the downstream task to learn. Thus, we consider
the version of Tabbie that yields the best results in our experiments.

4.3 Results
We evaluate each model over 5 seeds runs and report their average
performance and standard deviation in Table 3. We emphasize that
transformer-based models contain the same total number of param-
eters. On the Pollution dataset, we observe that Fieldy significantly
decreases the RMSE demonstrating the effectiveness of the pro-
posed approach. Regarding the Loan default prediction task instead,

Table 3: Results. Average over 5 seed runs, standard deviation
in parenthesis. Models have the same number of parameters.

Model Architecture Pollution
RMSE ↓

Loan
Avg. Precision ↑

Linear Non-DL 59.44 (0.28) 0.31 (0.03)
XGBoost Non-DL 50.74 (0.59) 0.36 (0.07)

FT-Transformer Single-stage 26.54 (0.45) 0.44 (0.07)
Tabbie Single-stage 22.37 (0.31) 0.39 (0.05)

TabBERT (col-based) Two-stage 26.46 (0.32) 0.44 (0.05)
TabBERT (row-based) Two-stage 21.05 (0.22) 0.46 (0.06)
Fieldy (ours) Two-stage 20.13 (0.34) 0.48 (0.06)

we observe that the differences in terms of AP are less significant,
likely due to the smaller dataset size. Our results for TabBERT (row-
based) on the Pollution dataset are similar to the ones reported in
[11, 13]. Regarding the Loan default prediction task, given that we
reduce the sequence length to any 10 consecutive transactions to
generate more fine-tuning samples, we cannot directly compare
our results to [11] that only used the last 150 transactions instead,
at the expense of generating fewer samples to train on.

We first remark that all transformer models outperform the
non-deep learning baselines we evaluate.1 Note that the Pollution
prediction task requires to output 20 labels for each input sample,
which is implemented with a multi-output regressor wrapped on
around these non-deep learning baselines, i.e., fitting one model
for each target. Hence, this limits these baselines’ ability to capture
relationships between targets. Also, for the Loan default prediction
task, the performance gap is partially explained by the pre-training
advantage the transformers models are given, as the non-deep
learning baselines only use the smaller fine-tuning dataset.

Among transformermodels, single-stage baselines underperform
compared to two-stage architectures, highlighting the benefit of
hierarchical representations for tabular time-series. In particular,
our field-based proposal ranks first on both datasets. In contrast,
TabBERT which conditions attention between fields on a unique
table axis, yields worse performance indicating that capturing fields
relationships across rows and columns is important. Additionally,
comparing Fieldy to the flattened FT-Transformer hints at the lack
of table structural information for the latter. Last, while Tabbie
structures the field embeddings contextualization row-wise and
column-wise, its lack of a second-stage fails to relate all of these
representations.

4.4 Ablation study
In Table 4, we analyze the effect of various design decisions on
the performance of each transformer model on the Pollution and
Loan default datasets. Note that, while the results hold qualitatively
for both datasets, quantitative analysis on the Loan task might be
affected by the smaller dataset size. In the remainder, we derive
conclusions paying more attention to the Pollution dataset results.
1Although prior work demonstrated in many experiments the superiority of gradient-
boosted decision trees compared to transformer-based approaches, in our setting,
XGBoost might suffer from using quantized numerical features. This is a consequence
of our experimental protocol choices which favor comparability with existing literature
(especially for transformer-related works) rather than searching for the global best
independently.

KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain Raphael Azorin et al.

Table 4: Ablation study. Average over 5 seed runs, standard
deviation in parenthesis. Underline highlights model families
best configuration, while bold highlights the global best.

Model
family

Stage with
more capacity

Column
ind. emb.

Row
pos. emb.

Pollution
RMSE ↓

Loan
AP ↑

FT-Transf. Single-stage
28.28 (0.27) 0.43 (0.08)

✓ 28.04 (0.22) 0.42 (0.08)
✓ 27.80 (0.73) 0.44 (0.07)

✓ ✓ 26.54 (0.45) 0.42 (0.05)

Tabbie Single-stage
22.37 (0.31) 0.38 (0.06)

✓ 22.43 (0.14) 0.39 (0.03)
✓ 23.14 (0.23) 0.38 (0.03)

✓ ✓ 23.02 (0.14) 0.39 (0.05)

TabBERT
(col-based)

Field Transf.
27.10 (0.32) 0.44 (0.05)

✓ 27.08 (0.32) 0.43 (0.04)
✓ 26.46 (0.32) 0.40 (0.08)

✓ ✓ 26.48 (0.28) 0.42 (0.03)

Final Transf.
27.85 (0.35) 0.37 (0.03)

✓ 27.88 (0.30) 0.38 (0.02)
✓ 27.19 (0.27) 0.38 (0.04)

✓ ✓ 27.23 (0.22) 0.36 (0.04)

TabBERT
(row-based)

Field Transf.
21.30 (0.28) 0.44 (0.04)

✓ 21.07 (0.15) 0.46 (0.06)
✓ 21.34 (0.28) 0.44 (0.05)

✓ ✓ 21.05 (0.22) 0.45 (0.07)

Final Transf.
22.92 (0.32) 0.46 (0.05)

✓ 22.72 (0.26) 0.44 (0.07)
✓ 22.92 (0.30) 0.45 (0.04)

✓ ✓ 22.70 (0.29) 0.45 (0.07)

Fieldy
(ours)

Field Transf.
20.48 (0.19) 0.46 (0.07)

✓ 20.13 (0.34) 0.44 (0.09)
✓ 20.42 (0.22) 0.43 (0.08)

✓ ✓ 20.32 (0.30) 0.48 (0.06)

Final Transf.
24.15 (0.17) 0.41 (0.04)

✓ 24.00 (0.24) 0.42 (0.08)
✓ 23.98 (0.22) 0.40 (0.06)

✓ ✓ 24.06 (0.27) 0.40 (0.06)

First, we investigate the partition of model capacity between
the first stage, i.e., Field transformer, and the second stage, i.e., Fi-
nal transformer, for hierarchical models. Namely, we modify the
number of encoder layers implemented in each stage to either fa-
vor one or the other, while ensuring the total number of model
parameters remains the same (cf. Table 7). We observe that hierar-
chical architectures perform better when favoring the first stage.
This is particularly evident for Fieldy with up to +16% performance
improvement for the Pollution data set. This common trend indi-
cates that the field representations learned in the first stage are
particularly important for hierarchical transformers performance.

Second, we analyze the effect of the table structure encoding
mechanisms that we introduced in Section 3, namely using column
index embedding and/or row position embedding. Note that, even
for architectures that dissect tabular time-series along table axes
(i.e., Tabbie and TabBERT), the ordering of rows and columns is
not preserved by design, due to the permutation-invariant nature
of the basic attention mechanism, thus requiring additional posi-
tional input. Therefore, we evaluate all table structure encoding
combinations for all models. We observe that explicitly indicat-
ing table structure information is beneficial to almost all trans-
former architectures, compared to not including any. However, the

type of structural information required (i.e., column index, row
position, or both) is dependent on the model family. As expected,
FT-Transformer benefits from structure information on both axes.
Tabbie shows a similar trend on the Loan default prediction task, al-
though differences are less significant. Regarding two-stage models,
positional encodings are particularly important for the table axis
along which field representations are aggregated. Hence, column-
based TabBERT benefits from row position information, conversely,
row-based TabBERT exploits column index information. Fieldy ex-
ploits table structure information on both axes, and particularly
column index embeddings.

5 CONCLUSION AND DISCUSSION
In this paper we compared transformer architectures for tabular
time-series modeling, investigating how attention can be used to
simultaneously relate tabular fields across rows and columns. We
evaluated our approach on tabular regression and classification
tasks, showing improvements over existing baselines. However,
we highlight that this work can be further expanded. In particular,
we envision two possible research directions considering computa-
tional costs and more data variety.

Computational requirements. While we ensure that in our ex-
periments all transformer models have the same total number of
parameters, their computational requirements differ. In particular,
“vanilla” self-attention time complexity is O(𝐿2) where 𝐿 is the in-
put sequence length. However, the transformer models we compare
do not consider the same input sequence, as they compute attention
along various table axes, i.e., row-wise, column-wise or both. In Ta-
ble 5, we compare attention complexity for each architecture, based
on the number of rows and columns composing the tabular time-
series. We note that the column-based and row-based hierarchical
models are equivalent in terms of attention complexity. In contrast,
our field-based proposal is essentially combining Tabbie-like at-
tention in the first stage and FT-Transformer attention between
all fields in the second stage. Hence, this finer-grained attention
comes at a higher computational cost, which translates into longer
training and inference time. Nevertheless, recent techniques for
near linear-time attention [15, 17, 19] can be readily used to speed
up our approach.

Table 5: Attention complexity. 𝑛𝑟𝑜𝑤𝑠 and 𝑛𝑐𝑜𝑙𝑠 denote the
number of rows and columns per tabular time-series.

Model Stage Complexity

FT-Transformer Single-stage O((𝑛𝑟𝑜𝑤𝑠 × 𝑛𝑐𝑜𝑙𝑠)2)
Tabbie Single-stage O(𝑛𝑟𝑜𝑤𝑠

2 + 𝑛𝑐𝑜𝑙𝑠 2)

TabBERT (col-based) 1st – Field Transf. O(𝑛𝑟𝑜𝑤𝑠
2)

2nd – Final Transf. O(𝑛𝑐𝑜𝑙𝑠 2)

TabBERT (row-based) 1st – Field Transf. O(𝑛𝑐𝑜𝑙𝑠 2)
2nd – Final Transf. O(𝑛𝑟𝑜𝑤𝑠

2)

Fieldy (ours) 1st – Field Transf. O(𝑛𝑟𝑜𝑤𝑠
2 + 𝑛𝑐𝑜𝑙𝑠 2)

2nd – Final Transf. O((𝑛𝑟𝑜𝑤𝑠 × 𝑛𝑐𝑜𝑙𝑠)2)

Fine-grained Attention in Hierarchical Transformers for Tabular Time-series KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain

Future work. To further characterize the strengths and weak-
nesses of Fieldy, we require additional evaluations on a more di-
verse set of tasks and datasets. In particular, the size of such datasets
require careful consideration, given that over-parameterized deep
learning models typically tend to overfit small datasets. In this
regard, click-through rate data [5] may be of interest for their se-
quential nature and large volume. We did not include such dataset
in this work because it is not considered in related literature ei-
ther. Yet, given its larger size, it would be worth considering in a
future work. Also, our findings have only been evaluated in the
realm of tabular time-series, however, the wider domain of multi-
variate time-series might also benefit from field-based hierarchical
architectures, combining length and channel signals in a first stage.
Finally, as the objective of this paper is limited to the comparison
of attention computation axes, we do not include sophisticated
tabular data embeddings techniques such as numerical features em-
beddings from [6, 11] or target-aware pretext tasks for pre-training
from [14]. We expect their respective benefits to be portable to our
novel field-based architecture, as they impact the prior embedding
layer of any transformer architecture. Regarding numerical features
embedding, a tangential direction may leverage methods from tra-
ditional time-series pre-processing techniques. In this regard, SAX
[10] bins continuous time-series into sequences of discrete symbols
to capture their trends. Such symbols could then be tokenized be-
fore being fed to a transformer-based architecture. This motivates
an interesting research direction to compare numerical features
embeddings schemes in the context of tabular time-series.

We contribute to the community our codebase and models at
https://github.com/raphaaal/fieldy.

6 ACKNOWLEDGMENTS
We would like to thank the authors of [11] for fruitful discussions
on the success metrics and pre-processing they used.

REFERENCES
[1] Petr Berka. 1999. PKDD’99 Discovery challenge guide to the financial data set.

http://lisp.vse.cz/pkdd99/chall.htm.
[2] Song Chen. 2019. Beijing Multi-Site Air-Quality Data. UCI Machine Learning

Repository. https://doi.org/10.24432/C5RK5G.
[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data mining. 785–794.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Diemert Eustache, Meynet Julien, Pierre Galland, and Damien Lefortier. 2017.
Attribution modeling increases efficiency of bidding in display advertising. In

Proceedings of the AdKDD and TargetAd Workshop.
[6] Yury Gorishniy, Ivan Rubachev, and Artem Babenko. 2022. On embeddings for

numerical features in tabular deep learning. In Advances in Neural Information
Processing Systems. 24991–25004.

[7] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021. Re-
visiting deep learning models for tabular data. In Advances in Neural Information
Processing Systems. 18932–18943.

[8] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based
models still outperform deep learning on typical tabular data?. In Advances in
Neural Information Processing Systems. 507–520.

[9] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. Tabbie:
Pretrained representations of tabular data. arXiv preprint arXiv:2105.02584 (2021).

[10] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing
SAX: a novel symbolic representation of time series. Data Mining and knowledge
discovery 15 (2007), 107–144.

[11] Simone Luetto, Fabrizio Garuti, Enver Sangineto, Lorenzo Forni, and Rita
Cucchiara. 2023. One Transformer for All Time Series: Representing and
Training with Time-Dependent Heterogeneous Tabular Data. arXiv preprint
arXiv:2302.06375 (2023).

[12] Aashiq Muhamed, Iman Keivanloo, Sujan Perera, James Mracek, Yi Xu, Qingjun
Cui, Santosh Rajagopalan, Belinda Zeng, and Trishul Chilimbi. 2021. CTR-BERT:
Cost-effective knowledge distillation for billion-parameter teacher models. In
NeurIPS Efficient Natural Language and Speech Processing Workshop.

[13] Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre
Dognin, Jerret Ross, Ravi Nair, and Erik Altman. 2021. Tabular transformers for
modeling multivariate time series. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 3565–3569.

[14] Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. 2022.
Revisiting pretraining objectives for tabular deep learning. arXiv preprint
arXiv:2207.03208.

[15] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li.
2021. Efficient Attention: Attention With Linear Complexities. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
3531–3539.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems.

[17] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: self-Attention with linear complexity. arXiv preprint arXiv:2006.04768v3
(2020).

[18] Huangjian Wu, Xiao Tang, Zifa Wang, Lin Wu, Miaomiao Lu, Lianfang Wei, and
Jiang Zhu. 2018. Probabilistic automatic outlier detection for surface air quality
measurements from the China national environmental monitoring network.
Advances in Atmospheric Sciences 35 (2018), 1522–1532.

[19] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan,
GlennMoo Fung, Yin Li, and Vikas Singh. 2021. Nyströmformer: ANyström-based
algorithm for approximating self-attention. Proceedings of the AAAI Conference
on Artificial Intelligence (2021), 14138–14148.

[20] Dongyu Zhang, Jidapa Thadajarassiri, Cansu Sen, and Elke Rundensteiner. 2020.
Time-aware transformer-based network for clinical notes series prediction. In
Machine learning for healthcare conference. PMLR, 566–588.

[21] Dongyu Zhang, Liang Wang, Xin Dai, Shubham Jain, Junpeng Wang, Yujie Fan,
Chin-Chia Michael Yeh, Yan Zheng, Zhongfang Zhuang, and Wei Zhang. 2023.
FATA-Trans: Field And Time-Aware Transformer for Sequential Tabular Data.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management (CIKM ’23). 3247–3256.

[22] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. ACM computing surveys (CSUR)
(2019), 1–38.

https://github.com/raphaaal/fieldy

KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain Raphael Azorin et al.

Figure 3: Illustrative input sample for the field-wise atten-
tion toy task. Predicting missing tokens in the Hour column
requires field-wise attention across rows.

Appendix A FIELD-WISE ATTENTION
In this section, we investigate the hypothesis that coarse-grained
attention resulting from the typical hierarchical learning of tab-
ular time-series representations might miss important cross-field
relationships. More precisely, we compare a pre-trained TabBERT
(row-based architecture) and a pre-trained Fieldy (field-based ar-
chitecture) on a simple prediction task that specifically requires the
attention mechanism to focus on field dependencies across rows.
For this, we utilize the Pollution dataset introduced in Section 4,
sampling 100 input sequences of 10 rows each. We then [MASK]
all values in the last five rows of each sample, and task the models
to predict the masked tokens in the Hour column, as depicted in
Figure 3. Note that values in the Hour column are always incre-
mented by +1, as the Pollution measurements are hourly-based and
the sequences are ordered. Hence, predicting the five missing hour
values requires to specifically attend to Hour fields across separate
rows. From this simple experiment, considering the top-1 predicted
token, Fieldy (field-based) achieves an accuracy of 56%, significantly
outperforming TabBERT (row-based) which only scores 9%. This
indicates that the aggregation performed by hierarchical models
such as TabBERT limits their ability to relate fields along their
second-stage axis.

Appendix B HYPER-PARAMETERS
Transformers architectures hyper-parameters are reported in Ta-
ble 6. Note that we increase dropout and decrease the hidden di-
mension for the Loan prediction task, as it is composed of fewer
samples and models tend to overfit. We adjust the model size by
selecting an appropriate number of layers as reported in Table 7.
We keep all the other hyper-parameters related to model capacity
the same across all models for a fair comparison.

Regarding XGBoost, we run random searches to find hyper-
parameters, whose possible values are reported in Table 8. We use

a 2-fold cross-validation on the Pollution dataset and a 10-fold one
on the Loan dataset that is significantly smaller. Both datasets were
granted a sampling budget of 50 iterations for each seed run.

Table 6: Hyper-parameters for transformer-based models.

Setup Pollution Loan

Pre-training epochs 24 60
Fine-tuning epochs 10 20
Optimizer AdamW AdamW
Learning rate 5e-05 5e-05
Batch size 64 100
Dropout 0.1 0.3
Hidden dimension 800 500
Number of attention heads 10 10
Number of parameters ≈106M ≈36M

Table 7: Transformer-based models layers statistics.

Model Stage with Num. of layers
family more capacity Pollution Loan

FT-Transformer Single-stage 14 8

Tabbie Single-stage 4 4

TabBERT (col-based)
Field Transf. 6 / 10 6 / 6
Final Transf. 1 / 12 1 / 8

TabBERT (row-based)
Field Transf. 6 / 10 6 / 6
Final Transf. 1 / 12 1 / 8

Fieldy (ours)
Field Transf. 8 / 4 5 / 4
Final Transf. 2 / 10 2 / 6

Parameter count per layer depends on the architecture. For hierarchical
architectures, values reflect 1st-stage layers / 2nd-stage layers.

Table 8: Hyper-parameters for XGBoost random search.

Parameter Pollution Loan

Objective MSE Logistic
Max # trees 5,000 5,000
Early-stopping 50 50
Max depth [1, 2, ..., 20, None] [1, 2, ..., 20, None]
Learning rate LogUniform(1e-05, 0.7) LogUniform(1e-05, 0.7)
Min child weight LogUniform(1e-08, 100) LogUniform(1e-08, 100)
Subsample Uniform(0.5, 1) Uniform(0.5, 1)
Col. sample Uniform(0.5, 1) Uniform(0.5, 1)
Gamma LogUniform(1e-08, 100) LogUniform(1e-08, 100)
Reg. alpha LogUniform(1e-08, 100) LogUniform(1e-08, 100)
Reg. lambda LogUniform(1e-08, 100) LogUniform(1e-08, 100)

Fine-grained Attention in Hierarchical Transformers for Tabular Time-series KDD’24 – 10th MiLeTS Workshop, August 26, 2024, Barcelona, Spain

Appendix C DATASETS
In Table 9, we describe the two datasets used for evaluation. For
the Pollution task, the same dataset is used for pre-training (un-
labeled) and fine-tuning. For the Loan default prediction task, the
pre-training dataset is composed of 4,500 clients with 232 transac-
tions on average. At each pre-training step, random sequences of
10 consecutive client transactions are sampled for masking. The
fine-tuning dataset for this task corresponds to transactions from
682 clients. As in prior work [11], splitting between training, vali-
dation and test sets is performed on a client-basis to avoid target
leakage.

Table 9: Datasets statistics.

Item Pollution Loan

Time-series # rows 10 10
Time-series # columns 16 10
categorical columns 7 7
numerical columns 9 3

Pre-training samples 67K ≈999K
Pre-training split (train-val-test) 60-20-20 80-20-0

Fine-tuning samples 67K 5K
Fine-tuning split (train-val-test) 60-20-20 60-20-20

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Evaluation
	4.1 Datasets
	4.2 Models
	4.3 Results
	4.4 Ablation study

	5 Conclusion and discussion
	6 Acknowledgments
	References
	A Field-wise attention
	B Hyper-parameters
	C Datasets

